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Simple Summary: Intra-tumor heterogeneity is inherent to all cancers and makes direct mapping of
genotype–phenotype relationships challenging. The advent of single-cell multi-omics techniques
has allowed us to begin to comprehensively dissect cellular heterogeneity and access biological
information unobtainable from bulk analysis. Applications cover many fields and are increasingly
numerous. This review aims to summarize the most important applications of single-cell technologies
in hematological tumors, providing a translational view. Data show the power of single-cell multi-
omics to resolve the complex biology of heterogeneous populations and to derive information that
can be used to improve treatment strategies. We discuss, with a practical example, how to make use
of these techniques to study the heterogeneity of a specific type of monoclonal gammopathy called
Waldenström’s macroglobulinemia.

Abstract: Single-cell sequencing techniques have become a powerful tool for characterizing intra-
tumor heterogeneity, which has been reflected in the increasing number of studies carried out and
reported. We have rigorously reviewed and compiled the information about these techniques inas-
much as they are relative to the area of hematology to provide a practical view of their potential
applications. Studies show how single-cell multi-omics can overcome the limitations of bulk se-
quencing and be applied at all stages of tumor development, giving insights into the origin and
pathogenesis of the tumors, the clonal architecture and evolution, or the mechanisms of therapy
resistance. Information at the single-cell level may help resolve questions related to intra-tumor het-
erogeneity that have not been previously explained by other techniques. With that in mind, we review
the existing knowledge about a heterogeneous lymphoma called Waldenström’s macroglobulinemia
and discuss how single-cell studies may help elucidate the underlying causes of this heterogeneity.

Keywords: single-cell sequencing; applications; hematology; Waldenström’s macroglobulinemia

1. Introduction

Despite its monoclonal origin, intra-tumor heterogeneity (ITH) is inherent to the
majority of cancers and can be associated with genetic variability, epigenetic modifications,
gene and protein expression, metabolism, morphology, and other features of tumors [1].
Moreover, ITH is known to play a significant role in tumor progression, preservation of
oncogenic potential, cell survival under changing microenvironmental conditions, and
resistance to drug therapy [1–3], the latter being even more relevant nowadays due to the
use of targeted therapies that may favor the selection and expansion of the clones [4,5].
Accurate evaluation of ITH could be essential for efficient diagnosis and for successful
treatment and outcome [6]. Determining the pattern of somatic mutations is no longer
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sufficient, but it is essential to know their distribution in individual tumor cells and clones,
and how they interact to influence tumor fitness [7]. Approaches based on molecular
genetics have been developed to study tumor behavior and predict treatment efficiency
by considering factors and mechanisms for generating ITH. Despite its widespread use
and recognized diagnostic capacity, next-generation sequencing of the bulk tumor reveals
only a minority of the genetic aberrations present in an entire tumor and can lead to the
mutational burden being underestimated. In addition, it is not possible to distinguish
which alterations occur in the same clone(s) or to elucidate the order of appearance and
co-dependency of mutations. Single biopsies from geographically localized tumor areas
cannot recapitulate the complexity of spatial heterogeneity. Such problems inherent to
tumor sampling bias due to ITH may be mitigated by circulating tumor DNA (ctDNA)
sampling [8,9]. Sequencing ctDNA can provide a wider vision of the tumor genomic
landscape but can never reveal how certain genetic abnormalities change the behavior of
the cell subset involved.

Single-cell sequencing techniques represent a step forward in the characterization
of the complete tumor architecture, revolutionizing the landscape with respect to ITH.
Not only that, single-cell genomics allows us to determine the timing of the alterations
(early vs. late mutations) and provide information about mutations that cooperate in the
development of the disease. Genomic, transcriptomic, and epigenomic assays at the single-
cell level are transforming our understanding of cellular complexity, thereby enabling us to
access biological information that cannot be obtained from bulk analysis [10].

Conventional single-cell methods are based on manual-picking micropipettes [11] or
cell fluorescence-activated cell sorting (FACS) [12]. By contrast, the new methodologies
include microfluidic technologies, such as the C1™ system from Fluidigm® (South San
Francisco, CA, USA), which isolates single-cells into individual reaction chambers in an
integrated fluidic circuit [13], droplet-based microfluidic technologies, such as the Tapestri
System (MissionBio, South San Francisco, CA, USA) [14], the Chromium System (10×
Genomics, Pleasanton, CA, USA) [15], and the Cellular Indexing of Transcriptomes and
Epitopes by Sequencing (CITE-seq) (Technology Innovation Lab, New York Genome Center,
New York, NY, USA) [16], and nanowell-based technologies, such as the Rhapsody™ Single-
Cell Analysis System (BD Biosciences, San Jose, CA, USA), which uses planar arrays of
microwells for cell capture [17], and the Seq-Well platform (Shalek Lab, Massachusetts
Institute of Technology and the Broad Institute, Cambridge, MA, USA) [18], to mention the
most important ones.

Single-cell methods involve single-cell isolation, barcoding, and sequencing to analyze
multiple types of molecules from individual cells, as well as the integrative analysis of
the data to characterize cell types and their functions based on molecular signatures. To
analyze multiple types of molecules from the same cell, it is essential to isolate the single
cells and then to barcode the molecules. The process will be explained in greater details for
two of the most widely used single-cell systems. The Tapestri Platform (Mission Bio) allows
DNA and protein analysis of each individual cell and is based on a two-step microfluidic
workflow. The first step involves encapsulating the cells into sub-nanoliter droplets and
isolating DNA and oligo-conjugate antibodies from each single cell. The second step
involves cell barcoding and targeted amplification by polymerase chain reaction (PCR)
within the droplets, which are then disrupted, before extracting barcoded DNA for library
amplification. Final libraries are purified and sequenced. The Chromium Platform (10×
Genomics) enables the analysis of gene expression, chromatin accessibility, cell-surface
proteins, immune clonotype, antigen specificity, and clustered regularly interspaced short
palindromic repeats (CRISPR) edits. It is based on the generation of thousands of single-
cell partitions, each containing an identifying barcode for downstream analysis using
advanced microfluidics. Within the instrument, barcoded gel beads, coated with a unique
oligonucleotide barcode sequence and functionalized sequences to capture molecules of
interest, are mixed with cells or nuclei, enzymes, and partitioning oil to form thousands
of single-cell emulsion droplets. Each droplet is the location of an individual reaction in
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which the beads are dissolved and molecules of interest from each cell are captured and
barcoded. After barcoding, all fragments from the same cell or nucleus share a common
barcode. Barcoded fragments from thousands of cells are pooled for downstream reactions
to create sequencing libraries. After sequencing, bioinformatics tools use the identifying
barcodes to map sequencing reads back to their single cell or nucleus of origin.

Although there are already many reviews of this topic, most of them have focused
on the technical aspects of the technologies. Here, instead, we have addressed their
practical aspects, presenting a translational point of view. This is a powerful, emerging
technique, as evinced by the increasing rate at which studies are being published that
demonstrate its broad range of applications. This review confines itself to considering the
applications in the field of hematology to provide a comprehensive view of the potential
value of these technologies. It also discusses how these applications can be translated to the
study of Waldenström’s macroglobulinemia, a particular type of lymphoma/monoclonal
gammopathy that is a good example of ITH. Finally, the existing challenges and limitations
are considered.

2. Applications of Single-Cell Multi-Omics in Hematological Malignancies

Single-cell analysis has the potential to contribute to our understanding of cell com-
plexity, and, specifically, there are many areas of hematology where it could be of great
interest (Table 1). We consider the most relevant of these below.

2.1. Characterizing Immune Cell Populations

Single-cell RNA-sequencing studies, with different objectives, have yielded descrip-
tions of a wide range of immune cells. For example, the characterization of human
hematopoietic populations at the earliest stage of hematopoiesis (i.e., CD34+ cells) could
provide a basis for generating blood and immune cells for clinical purposes [19], the study
of CD4+ T-cells allows the specific cell states that drive disease or treatment response to
be identified [20], and the analysis of stem cell-like CD8+ memory T-cells may help in the
development of immunotherapies and vaccines [21].

2.2. Defining the Transcriptomic, Proteomic, and Epigenomic Identity of Malignant Cells

Genotyping and single-cell RNA-sequencing can be integrated to determine how
somatic mutations corrupt the hematopoietic process. Nam et al. showed that malignant
hematopoietic progenitors (CD34+ cells) with mutated CALR have a fitness advantage
with respect to myeloid differentiation and upregulation of the nuclear factor kappa B
(NF-κB) pathway, highlighting the cell-identity dependency of somatic mutations in human
hematopoiesis [22].

Single-Cell DNA and Antibody Sequencing (DAb-seq) is a method that integrates
DNA profiling and surface proteins of single cells at high throughput, allowing the pro-
teogenomic dynamics of multiple patients to be tracked over multiple treatments and re-
currences. Analyzing leukemia patients using this approach identified extensive genotype–
phenotype decoupling, with immunophenotypic heterogeneity among cells with the same
pathogenic mutation, as well as genotypically diverse cells with a convergent malignant
immunophenotype, suggesting that independent phenotype or genotype measurements
do not adequately capture the full extent of proteogenomic heterogeneity [23].

A different single-cell approach, established by Granja et al., combines highly mul-
tiplexed protein quantification, transcriptome profiling, and analysis of chromatin ac-
cessibility to deconvolve aberrant molecular features within blood from patients with
mixed-phenotype acute leukemia, with the aim of identifying the causes of the disease.
This integrative analysis made it possible to infer that the transcription factor RUNX1 acts
as a potential oncogene, regulating malignant genes associated with poor survival [24].
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2.3. Detecting Pre-Leukemic Clonal Hematopoiesis Mutations

Another interesting application is the discrimination of mutations associated with
age-related clonal hematopoiesis vs. true leukemia, in this case, acute myeloid leukemia
(AML) [25]. Mutations in epigenetic regulators DNMT3A and TET2 are frequently found in
older individuals and appear to be associated with an increased death risk [26,27]. These
mutations are also common in patients with AML [28], making genomic measurement of
residual disease very difficult, since detected variants cannot be confidently assigned to
the malignancy (particularly in the post-treatment setting) [29,30]. While targeted DNA
sequencing cannot determine whether mutations associated with clonal hematopoiesis are
also represented within the malignant clone, detection of fusion genes by single-cell DNA
and antibody-oligonucleotide sequencing can resolve the leukemic clonal architecture,
thereby enabling the comprehensive assessment of AML.

The presence of clonal hematopoiesis has also been assessed by single-cell DNA se-
quencing in patients with myelodysplastic syndrome-associated phenotypic abnormalities,
which are present in ∼10% of newly diagnosed multiple myeloma (MM) cases [31].

2.4. Establishing the Order of Events That Mediate Cancer Origin and Evolution

A comprehensive understanding of disease development may facilitate the rational
design of antitumor drugs and prevention strategies. Single-cell sequencing has made
it possible to measure the clonal structures of childhood acute lymphoblastic leukemia
(ALL) samples at diagnosis, and to establish the sequence of genetic events that underlie
the disease; first, most of the structural variants, followed by single-nucleotide variants
(SNVs), with KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog) mutations occurring
late in disease development [32]. The order of mutation acquisition and the progenitor cells
in which this process is initiated have also been studied in T-cell ALL (T-ALL). Patients
showed an early event in a known oncogene (MED12, STAT5B) that was already detectable
in multipotent progenitor cells. Intermediate events included copy-number alterations
(such as loss of 9p21) and acquisition of fusion genes, while NOTCH1 mutations were
typically late events [33], despite having a key role in the development of T-ALL [34].

Reconstructing the complete clonal architecture of the tumor may give insights into its
evolution and inform decisions about treatment [35,36]. Myeloid malignancies, including
AML, arise from the expansion of clonal hematopoietic stem and progenitor cells that ac-
quire subsequent somatic mutations. Single-cell sequencing has allowed clonal trajectories
to be mapped and synergistic combinations of mutations to be revealed that promote clonal
expansion and dominance. The work of Miles et al. demonstrated that clonal complexity
increased as the disease progressed (from clonal hematopoiesis to AML), and continued
to evolve as AML clones acquired mutations in signaling effectors, which were often
sub-clonal and not concurrent. In addition, mutational combinations contributed to clonal
dominance in various ways: specific co-occurring disease alleles (e.g., NPM1–FLT3-ITD
or DNMT3A–IDH2) were associated with clonal dominance, whereas other mutational
combinations (e.g., NPM1–RAS) did not promote clonal expansion. Changes in clonal
architecture were due to the expansion of pre-existing minor clones and could be detected
using single-cell DNA sequencing, drawing attention to the value of searching for therapies
targeting these clones before they achieve clonal dominance. Finally, by combining muta-
tional analysis with protein expression, it is possible to identify significant genotype-driven
changes in cell-surface protein expression (e.g., mutations in the mitogen-activated protein
kinase/extracellular signal-regulated kinases, MAPK/ERK, pathway that led to increased
CD11b expression) [37]. Evidence of molecular complexity including intra-lineage clonal
evolution was found in another study of myeloproliferative neoplasms: two unusual
patients, each harboring two driver mutations (JAK2/CALR and JAK2/MPL), which repre-
sented, in both cases, independent clones. These data highlight the importance of routine
assessment of the three canonical driver mutations (i.e., JAK2/CALR/MPL) in order to
characterize disease biology accurately [38].
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2.5. Describing Mechanisms That Lead to Disease Progression and Resistance to Therapy

Much research has been done to understand the underlying etiology of clonal evolu-
tion. This helps to determine whether sequential molecular monitoring is of clinical value
for the early detection of malignancies, and to assess the utility of preventive interventions.
Single-cell techniques have been used to study clonal evolution of severe aplastic anemia
to a secondary myeloid malignancy. DNA sequencing at the single-cell level showed that
sequential mutation acquisition over a 7-year clonal period occurred within the same clone
derived from an initial ASXL1 mutated clonal population [39]. The same strategy was used
to study the predisposition to develop leukemia in Shwachman-Diamond syndrome (SDS).
The authors linked the development of leukemia to the acquisition of biallelic TP53 alter-
ations that drove progression of TP53 mutated clones. As SDS patients can develop multiple
independent TP53 mutated clones, serial monitoring by bulk sequencing would fail to
distinguish clinically significant sub-clonal changes in TP53 allelic status. These findings
imply the value of integrating of single-cell DNA sequencing into surveillance strategies
in order to identify patients with high-risk clones [40]. In MM, single-cell transcriptome
analysis revealed that extramedullary progression is associated with alterations in the
transcriptional programs of plasma cells and the microenvironment affecting proliferation
and immune evasion [41].

Regarding the development of drug resistance, tumors harbor a variety of cell types
that are thought to play an important role in this process [42]. Thus, in patients with AML,
a single-cell study observed that greater clonal complexity was associated with reduced
elimination of all malignant clones with standard chemotherapy regimens, and therefore
with a higher risk of resistant clones persisting and eventually causing clinical relapse [43].
Therefore, an important prognostic application would be one that established a diversity
index for the tumor, or parts of it, that could predict whether a patient will respond poorly
to therapy or have a strong tendency to relapse. Cell composition could also determine a
worse clinical outcome. Single-cell RNA-sequencing identified the CD34+CD117dim pro-
portion as an independent factor of poor prognosis in patients with t(8;21) AML, and this
leukemic cluster was able to expand at the post-relapse refractory stage after several cycles
of chemotherapy [44]. In addition, it is also possible to identify the molecular determinants
of clinically relevant outcomes. In patients with AML who are treated with combinations
based on venetoclax (a BCL-2 inhibitor), NPM1 and IDH2 mutations are associated with
high response rates and durable remissions, while the activation of the FLT3, RAS, and
TP53 signaling pathways seems to be linked to resistance development [45]. Emergence of
multiple clones, each with distinct mechanisms of resistance, is a common finding following
the secondary failure of single-agent targeted therapies for leukemias. An integrated ge-
nomic analysis combining DNA sequencing, RNA-sequencing, and a methylation profiling
microarray revealed that selection of co-occurring mutations in hematopoietic transcription
factor genes (RUNX1/CEBPA) or RAS-RTK (receptor tyrosine kinase) pathway genes were
the main drivers of acquired resistance to IDH inhibitors, suggesting that novel strategies
targeting certain high-risk co-occurring mutations might improve the therapeutic efficacy
of IDH inhibitors in AML [46]. The complex biology of resistance was also highlighted in
AML treated with ivosidenib (an inhibitor of mutated IDH1), whereby the concurrence
of different mechanisms, particularly receptor tyrosine kinase pathway mutations and
IDH-related mutations, contributed to primary and secondary resistance [47]. Likewise,
McMahon and colleagues demonstrated that secondary clinical resistance to the FLT3 in-
hibitor gilteritinib in relapsed AML was commonly mediated by heterogeneous mutations
that activate downstream RAS-MAPK pathways [35]. RNA-sequencing identified a CD19
splice variant as a biomarker of the failure of blinatumomab (anti-CD19/CD3) therapy in
B-cell progenitor ALL [48], and a USP7 gene signature was associated with resistance to
therapy in AML patients [49]. Lastly, a deeper analysis of the CLL response to ibrutinib (a
BTK inhibitor) allowed the dissection of the exact cellular and molecular changes induced
by this drug and identified candidate molecular markers of therapy response. Chromatin
accessibility analysis with ATAC-Seq on FACS-purified immune cell populations was
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combined with single-cell RNA-sequencing for a subset of timepoints. The high level of
detail and biological insight obtained make it particularly well-suited to applications in
personalized medicine, whereby each patient may follow a different disease trajectory, and
for early-stage clinical trials of new targeted therapies, in which it is critical to understand
the molecular and cellular dynamics in order to establish the appropriate dose and identify
response biomarkers [50].

2.6. Studying the Microenvironment

The bone marrow microenvironment may support tumor progression and treatment
evasion. Witkowsky et al. used single-cell RNA-sequencing and cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) to show that B-cell ALL remodels the
bone marrow immune microenvironment upon disease initiation, as well as the subsequent
recovery during conventional chemotherapy [51]. In addition, immune microenviron-
ment profiling identified extrinsic regulators of survival, which would underpin the new
immune-based therapeutic approaches for high-risk B-ALL treatment [51].

2.7. Understanding Human B-Cell Biology and Lymphoma Pathology by Modeling the
Germinal Center

Integrative single-cell analysis of gene expression, surface phenotype, and the B-cell
receptor sequence can be useful for studying the heterogeneous germinal center (GC) B-cell
subset [52]. This approach was used to characterize B-cell transcriptional heterogeneity
in follicular lymphoma (FL) and compare it with the various states observed in normal
GC B-cells. Results showed a major desynchronization of GC-specific gene-expression
programs in FL tumor cells, although with distinct FL-specific cell states coexisting within
a single patient. This suggests that lymphoma B-cells are not blocked in a GC B-cell state
but might adopt dynamic modes of functional diversity [53].

2.8. Cancer Therapy

Transferring T-cells that express tumor-reactive T-cell receptors (TCRs) can induce
regression of tumors in patients with advanced cancer. However, isolation and expression
of a tumor antigen-specific TCR is a highly complex process. Advances in single-cell
sequencing have begun to streamline this process; in particular, single-cell variable (V),
diversity (D) and joining (J) genes (VDJ) sequencing data are used to clone antigen-specific
TCRs. The same strategy can be used to expand primary human antigen-specific T-cell
clones [54].

A different application is the identification of transcriptomic features in anti-CD19
Chimeric Antigen Receptor T-Cell (CAR T)-infusion cell products. This has been associated
with efficacy and toxicity in diffuse large B-cell lymphoma (DLBCL). Results have shown
that heterogeneity of the cellular and molecular features contributed to the variation in
efficacy and toxicity and that the 7-day molecular response might serve as an early predictor
of CAR T-cell efficacy [55].

2.9. Other Applications

CRISPR-Cas9 (CRISPR-associated endonuclease Cas9) gene editing allows the rapid
interrogation of the functional impact of somatic mutations in human cancers. Single-cell
technologies enable the analysis of Cas9-introduced gene edits in thousands of cells, quanti-
fying mutational co-occurrences and zygosity status. As most cancers arise and propagate
due to the complex interaction of multiple drivers, these tools allow the contribution of in-
dividual genetic drivers to cellular fitness to be assessed and the mutational co-occurrences,
interactions of multiple lesions, and clonal evolutionary mechanisms in cellular and mouse
models to be studied [56].

Another interesting application is bone marrow engraftment monitoring by the as-
sessment of donor/host chimerism using the individuals’ unique genotype signatures
as genetic proxies. Using a droplet microfluidic approach in AML patients at different
times (before/after bone marrow transplant and at AML relapse), it was possible to obtain
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the molecular profile of single nucleotide variants (SNVs) across thousands of cells. This
revealed the existence of genetic chimerism after bone marrow transplantation. In addition,
comparison of clone number and size across the three times suggested that AML relapse
after transplant may result from the aggressive and exclusive expansion of the oncogenic
cells carrying tumor-suppressor and/or oncogene mutation(s), and is associated with loss
of donor chimerism [57].

Table 1. Summary of the main applications of single-cell technologies in different areas of hematology. CAR T, chimeric
antigen receptor T-cell; Cas9, CRISPR-associated endonuclease Cas9; CRISPR, clustered regularly interspaced short
palindromic repeats.

Area Application Reference

Immune system Study stem cell-like CD8+ memory T cells to develop immunotherapies
and vaccines [21]

Tumor cells Combine genotyping and immunophenotyping to fully characterize the disease [23]

Clonal hematopoiesis Distinguish mutations associated with clonal hematopoiesis vs. true leukemia to
accurately measure residual disease [29]

Oncogenesis
Establish the sequence of genetic events that occur in the disease development;
characterize mutational combinations that promote clonal expansion to select

targeted therapies
[32,37]

Clonal evolution Study the predisposition to develop leukemia in Shwachman-Diamond syndrome
to identify patients with high-risk clones [40]

Therapy resistance Characterize clonal complexity to predict clinical relapse; evaluate concurrence of
different resistance mechanisms to search for novel treatment strategies [35,43,46,47]

Microenvironment Define the supportive role of the immune microenvironment to develop new
therapeutic approaches [51]

B-cell biology Model the germinal center to understand lymphoma pathology [53]

Cancer therapy Identify transcriptomic features in anti-CD19 CAR T-infusion cell products to
determine efficacy and toxicity [55]

CRISPR-Cas9 gene editing
Analyze Cas9-introduced gene edits to quantify the abundance of

CRISPR-introduced disease drivers and decipher the effects of multiplex
gene editing

[56]

Bone marrow transplant Assess donor/host chimerism to monitor bone marrow engraftment and predict
relapse after transplant [57]

2.10. Future Applications

Assays and methods to detect molecular abnormalities will soon be adapted for use at
the single-cell level. Fold et al. demonstrated fusion event detection at single-cell resolution
using barcoded single-cell RNA-sequencing data in MM, pointing the way forward for the
development of fusion methods [58].

3. Single-Cell Techniques in Waldenström’s Macroglobulinemia: Utility
and Applicability

As we have seen, single-cell technologies have proven useful in many fields. Now,
we will focus on the specific applications that these techniques may have in a particularly
heterogeneous hybrid disease. ITH may be the underlying cause of the wide multilevel
heterogeneity present in Waldenström’s macroglobulinemia (WM). WM is a rare indolent
B-cell lymphoproliferative disorder characterized by bone marrow infiltration by lym-
phoplasmacytic lymphoma and the presence of an immunoglobulin M (IgM) monoclonal
component [59]. The cellular composition of this lymphoma includes malignant lympho-
cytes and plasma cells. At the clinical level, the disease is consistently heterogeneous, its
variety of behaviors being manifested in entities ranging from indolent forms, such as IgM
monoclonal gammopathy of undetermined significance (IgM-MGUS) and asymptomatic
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WM (AWM), to highly symptomatic disease (symptomatic WM, SWM) [59]. Its evolution
is highly variable [60], and transformation into aggressive DLBCL as well as leukemia has
also been reported [61,62], although the mechanisms responsible are not known. In recent
years, progress has been made towards characterizing the genetic profile of WM tumor cells.
Whole-genome sequencing has made it possible to identify a recurrent somatic mutation,
the MYD88 L265P, as a unifying event in most patients with WM (95–97%) and IgM-MGUS
(90%) [63–67]. However, studies in mice have shown that although this alteration might be
indispensable for the WM phenotype, it is insufficient by itself for the full development of
lymphoma [68]. Whether it may be the tumor-initiating event that confers a competitive
advantage on the clone and predisposes it to further genetic alterations remains to be
clarified. A recent study has shown the presence of MYD88 L265P in B-cell precursors from
6/10 patients and in residual normal B-cells from 6/10 patients [69]. It would be interesting
to evaluate the different cell populations in Ig-MGUS and WM patients at the single-cell
level to identify the event(s) that accompany or co-operate with MYD88 mutation in the
malignant transformation.

The second most common alteration in WM affects the C-terminal domain of CXCR4
and is present in 40% of patients, almost all of whom are MYD88-mutated [70,71]. Currently,
more than 40 different mutations (either nonsense or frameshift) have been described, the
most frequent being the nonsense CXCR4 S338X mutation, which is present in ~25% of
patients [72,73]. CXCR4 mutations are mostly sub-clonal, with a variable clonal distribu-
tion, which suggests they are probably acquired after the MYD88 mutation during WM
oncogenesis [71,74,75]. One single-cell study has already addressed the differences between
cells that acquire the CXCR4 mutation and those that remain CXCR4-wild-type within
a patient. Results did not show a distinct mutation profile for the two populations, but
further studies are needed [76].

There is increasing evidence about the role of the B-cell receptor pathway in the
pathobiology of WM, either alone or in cooperation with the MYD88 signaling axis [77–83].
Mutations in CD79A and CD79B occur in 8–12% of WM patients, and co-expression of
CD79B and MYD88 mutations has been associated with transformation to aggressive
lymphoma [84–87]. Lastly, mutations in TP53 are more rarely observed—they occur in
2–3% of WM—and are associated with poor survival (Figure 1) [77,85,88,89].
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Figure 1. Frequency and distribution of the mutations in the main genes of Waldenström’s macroglobulinemia (WM) ac-
cording to the different studies. The total number of mutated patients in each study, as well as the global mutation frequency
(%) considering the four studies, are displayed. a Corresponding to 57 Immunoglobulin M monoclonal gammopathy of
undetermined significance (IgM-MGUS) and 62 WM; b Corresponding to 14 IgM-MGUS, 23 asymptomatic Waldenström’s
macroglobulinemia (AWM) and 24 symptomatic Waldenström’s macroglobulinemia (SWM). NA: not applicable.
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All this means that, in spite of the monoclonality inherent to all cancer cells, they har-
bor a substantial degree of variability that could be responsible for the clinical heterogeneity
of WM. However, to date, no clear correlation has been found between the mutational
profile and the clinical behavior of IgM gammopathies [84,85]. The global frequency of
mutations and genomic alterations (copy-number abnormalities, loss of heterozygosity)
does increase from IgM-MGUS to SWM, which confirms the association between aggressive
clinical behavior and a higher frequency of alterations [84–86,90]. Therefore, it appears
that these alterations could have a role in the multistep oncogenic process that drives the
transition first from IgM-MGUS to AWM, and then to SWM. Considering the heterogeneity
of the mutational profile of WM patients (Figure 1), it seems unlikely that the malignant
clone has a specific pattern of aberrations. In fact, the evidence suggests that there may be at
least two pathways that promote IgM-MGUS progression to symptomatic disease: CXCR4
mutation and 6q21-25 deletion. Loss of chromosome 6q is found in 40–50% of patients
with WM [91,92] and appears to be exclusive to CXCR4 in treatment-naïve patients [93].
The increasing frequency of 6q deletions from IgM-MGUS through asymptomatic and
symptomatic WM suggests that loss of genes within this region facilitates disease progres-
sion [84,91,93,94]. As for CXCR4 mutations, the transcriptomic profile, relative to that of
solely MYD88-mutated individuals, shows diminished B-cell differentiation, downregula-
tion of tumor suppressors overexpressed by MYD88 mutation, and alternative activation
of the toll-like receptor 7 (TLR7) pathway [95].

As noted in other tumors, it is not only the type of genetic alteration that matters—the
target cell where mutations arise and the order of the events are also of great relevance to the
course of the oncogenic process. Therefore, it would be interesting to perform multi-omics
analyses in single cells, distinguishing between the three stages of the disease (IgM-MGUS,
AWM, and SWM), to resolve the zygosity and co-occurrence/exclusion of mutations, and
to examine they extent to which they are correlated with the immunophenotype. With these
insights, phylogenetic trees could be reconstructed to determine the order of acquisition
of the alterations, the cell of origin, and light could be shed on the putative mechanisms
leading to progression. The same strategy could be applied to the transformation from
WM to DLBCL or leukemia. It is conceivable that some of the genetic abnormalities
driving this process may already be present at diagnosis in certain subclones. Identifying
these events would provide a comprehensive view of this transition and would help to
develop new diagnostic strategies and targeted therapies. According to previous studies,
the transformation process is consistent with a branching model of evolution in which only
clones containing driver mutations give rise to more aggressive populations by acquiring
new aberrations (Figure 2) [87]. Identical scenarios have been reported in MM [96], FL [97],
chronic lymphocytic leukemia [98], AML [99], ALL [100], and even solid tumors [6],
although these need to be confirmed in further analyses of single cells. Likewise, it would
be interesting to establish whether there is a progenitor tumor cell that is common to both
diseases (WM and DLBCL) and that is responsible for their pathogenesis.

The heterogeneous composition of the bone marrow infiltration in WM, including vari-
able percentages of small lymphocytes, plasmacytoid lymphocytes, and plasma cells [101],
is also amenable to study at the single-cell level. The pathophysiology of the plasma cell
involvement is poorly understood, and it has been observed that residual plasma cells
may be present even in the complete response when the neoplastic B-cell component is
absent [102,103]. Moreover, according to a recent study, concordance between the muta-
tional landscape of WM B-cells and plasma cells is not 100%, suggesting that not all WM
B-cells differentiate into plasma cells [69]. With more in-depth knowledge of the different
populations, it may be possible to determine whether they are part of the neoplastic clone
and to identify the origin of the WM cell.

Another interesting outcome of single-cell technologies would be to determine therapy
resistance mechanisms throughout the course of treatment. Ibrutinib, a Bruton tyrosine ki-
nase (BTK) inhibitor, is highly active in WM patients [104]. Mutations in BTK at its binding
site (Cys481) are common in patients who experience progression on ibrutinib, particularly



Cancers 2021, 13, 1541 10 of 17

those with CXCR4 mutations. Multiple BTK mutations can occur within individual patients
and coexist with PLCγ2-activating mutations, which are also associated with acquired ibru-
tinib resistance, both of which lead to downstream ERK1/2 activation [105]. In most cases,
BTK mutations are sub-clonal but confer a protective effect against ibrutinib on neighboring
BTK wild-type cells through a paracrine mechanism [106]. Single-cell studies may help
address the pathways and mechanisms induced in wild-type cells by these alterations, as
well as other treatment-emergent mutations, the reason for their co-occurrence, and the
particular susceptibility of CXCR4-mutated cells. Such findings would enable us to identify
patterns of clonal selection and evolution that mediate clinical resistance, and thereby to
use an alternative strategy to overcome resistance in these patients.
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Figure 2. Branching model of tumor evolution observed in WM transformation to DLBCL, adapted from Jiménez, C.,
Alonso-Álvarez, S., Alcoceba, M. et al. From Waldenström’s macroglobulinemia to aggressive diffuse large B-cell lymphoma:
a whole-exome analysis of abnormalities leading to transformation. Blood Cancer J. 7, e591 (2017). https://doi.org/10.103
8/bcj.2017.72 [87]. The figure shows an example from a patient who was diagnosed with WM in 2010 and who transformed
to DLBCL in 2015, with a symptomatic progression in 2013 before the transformation: 35 mutations were identified at
diagnosis, 48 at relapse and 72 at transformation, and 29 of the alterations were conserved throughout the entire process.
Mutations in PPM1D, SBF2, TRAPPC9, TRPM7, and WT1 genes were present at progression and transformation. By contrast,
two TP53 mutations at relapse that were not observed at transformation. This implies that the transformed final clone did
not evolve from the same subclone as was responsible for progression, but from a previous one that would not yet have
acquired the TP53 mutations. DLBCL, diffuse large B-cell lymphoma; WM, Waldenström’s macroglobulinemia.

It is important not to limit the studies solely to DNA. There may be no direct corre-
spondence between the genetic findings and the final phenotype because important steps
must be traversed from one to the other. Transcription and translation, together with all
the key regulatory processes involved, play a fundamental role in the pathogenesis of
the disease, and everything should be studied and interpreted as a whole. MYD88 and
CXCR4 mutations divide WM patients into three major genetic subgroups (MYD88WT,
MYD88L265P-CXCR4WHIM, and MYD88L265P-CXCR4WT) that show upregulation and down-
regulation of different pathways, which is translated into the three final clinical phenotypes
with their distinct clinical features [95]. The most clinically relevant consequence of this
subclassification of WM is the differential response to certain drugs, such as ibrutinib.
Thus, patients with wild-type MYD88 do not achieve an objective response to ibruti-
nib [107], while those with CXCR4 mutations show lower rates of deep responses, and
shorter progression-free survival [108,109]. Therefore, it is crucial that all the information
be considered as a whole, and single-cell DNA sequencing studies must be complemented
by studies of the phenotypic consequences that a specific genomic abnormality may imply.

https://doi.org/10.1038/bcj.2017.72
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4. Limitations of Single-Cell Analysis

As we have shown throughout this review, single-cell technologies have many appli-
cations and enormous potential, however, their limitations and challenges must also be
recognized. First of all, a large quantity of fresh tumor cells of high viability and purity is
essential, but we know that this requirement would be difficult to fulfill for certain diseases.
For DNA and protein analysis, it is possible to freeze the samples until they are processed,
but for single-cell RNA-sequencing, it is advisable to process the samples on the day of
collection to minimize the risk of changes in expression. The workflow is not particularly
complicated, but appropriate bioinformatic support and the use of computational methods
are absolutely essential. The amount of information generated must be properly processed
and analyzed by an integrated pipeline for multi-omics analysis. Allelic dropout, false
genotype measurements, sequence-dependent bias, and PCR errors must be considered
when analyzing single-cell DNA sequences [110]. For single-cell RNA sequencing, the prob-
lems that must be overcome are the poor detection of genes with low-level expression, the 3’
bias, and the noise in the transcriptome data [111]. Different strategies, such as fluorescence-
activated cell sorting, Western blotting, metal-tagged antibodies, or oligonucleotide-labeled
antibodies, can be used to obtain single-cell proteome profiles, but none of them can detect
all the proteins that are expressed [112]. The combination of different single-cell genomic
signals is computationally challenging, as these data are intrinsically heterogeneous for
experimental, technical, and biological reasons. Multidimensional data obtained from
a single cell are integrated and interpreted by computational methods, which provide
accurate tools for analyzing multimodal data [113]. Software tools for sequence import
and data analysis and visualization are very useful, and some companies already provide
them with their products. The great complexity of the data means that results must be
interpreted with caution and no clinical decision should be made based on them.

Another limitation of single-cell studies is their expense. As with any emerging
technique, up-front costs for consumables, labor, and sequencing are high, creating a
barrier to widespread implementation, and excluding these technologies from use in
routine testing. Developing high-throughput technologies with a high sample-processing
capacity along with easily fabricated and conducted processes could lower the price. The
automation of devices would also reduce assay time and minimize human intervention, in
addition to limiting user bias and improving reproducibility across laboratories [114].

5. Conclusions

In summary, single-cell analysis can overcome the limitations of bulk sequencing and
provide unique insights into tumor heterogeneity, co-dependency of malignant events,
and phylogenesis at the cellular level. Furthermore, single-cell multi-omics makes it
possible to carry out high-dimensional studies to address complex biological questions,
by simultaneously combining the genomic, transcriptomic, and proteomic profiles from
the same cell. The integrated information can be used to select the best strategy for the
management and treatment of patients.
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