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Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby in-
creasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomy-
corrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry
(Fe2� � H2O2 � H� ¡ Fe3� � ˙OH � H2O), similar to that of brown rot wood-decaying fungi. In such fungi, secreted metabo-
lites are one of the components that drive one-electron reductions of Fe3� and O2, generating Fenton chemistry reagents. Here
we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-
guided purification was performed to isolate the Fe3�-reducing principle secreted by P. involutus during growth on a maize
compost extract. The Fe3�-reducing activity correlated with the presence of one compound. Mass spectrometry and nuclear
magnetic resonance (NMR) identified this compound as the diarylcyclopentenone involutin. A major part of the involutin pro-
duced by P. involutus during organic matter decomposition was secreted into the medium, and the metabolite was not detected
when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has
the capacity to drive an in vitro Fenton reaction via Fe3� reduction. Our results show that the mechanism for the reduction of
Fe3� and the generation of hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposi-
tion is similar to that employed by the evolutionarily related brown rot saprotrophs during wood decay.

Boreal forests in the Northern Hemisphere are one of the major
global sinks for carbon (C) (1). Carbon enters this system as

plant litter and through below-ground allocation of photosyn-
thates (2). Fungal communities play an important role in the turn-
over of this C. Saprotrophic fungi are thought to be the key de-
composers of plant litter material (3–6). They can efficiently
degrade recalcitrant lignocellulose polymers, which are the main
components of plant litter material (7, 8). In contrast, the ectomy-
corrhizal (ECM) fungi are symbionts that depend on their plant
hosts for their C sources. In return, the ECM fungi provide plants
with nutrients such as nitrogen (N) (9). The soil organic matter
that ECM fungi encounter is a heterogeneous environment con-
sisting of humus-rich organic materials (10). Under such condi-
tions, N is present mostly in organic forms that are associated with
polyphenols and other degradation products of plant and micro-
bial biopolymers (11, 12). Studies using stable isotopes have
shown that ECM fungi have the capacity to mobilize at least some
of this organic N (10). However, the molecular mechanism by
which ECM fungi mobilize organic nutrients from the complex
soil organic matter has not been well studied.

Recently, we showed that the ECM fungus Paxillus involutus
(Basidiomycetes; Boletales) can decompose polysaccharides and
lignin fragments while acquiring N from organic matter using a
brown rot mechanism (13). Spectroscopy and transcriptome
analyses revealed the action of a radical-based oxidation mecha-
nism that is similar to that of brown rot wood-decaying fungi.
Hydroxyl radicals (˙OH) are important oxidants in brown rot
fungi and are produced via the Fenton reaction (Fe2� � H2O2 �
H� ¡ Fe3� � ˙OH � H2O) (7, 14–16). The production of hy-
droxyl radicals requires the reduction of Fe3� to Fe2� (16). We
demonstrated that P. involutus produced iron-reducing activity

during the decomposition of organic matter extracts (13); how-
ever, the mechanism for reducing Fe3� was not characterized.

Three different mechanisms have been proposed for the reduc-
tion of Fe3� in wood-decaying brown rot basidiomycetes: (i) iron-
reducing enzymes, such as cellobiose dehydrogenase (17), (ii)
low-molecular-weight glycopeptides (18), and (iii) secondary
metabolites, including hydroquinones, such as 2,5-dimethoxyhy-
droquinone (2,5-DMHQ), and catechols, such as 4,5-dimeth-
oxycatechols (DMC) (16, 19). No genes encoding cellobiose
dehydrogenase are found in the genome of P. involutus (20). Al-
though genes encoding putative low-molecular-weight iron-re-
ducing glycopeptides are present in P. involutus, they were not
upregulated during organic matter degradation (13). Taken to-
gether, these findings suggest that secondary metabolites may act
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as the Fe3� reductant that drives the Fenton-based decomposition
mechanism in P. involutus.

Quinone-based redox cycles occur through the reduction of
Fe3� through a one-electron transfer to Fe3� by secreted fungal
hydroquinones and/or catechols (16, 19, 21, 22). Based on the
Fe3�-reducing activity in vitro, Eastwood et al. (23) proposed that
variegatic acid is the metabolite driving Fenton chemistry in the
brown rot fungus Serpula lacrymans, a member of the order Bole-
tales. Variegatic and xerocomic acids are hydroxylated derivatives
of pulvinic acid (24). However, results from experiments per-
formed more recently challenge the view that variegatic acid is the
key reducing agent driving Fenton chemistry in S. lacrymans (25):
variegatic acid was not detected in wood undergoing decay. It was
demonstrated that the well-characterized Fe3� reductant 2,5-
DMHQ was produced by S. lacrymans under the growth condi-
tions described.

The aim of this study was to isolate and characterize the iron-
reducing compound(s) produced by the ECM fungus P. involutus
during the decomposition of organic matter. Our results showed
that the Fe3�-reducing activity was caused by one major com-
pound that was secreted into the medium during organic matter
decomposition. Mass spectrometry and nuclear magnetic reso-
nance (NMR) analyses identified this compound as the secondary
metabolite involutin, a diarylcyclopentenone. This pigment was
described in 1967 (26), but its biological function has remained
unknown. Our study demonstrates that a low-molecular-weight
metabolite can function as the Fe3� reductant in an ECM fungus
during Fenton-based decomposition of organic matter.

MATERIALS AND METHODS
Reagents. 2,6-Dimethoxyhydroquinone (2,6-DMHQ), ferrozine [3-(2-
pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine], and 2-hydroxyte-
rephthalic acid (h-TPA) were acquired from Sigma-Aldrich, Sweden. Di-
sodium terephthalate (TPA) was purchased from Alfa Aesar, Sweden.

Fungal strain and culture conditions. Cultures of P. involutus
(Batsch) Fr. (strain ATCC 200175) were maintained aseptically on mini-
mum Melin-Norkrans (MMN) medium containing 1.5% agar. MMN
medium consists of 2.5 g liter�1

D-glucose, 500 mg liter�1 KH2PO4, 200
mg liter�1 NH4Cl, 150 mg liter�1 MgSO4·7H2O, 25 mg liter�1 NaCl, 50
mg liter�1 CaCl2, 12 mg liter�1 FeCl3·6H2O, and 1 mg liter�1 thiamine-
HCl at pH 4.0. The fungus was grown in petri dishes on a layer of glass
beads immersed in liquid medium (13, 27). After 9 days of incubation at
18°C in the dark, the MMN medium was removed with a sterile pipette.
The glass beads and the mycelium were washed with 10 ml of sterile
Milli-Q (MQ) water, and 10 ml of MMN medium without N was added to
induce an N-deprived mycelium (28). After 24 h, the mycelium was again
washed in MQ water, and 10 ml of an organic matter extract was added
(13).

The organic matter consisted of a maize compost material (designated
MH) and was extracted with hot water, as described previously (13). The
organic C content of this extract was 225 mg liter�1, and the iron concen-
tration was 0.023 mg liter�1 (13). Previous experiments showed that the
addition of glucose was required for Fenton-based decomposition of or-
ganic matter by P. involutus (29). Hence, the extracts were supplemented
with glucose (final concentration, 2.5 g liter�1). The C/N ratio after the
addition of glucose was ca 7.5 (13). The extracts were then sterilized by
filtration with a 0.2-�m-pore-size filter. The cultures were incubated for 7
days at 18°C in the dark. Samples incubated for 7 days are designated
MH7. Organic matter extracts that were not inoculated with fungi are
designated MH0. The culture filtrate and mycelium were used for further
analyses.

Ferrozine assay. Fe3�-reducing activities were analyzed using the fer-
rozine assay (30). A 100-�l aliquot of the sample was mixed with 1.0 ml of

0.1 M acetate buffer (pH 4.4), 100 �l of freshly prepared 1.0 mM FeCl3,
and 100 �l of 1% (wt/vol) aqueous ferrozine. The reaction mixture was
incubated for 5 min. Fe3� reduction was assayed spectrophotometrically
at 562 nm. A standard curve was constructed using FeSO4 (0.0 to 3.0 mM).

Extraction of Fe3�-reducing compounds. Fe3�-reducing com-
pounds were extracted from the culture filtrates by adopting a procedure
used for isolating such compounds from S. lacrymans (23). Briefly, equal
volumes of culture filtrate and ethyl acetate (EtOAc) were mixed and
vortexed. The EtOAc phase was recovered and was dried under a stream of
N2. The dried EtOAc phase was redissolved in EtOAc. The extract was
then adsorbed onto a 10-ml Bond Elut SI solid-phase (SP) fractionation
cartridge (Agilent Technologies, Sweden), followed by sequential elution
with cyclohexane, EtOAc, and methanol (MeOH). Fractions were desig-
nated SPCyclohex (the fraction resulting from SP extraction with cyclo-
hexane), SPEtOAc, and SPMeOH. Fe3�-reducing activity was measured by
using the ferrozine assay at every step of purification.

An intracellular mycelial extract was prepared by sonication followed
by centrifugation, as described by Shah et al. (28). The supernatant was
analyzed for Fe3�-reducing activity.

Metabolites were also extracted directly from the mycelium according
to the procedure of Feling et al. (31). Briefly, mycelia from 20 petri dishes
(�0.5 g dry weight) were shaken with a mixture of acetone (0.5 liter), 2 M
HCl (5 ml), and ascorbic acid (0.3 g) for 20 h. After filtration, the filtrate
was extracted three times using 200 ml of EtOAc each time. The combined
EtOAc phase was dried under N2 and was directly analyzed by mass spec-
trometry.

Mass spectrometry. To identify secreted fungal metabolites, the MH0
SPEtOAc, MH7 SPEtOAc, and MH7 SPMeOH samples and the EtOAc phase
of the MH7 mycelial extract were analyzed by liquid chromatography-
mass spectrometry (LC-MS). The instrument used was an Accela high-
performance LC (HPLC) system with an Exactive Orbitrap mass spec-
trometer equipped with a BetaSil C18 column (length, 150 mm; inside
diameter, 2.1 mm; particle size, 3 �m) (Thermo Fisher Scientific, Ger-
many). Samples were dissolved in 1 ml MeOH and were filtered (0.45-�m
polytetrafluoroethylene [PTFE] filter; VWR, Germany). A gradient con-
sisting of 0.1% (vol/vol) formic acid in water (solvent A) and 0.1% (vol/
vol) formic acid in acetonitrile (solvent B) was applied at a flow rate of 0.2
ml min�1, with an initial hold for 1 min at 5% solvent B, followed by a
linear increase to 98% solvent B within 16 min. These conditions were
held for an additional 3 min. High-resolution electrospray ionization MS
(HRESIMS) data were acquired in both positive and negative ionization
modes. Data were analyzed using Xcalibur software (Thermo Fisher Sci-
entific, USA) and the Reaxys database.

HPLC purification. To purify secreted fungal metabolites, reverse-
phase semipreparative HPLC was performed on the MH7 SPEtOAc frac-
tion by using an Agilent 1200 HPLC system (Agilent Technologies, Ger-
many) with a diode array detector and a Zorbax XDB C18 column (length,
250 mm; inside diameter, 9.4 mm; particle size, 5 �m). The sample was
dissolved in MeOH. An isocratic run was applied using a solvent system
with 92% solvent A (0.1% trifluoroacetic acid in water) plus 8% solvent B
(acetonitrile) at a flow rate of 1 ml min�1. The chromatograms were
recorded at 254, 260, 285, and 295 nm with peak-actuated scanning from
200 to 400 nm. Fractions collected according to peaks were analyzed for
Fe3�-reducing activity. Fractions containing Fe3�-reducing activity were
pooled, dried in a rotary evaporator, and freeze-dried to remove traces of
trifluoroacetic acid. The fractions were analyzed by mass spectrometry
and NMR.

NMR analysis. 1H and 13C NMR spectroscopy of the isolated Fe3�-
reducing activity was carried out on a Bruker Avance III instrument
(Bruker, USA). The samples were dissolved in CD3OD (99.8%; Deutero,
Germany). Signals were referenced to residual MeOH at 3.31 ppm. Spec-
tra were analyzed using TopSpin software, version 3.1 (Bruker, USA).
Involutin 1H NMR (600 MHz, CD3OD): �H 3.96 (d, 3J � 6.8 Hz, 1H,
5-H), 4.68 (d, 3J � 6.8 Hz, 1H, 4-H), 6.5 (dd, 3J � 8.1 Hz, 4J � 2.0 Hz, 1H),
6.61 (d, 4J � 2.0 Hz, 1H), 6.77 (d, 3J � 9.0 Hz, 2H), 6.72 (d, 3J � 8.1 Hz,
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1H), 7.71 (d, 3J � 9.0 Hz, 2H). Involutin 13C NMR (125 MHz, CD3OD):
� 58.3 (C-5), 72.7 (C-4), 115.6 (CH), 116.1 (CH), 117.9 (CH), 122.8 (CH),
123.8 (C), 128.7 (C), 130.5 (CH), 145.6, 146.1, 157.2 (each C); signals for
C-1, C-2, and C-3 not visible. HRESIMS (negative mode): m/z found
313.0719; m/z calculated 313.0718.

Detection of hydroxyl radicals. TPA was used as a probe for measur-
ing the generation of hydroxyl radicals during the Fenton reaction with
involutin. TPA is selective for hydroxyl radicals and produces a fluores-
cent product, h-TPA, upon oxidation (32, 33). Briefly, a 100-�l aliquot of
HPLC-purified involutin (�0.6 mM) was allowed to react with TPA in a
mixture containing 2.0 ml of 100 �M TPA, 1.0 ml of 3 �M H2O2, and 2.0
ml of 30 �M FeCl3 (in 0.1 M acetate buffer, pH 4.0). The increase in
fluorescence intensity due to h-TPA production was measured at an ex-
citation wavelength of 315 nm and an emission wavelength of 425 nm.
The reaction mixture was incubated in the dark, and the increase in fluo-
rescence intensity was measured after 0, 1, 2, and 3 h. 2,6-DMHQ (0.6
mM) was used as a positive control for hydroxyl radical production. The
2,6-DMHQ isomer is more stable than 2,5-DMHQ and has similar Fe3�-
reducing properties; thus, it is the preferred isomer for this assay (25, 34).
An assay mixture without involutin or 2,6-DMHQ was used as a negative
control. An h-TPA standard curve (0.0 to 100.0 nM) was used for com-
parison (see Fig. S1 in the supplemental material).

RESULTS
Purification of secreted Fe3�-reducing compounds. P. involutus
was grown on a maize compost (MH) substrate. Previous studies
using spectroscopic analyses showed that this substrate is decom-
posed by the fungus using a brown rot mechanism involving Fen-
ton chemistry (13). The production of Fe3�-reducing activity was
analyzed both in the mycelium and in the culture filtrate (Fig. 1).
At the start of the experiment, trace amounts of Fe3�-reducing
activity were detected in the culture filtrate (MH0). After 7 days of
incubation, high levels of Fe3�-reducing activity were detected in
the culture filtrate (97% of the total activity) but only minute
amounts in the mycelium (3% of the total activity). Fe3�-reducing
activity was not detected in the mineral nutrient medium (MMN)
incubated with the fungus for 7 days.

To purify the Fe3�-reducing activity secreted by P. involutus
after 7 days of growth in the MH substrate, the activity was ex-
tracted with EtOAc, fractionated on solid-phase silica gel car-
tridges, and purified by HPLC. Approximately 87% of the Fe3�-
reducing activity present in the culture filtrate was extracted with
EtOAc (Fig. 1). This activity was further separated into two frac-
tions by solid-phase fractionation, 51% in the SPEtOAc fraction and
32% in the SPMeOH fraction. No activity was detected in the
SPCyclohex fraction (Fig. 1).

Identification of involutin. LC-MS analysis of the MH0
SPEtOAc, MH7 SPEtOAc, and MH7 SPMeOH fractions revealed that
one major compound was formed during the decomposition of
the organic material (Fig. 2). Based on the HPLC and HRESIMS
total-ion chromatogram, the signal corresponded to a single com-
pound with m/z 313.0719 and thus was tentatively identified as
involutin (Fig. 2B, inset). The total ion current profiles for the
MH7 SPEtOAc and MH7 SPMeOH fractions were similar except that
the peak associated with involutin was considerably lower in the
MH7 SPMeOH fraction than in the MH7 SPEtOAc fraction (Fig. 2B
and C).

To examine whether involutin was responsible for the Fe3�-
reducing activity produced during the decomposition of organic
matter, the MH7 SPEtOAc fraction was further analyzed by semi-
preparative HPLC using an isocratic gradient. Scanning of the
chromatograms recorded at different wavelengths revealed that

only one peak detected at 254 nm had Fe3�-reducing activity (Fig.
1 and 3A). HRESIMS showed that the peak contained a single
compound with an m/z of 313.0718 calculated for C17H13O6

(found 313.0719) and UV absorption maxima at 228 nm and 248
nm with the solvent mixture of acetonitrile and water; thus, the
compound was tentatively identified as involutin (26, 31). The
structure of involutin was finally confirmed by NMR analysis (Fig.
3B) (see Materials and Methods). Purification yielded 0.4 mg of
involutin with �90% purity, which corresponds to a titer of �7.5
�g ml�1 of organic matter extract.

Other metabolites. LC-MS analysis also detected traces of in-
volutin in the mycelium grown on the organic matter extract (see
Fig. S2A in the supplemental material). Other compounds de-
tected in the mycelial extract were (i) C7H11O5N, m/z 188.0553,
and (ii) C10H16O3, m/z 183.1024 (see Fig. S2B and C in the sup-
plemental material). These compounds have not been reported
previously in P. involutus.

The culture filtrate and mycelial extract were searched for the
presence of hydroquinones, such as 2,5-DMHQ (C8H10O2, m/z
138.1638), its oxidized form, 2,5-dimethoxybenzoquinone
(DMBQ) (C8H8O4, m/z 168.0423), and catechols, such as DMC
(C8H10O4, m/z 170.0579), by using HPLC-HRESIMS data from
authentic compounds. These metabolites were not detected in the
culture filtrate or in the mycelial extract of P. involutus grown in
the organic matter. Similar techniques, as described above, were
used to search for pulvinic acid-derived metabolites, such as
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FIG 1 Purification of Fe3�-reducing activity secreted by P. involutus during
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are normalized per milliliter of culture filtrate. Fe2� generated by the myce-
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rified involutin from the MH7 SPEtOAc eluate.
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variegatic and xerocomic acids; however, these compounds were
not detected.

Ability of involutin to generate hydroxyl radicals. To exam-
ine whether involutin may play a role in the production of hy-
droxyl radicals during organic matter decomposition by P. invo-
lutus, we analyzed the ability of purified involutin to drive Fenton
chemistry in vitro via Fe3� reduction. In the presence of involutin,
FeCl3, and H2O2, significant amounts of h-TPA were produced,
suggesting the production of hydroxyl radicals (Fig. 4). Under
these conditions, the generation of h-TPA by involutin was similar
to that of the hydroquinone 2,6-DMHQ. In the absence of H2O2,
no hydroxyl radicals were formed in the presence of either invo-
lutin or 2,6-DMHQ. It has been shown previously that hydroxyl

radical production requires the reduction of Fe3� in the presence
of H2O2 (33). Thus, in our experimental system, the metabolite
involutin drives a Fenton reaction via Fe3� reduction.

DISCUSSION

Ectomycorrhizal fungi have evolved from saprotrophic ancestors
multiple times (20). During evolution, ECM fungi have lost many
of the genes encoding plant cell wall-degrading enzymes, suggest-
ing a reduced decay capacity. Nevertheless, we recently showed
that the ECM fungus P. involutus decomposes lignocellulosic ma-
terial during the assimilation of organic N from organic matter
extracted from forest soil or maize compost (13). Data from spec-
troscopic analyses and transcriptome profiling suggested the in-
volvement of a Fenton-based oxidation mechanism similar to that
used by brown rot fungi for decaying lignin in wood tissues (13).
In the present study, the oxidation reaction was further examined
by characterizing the mechanism involved in the production of
the Fe2� required for the Fenton reaction.

In agreement with the findings for several brown rot wood
decayers (16, 19, 21–23, 25), we showed that in P. involutus, the
Fe2� involved in Fenton chemistry is formed by the activity of a
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low-molecular-weight Fe3� reductant. Four observations support
the conclusion that this reductant is the previously known pig-
ment involutin (26, 31). First, the Fe3�-reducing activity that was
secreted into the medium during organic matter decomposition
was due largely to a single compound. The compound was iden-
tified by mass spectrometry and NMR as involutin. Second, the
production of the Fe3�-reducing activity was significantly en-
hanced during the decomposition of the organic matter extract. In
contrast, only trace amounts of extracellular Fe3�-reducing activ-
ity were detected when the fungus was grown on a mineral nutri-
ent medium. Third, a large part of the involutin that was synthe-
sized during organic matter decomposition was secreted into the
medium. Fourth, a purified fraction of involutin had the ability to
drive a Fenton reaction in the presence of H2O2 in vitro.

The order Boletales is one of the major groups of the Agarico-
mycetes, containing ca. 1,300 described species (35). The ancestor
of the Boletales was likely a brown rot saprotroph; however, lin-
eages with ECM species have evolved several times within the or-
der (36). Fungi within the Boletales have been extensively exam-
ined for secondary metabolites (24, 37). So far, involutin has been
detected from the fruiting bodies in only three species: P. involu-
tus, Gyrodon lividus, and Melanogaster broomeianus (24, 38).
These species belong to the family Paxillaceae, which was recently
characterized as a well-resolved lineage of the suborder Boletineae
(39). At present, only ECM species are known in Paxillaceae. In-
volutin is probably synthesized from the terphenylquinone atro-
mentin, which is a key intermediate in the biosynthetic pathways
of many basidiomycete secondary metabolites (24, 40). Among
them are the pulvinic acid-derived pigments variegatic acid and
xerocomic acid, which are commonly found in species of the Bo-
letales but not in species of the Paxillaceae (24, 37). The lack of
these pigments in P. involutus was confirmed in this study. These
observations suggest that the gain of a biosynthetic pathway for
involutin in the family Paxillaceae has been accompanied by a loss
of the pathways leading to variegatic acid and xerocomic acid.

The ecological function of the terphenylquinones and related
derivatives is not well known. It has been proposed that variegatic

acid can function as a Fe3� reductant during Fenton-based wood
decay in the bolete S. lacrymans (23). A more recent experiment
has provided evidence that the hydroquinone 2,5-DMHQ is a pri-
mary Fe3�-reducing agent expressed by S. lacrymans during
brown rot decay of aspen wood (25). There are also studies show-
ing that 2,5-DMHQ is the reductant involved in Fenton-based
wood decay in species from two other divergent agaricomycete
lineages, the Gloeophyllales and the Polyporales (41, 42). Al-
though the biosynthetic pathway for 2,5-DMHQ is not known,
the data imply that this pathway was present in the ancestor of the
Agaricomycetes (25). Neither 2,5-DMHQ nor the more stable iso-
mer 2,5-DMBQ was detected in the mycelium or the culture fil-
trates during organic matter decomposition by P. involutus. Since
studies of brown rot fungi have shown that the production of
iron-reducing compounds and iron chelators can be affected by
the composition of the medium, including the concentrations of
C, N, and iron (43, 44), the possibility that P. involutus has the
capacity to synthesize other Fe3�-reducing metabolites and iron
chelators in addition to involutin cannot be ruled out. However,
considering the fact that P. involutus was grown under conditions
promoting oxidative decomposition, our results suggest that in-
volutin is a key Fe3� reductant secreted during Fenton-based de-
composition of organic matter by P. involutus.

It has been shown that in the brown rot wood-decaying system,
2,5-DMHQ has a dual role and drives Fenton chemistry by reduc-
ing both Fe3� and O2 (to produce H2O2), generating hydroxyl
radicals (16). In our experiments, involutin produces hydroxyl
radicals only in the presence of H2O2, suggesting that involutin
functions as a Fe3� reductant. H2O2 can also be generated by the
activity of a number of oxidases, including laccases, glucose-meth-
anol-choline (GMC) oxidoreductases, and copper radical oxi-
dases, and genes encoding such enzymes are expressed by P. invo-
lutus during the decomposition of organic matter (13).

The formation of the Fe2� that is involved in Fenton-based
decomposition of lignocellulose has been extensively studied in
brown rot wood-decaying fungi (45). Apart from a mechanism
to reduce Fe3� to Fe2�, an additional mechanism is needed for
solubilizing the iron from the insoluble Fe (oxyhydr)oxide
complexes found in plant tissues. Brown rot fungi are thought
to retrieve such iron by secreting oxalic acid, which binds to
and solubilizes Fe3� from Fe (oxyhydr)oxide complexes. The
oxalate tightly chelates Fe3�, making it unreactive with hydro-
quinones (46). Studies with Postia placenta have shown that the
hydroquinone 2,5-DMHQ can be oxidized to a semiquinone by
the activity of an extracellular laccase and that this reaction could
generate a complete Fenton reaction system (42). The mycelia of
ECM fungi are present mainly in the humus-rich region of soil
horizons, where Fe3� is found in iron oxide crystals with very low
solubility, such as hematite, goethite, and ferrihydrite (47). Fe3� is
solubilized from such minerals only when it is reduced to Fe2� or
when it forms complexes with ligands such as citrate or humic
acids (47). It remains to be demonstrated whether involutin is
capable of releasing and reducing Fe3� from these solid phases or
whether cooperative processes, including the action of other me-
tabolites and enzymes, such as laccases, are involved.
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