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Abstract: The 70 kDa and 90 kDa heat shock proteins Hsp70 and Hsp90 are two abundant and
highly conserved ATP-dependent molecular chaperones that participate in the maintenance of
cellular homeostasis. In Escherichia coli, Hsp90 (Hsp90Ec) and Hsp70 (DnaK) directly interact and
collaborate in protein remodeling. Previous work has produced a model of the direct interaction of
both chaperones. The locations of the residues involved have been confirmed and the model has been
validated. In this study, we investigate the allosteric communication between Hsp90Ec and DnaK and
how the chaperones couple their conformational cycles. Using elastic network models (ENM), normal
mode analysis (NMA), and a structural perturbation method (SPM) of asymmetric and symmetric
DnaK-Hsp90Ec, we extract biologically relevant vibrations and identify residues involved in allosteric
signaling. When one DnaK is bound, the dominant normal modes favor biological motions that
orient a substrate protein bound to DnaK within the substrate/client binding site of Hsp90Ec and
release the substrate from the DnaK substrate binding domain. The presence of one DnaK molecule
stabilizes the entire Hsp90Ec protomer to which it is bound. Conversely, the symmetric model of
DnaK binding results in steric clashes of DnaK molecules and suggests that the Hsp90Ec and DnaK
chaperone cycles operate independently. Together, this data supports an asymmetric binding of
DnaK to Hsp90Ec.

Keywords: chaperone; normal mode analysis; elastic network model; structural perturbation method;
Hsp90; Hsp70; HtpG; DnaK; E. coli

1. Introduction

Molecular chaperones play an important role in maintaining homeostasis within the
cell by participating in processes such as protein folding, protein remodeling, preven-
tion of aggregation, and disaggregation [1–6]. Two highly abundant and evolutionary
conserved chaperones include Heat Shock Protein 90 (Hsp90) and Heat Shock Protein
70 (Hsp70) [7–12]. They are present from bacteria to man and paralogs exist in multiple
cellular locations. During cellular stress conditions, both chaperones are upregulated and
overexpressed. Hsp90 and Hsp70 often collaborate in protein remodeling and activation of
substrate proteins, termed “clients”, [13–15] including many regulatory proteins such as
kinases, steroid hormone receptors, and transcription factors [9,12,16–24].

Members of the Hsp90 family of proteins assemble as homodimers with each protomer
containing three separate domains: an N-terminal domain (NTD) that binds and hydrolyzes
ATP, a middle domain (MD) that is the main locus of client binding and maturation, and
a C-terminal domain (CTD) that is responsible for dimerization and client binding. ATP
binding and hydrolysis by Hsp90 is essential for the binding, maturation, and release
of client proteins [9,25–27]. In the absence of nucleotide, Hsp90 adopts an open “V”-
shaped conformation, which can vary from extended to more compact in structure [28–30].
Nucleotide binding and hydrolysis induce large scale conformational changes that shift
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the structure to more closed conformations involving dimerization at both the N- and
C-domains [30]. These ATP-dependent conformational changes are fundamental to the
chaperoning mechanism and are conserved across species [27,31]; however, the dynamic
equilibrium of occupancy in the various conformations differs [27,28,30,32–35]. In bacteria,
Hsp90 is not essential though it displays modest growth defects at elevated temperature,
subtle differences in growth phenotypes [36,37], and exhibits a small accumulation of
protein aggregates [38]. In eukaryotes, Hsp90 is essential and remodels more than 300 client
proteins. Although Hsp90 holds a key role in protein quality control in healthy cells,
Hsp90 is a central protein in the propagation of cancer, as it has been shown to chaperone
oncoproteins. Eukaryotic Hsp90 also has at least 20 cochaperones which modulate its
ATPase activity and bias the conformational dynamics of Hsp90 to stabilize individual
conformational states [39–44]. In contrast, bacterial Hsp90 does not have any identified
cochaperones that participate in protein remodeling.

The Hsp70 family of molecular chaperones are also highly abundant and conserved.
They are composed of an N-terminal nucleotide binding domain (NBD) and a C-terminal
substrate binding domain (SBD), which are connected by a flexible linker that acts as a
conformational switch to enable interdomain communication [45–47]. Substrate binding
occurs between the β sandwich core and the α helical lid of the SBD (SBD-β and SBD-α, re-
spectively) and differs in affinity based on the nucleotide bound state [10,48,49]. When ATP
is bound, Hsp70 populates an “open” state that weakly binds substrate [50]. In this confor-
mation, the SBD is docked onto the NBD. Conformational changes are induced by ATP
hydrolysis that undocks the two domains and results in a high affinity for substrate within
the SBD [46]. The Hsp70 chaperone cycle is facilitated by two cochaperones, J-domain pro-
teins (Hsp40s) and nucleotide exchange factors (NEF) [51–53]. J-domain proteins stimulate
ATP hydrolysis by Hsp70 [54,55], and NEF promote nucleotide exchange [56–59].

Members of the Hsp70 and Hsp90 chaperone families collaborate in protein remod-
eling. Hsp70s act early in the protein folding pathway on proteins that are relatively
unstructured [60], while Hsp90s work later in the folding pathway on more structured
proteins [12,15,61–63]. In bacteria, the Hsp90 and Hsp70 (referred to as Hsp90Ec and
DnaK) chaperone systems collaborate synergistically to complete remodeling of a client
protein [15,64]. This involves a direct interaction between Hsp90Ec and DnaK in absence
of cochaperones [64–69]. A genetic screen in E. coli identified a region located in the
middle domain of Hsp90Ec that was involved in the interaction with DnaK [65]. Further-
more, molecular docking studies identified a region on the nucleotide binding domain of
DnaK that potentially interacted with Hsp90Ec [66]. The predicted interaction is shown
in (Figure 1). This region on DnaK was confirmed to be important for the interaction
with Hsp90Ec as substitution mutants in this region were defective in interaction with
Hsp90Ec in vitro [66]. Chemical cross-linking experiments further showed the interaction
of the NBD of DnaK and the middle domain of Hsp90Ec was direct and not the result
of conformational changes elsewhere on the proteins, thus validating this computational
model [70]. The bacterial chaperone systems have provided a useful tool in exploring the
collaboration and direct interaction between the chaperones without additional compli-
cations from participation of other cochaperones throughout the chaperone cycle. There
is also an abundance of structural information involving conformations in various nu-
cleotide bound states [30,66], as well as functional information about the Hsp90-DnaK
collaboration [12,15,64,66,67,70–72]. The direct interaction between Hsp70 and Hsp90 is
conserved in yeast [67], suggesting potential similarities in mechanisms. However, the con-
formational dynamics and progression through the chaperone cycles are more complex and
involve cochaperones [9,73]. For instance, the Hsp90-Hsp70 interaction can be bridged by
the Hop/Sti1 chaperone that interacts simultaneously with both chaperones and stabilizes
the open conformation of Hsp90 by inhibiting Hsp90 ATPase activity [7,13,14,39,74–77].
Given the sequence and structural homology of the chaperones and the conserved direct
interaction in yeast, mechanistic details in the bacterial system may also be conserved in
higher eukaryotes.
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The coordination of the Hsp90 and Hsp70 ATPase cycles and how the allosteric signal
is transmitted throughout this complex to regulate the ATP-dependent conformational
changes of both chaperones remains unclear. In this work, we set out to understand
how Hsp90Ec and DnaK allosterically communicate and couple their ATP-dependent
conformational cycles. The large system size and the conformational changes of both
chaperones make molecular dynamics simulations challenging. A simplified mathematical
approach is to consider the dominant vibrational modes using network models. Elastic
network models have been successful in studying large scale motions of other biological
systems and long distance communications between conformational states [78–90]. Normal
mode analysis of these fluctuations reveal the low frequency modes corresponding to
large scale conformational changes [91], which have been reported to resemble dynamics
obtained from more accurate simulations [92,93]. In this study, we use an elastic network
model (ENM) and normal mode analysis (NMA) to study the conformational changes of
Hsp90Ec. We then probe the effects of a bound cochaperone, DnaK, and the stoichiometry
between Hsp90Ec and DnaK by using asymmetric and symmetric DnaK bound structures.
We also use the Structural Perturbation Method (SPM) to identify amino acids responsible
for transmitting the allosteric signals [85,94].

Figure 1. DnaK-Hsp90Ec docked model. The residues of DnaK and Hsp90Ec that are involved in the
direct interaction have previously been described [65,66,72]. (a) Hsp90Ec-DnaK docked model. (b)
Residues of Hsp90Ec (magenta) that interact with DnaK are localized in the MD (green) outside of
the cleft of the Hsp90Ec dimer. (c) Residues of DnaK (orange) that interact with Hsp90Ec are located
in the NBD (grey).

2. Materials and Methods

Using the low frequency modes predicted by ENM has been shown to successfully
describe global motions of proteins and complexes, including structural transitions that
connect two allosteric states [85,88,95–98]. We have modeled all proteins as elastic networks
composed of N nodes where N is the number of amino acids in the PDB structures [95].
Each node is located at the α-carbon atom of an amino acid residue; the nodes that are
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within a cutoff distance Rc = 9 Å in the PDB structure (see Preparation of Structures), are
connected via harmonic potential with the energy function:

H =
1
2 ∑

i,j:d0
ij<Rc

γ(dij − d0
ij)

2 (1)

where γ is the spring constant that defines the energy scale, dij is the dynamic distance
between residues i and j, and d0

ij is the corresponding PDB distance. The dynamics of
the system is obtained by calculating the normal modes of the mass-spring system with
potential energies given by Equation (1). The normal mode calculation yields a set of
3N-dimensional eigenvectors, qM and corresponding eigenvalues ωM for each mode M.
The cutoff distance (Rc = 9 Å) was chosen using a comparison of the normal mode-based
calculated B-factors to the B-factors reported in PDB structures, where available [89]. The
same spring constant was used in all three models.

2.1. Measured Quantities

The overlap function is used to describe how closely a single mode matches the
allosteric change of dynamic proteins with multiple conformational states. The calculation
for the structural transition is given by:

IM =
∑ qiM∆ri√

∑ q2
iM

√
∑ ∆r2

i

(2)

where M is the mode index, ∆ri is the difference in the locations of the ith amino acid
α-carbon atom in the two structures that correspond to the starting and end conformations
of a structure, and qiM are the corresponding eigenvectors. The sums are over all nodes and
thus include 3N terms. Based on the definition in Equation (2), 0 ≤ IM ≤ 1. The closer the
value is to 1, the more accurately a given mode describes the structural transition between
the two states.

To quantify the pairwise correlations of amino acid vibrations and highlight domain
motions, we calculate the covariance matrix as:

Cij =
∑ qiMqjM/ωM√

∑ q2
iM/ωM

√
∑ q2

jM/ωM

(3)

where the sums are over the modes, M. Since −1 ≤ Cij ≤ 1, the regions where Cij values
are close to +1 correspond to concerted vibrations, negative Cij values indicate motions
that are in opposite directions.

The relative displacement of a node i in mode M is calculated from the normalized
eigenvectors qiM as:

δqiM =
√

q2
ix M + q2

iy M + q2
iz M (4)

where qiu M denotes the displacement of the site i in the u direction.

2.1.1. Structural Perturbation Method (SPM)

The structural perturbation method (SPM) was developed to assess the dynamic
role of individual amino acids in a structural transition [86,99]. The SPM allows us to
quantify how a mutation of an amino acid alters the allosteric dynamics of an entire protein
or protein complex. In practice we calculate the response to a mutation at the site i as
a perturbation:

δωiM =
1
2 ∑

j:d0
ij<Rc

δγ(dij − d0
ij)

2 (5)
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where δγ is the perturbed spring constant. It is important to note that while the sum only
includes amino acids within the cutoff Rc of the mutation site, the resulting changes in the
eigenvectors encompass the entire elastic network. Thus, the greater the response δωiM,
the more dynamically significant a specific residue is to a given mode. In other words,
high δωiM nodes trace a network of residues that can be considered an allostery wiring
diagram for a transition. We highlight the nodes that have a top 2% of δωiM values. To
determine whether hot-spot residues were conserved across the Hsp90 and Hsp70 families
of chaperones, Hsp90Ec and DnaK amino acid sequences were aligned to relevant family
member sequences using Clustal Omega [100]. Amino acid sequences were collected from
Uniprot [101].

2.1.2. Preparation of Structures

The structures were prepared as described previously [66]. Briefly, missing atoms
of the ADP bound conformation of DnaK (PDB ID 2KHO [46]) were built in using the
CHARMM molecular modeling program [102]. The Hsp90Ec dimer in the apo conforma-
tion was obtained from PDB ID 2IOQ (biological assembly 1) [30]. Missing regions of a
single protomer were modeled using ITASSER [103–105] and then two identical models
of each protomer were overlayed with the biological assembly to produce a full length
homodimer. The proteins were docked using ZDOCK [106,107]; the top 2000 complexes
were reranked using ZRANK [108]; and the highest scoring complex was taken. To create
the symmetric complex, we started with the highest scoring docked model. A second
Hsp90Ec monomer bound to DnaK was overlayed with the Hsp90Ec-DnaK complex as
to minimize the root mean square deviation between the bound and Hsp90Ec protomers.
The corresponding DnaK coordinates were added to the Hsp90Ec-DnaK complex to cre-
ate a symmetric complex. The Hsp90Ec alone and Hsp90Ec-DnaK complexes were then
reduced from their all-atom representation to carbon-α only configuration for subsequent
ENM calculations [78–83,95]. The structural overlap was computed using the ADP bound
conformation of Hsp90Ec, PDB ID 2IOP [30]. This structure was modeled using the same
procedure as the apo conformation, described above, to ensure the same number of atoms
for reference.

3. Results
3.1. The Conformational Transition of Hsp90Ec from the Open→ Close Conformation Can Be
Described by Multiple Normal Modes

The normal modes of Hsp90Ec in the apo conformation were calculated and compared
against the ADP bound state of Hsp90Ec, since these modes are considered to contribute to
the biological motion of the protein. The contribution of individual normal modes with
significant structural overlap values ≥0.35 were considered (Figure 2a, Methods). The
movement of Hsp90Ec from the apo to the ADP bound conformation is best described
by two dominant modes. In the first mode, Mode 7 (0.63 overlap), the dimer undergoes
a scissoring motion with both protomers moving towards each other (Figure 3a and
Supplementary Movies S1 and S2). To further understand the movement, the collective
motions of the amino acids are quantified by the correlated motion of pairs of amino acids
in each individual mode, where positive correlations (red) indicate amino acids are moving
in the same direction, negative correlations (blue) indicate movement in opposite directions,
or no correlation is observed (white). Figure 3b shows the correlation matrix for Mode 7
of Hsp90Ec, where one protomer of Hsp90Ec consists of residues 1 to 624 and the second
protomer consists of residues 625 to 1248. Mode 7 is characterized by correlated motions
in the N-M and the M-C domain; the NTD and half of the MD move as a rigid body, and
the CTD and the other half of the MD move as a rigid body. The N-M and M-C motions
are anticorrelated within a protomer (Figure 3a,c). Additionally, the N-M motions are
anticorrelated between both protomers due to the swinging inward motion that results in
the transition from the open “V” structure to the closed structure dimerized at the the C
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and N domains. The M-C motions are correlated between protomers with this region on
both protomers swinging downward to accommodate the closing of the protomers.

Figure 2. Normal modes of apo Hsp90Ec (a) Structural overlap of the normal modes of apo Hsp90Ec

with ADP bound Hsp90Ec to identify the modes that contribute to the biological movement. The
closed circles represent the overlap for individual modes. Lines are drawn for clarity. Nonzero
modes with the highest structural overlap are considered. (b) The sum of the individual amino acid
fluctuations in both modes 7 and 8 are represented on the structure of Hsp90Ec. Blue represents static
residues while red highlights highly mobile residues.

Figure 3. Motions associated with significant normal modes of Hsp90Ec alone. (a) Mode 7 consists of
swing motions of each protomer that contributes to closing and dimerization. (b) Covariance matrix
of amino acid pairs for Mode 7 (c) Mode 8 consists of torsional motions about the CTD. (d) Covariance
matrix of amino acid pairs for modes 8. Arrows in (a,c) indicate the amplitude and direction of
motions of amino acids in each mode. The color scheme highlights the Hsp90Ec N-domain in yellow,
M-domain in green, C-domain in blue. Correlated movements in covariance matricies (b,d) are
highlighted in red while anticorrelated movements are represented in blue.
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The second dominant mode, Mode 8 (0.44 overlap), involves a torsional motion about
the CTD domain (Figure 3c, Supplementary Movies S3 and S4). In this mode, the NTD
and the M-C domains move as rigid bodies (Figure 3d). The motions of the NTD of both
protomers are correlated, while the M-C motions across protomers are anticorrelated due
to a torsion involving closing/opening of the structure. The cross-correlation matrices
for the dominant modes are consistent with principle component analysis obtained from
molecular dynamics simulations of Hsp90Ec in the apo conformation [109]. We further
quantified the magnitude of the motions of each individual amino acid for each mode, δqiM
(Methods). These values can be considered similar to temperature factors [97] and describe
relative displacements within each mode. The sum of these movements in both dominant
modes were mapped onto the structure of Hsp90Ec (Figure 2b) and shown individually
for each mode in Supplementary Figure S1. The coloring on the structure begins with no
mobility (dark blue) and continues through the spectrum to high mobility (red). The residue
fluctuations for the dominant modes of Hsp90Ec indicate rigidity in the CTD and a portion
of the MD, involving some of the experimentally identified residues in the DnaK binding
region [66]. The highest mobility is observed in the NTD and a region of the MD. The lid
of the ATP binding pocket (residues 109–118) exhibits limited mobility in both protomers
with relative δqiM values for individual modes '0.03 (Supplementary Figure S1). Overall,
in both dominant modes, Hsp90Ec acts symmetrically with both protomers displaying
similar behavior in the covariance matrices (Figure 3) and displacements (Figure 2b and
Supplementary Figure S1) with nearly identical patterns and fluctuations.

3.2. A Single DnaK Molecule Modulates the Conformational Flexibility of the Bound
Hsp90Ec Protomer

Next, we wanted to understand how the presence of DnaK affects the fluctuations of
Hsp90Ec in the open to close transition. For this calculation, we used the docked model of
Hsp90Ec-DnaK [66] (Figure 1) that considered apo Hsp90Ec and ADP-bound DnaK. Based
on the structural overlap, two dominant modes were identified, modes 8 and 10, each
accounting for about 40 percent of the conformational transition of Hsp90Ec (Figure 4a).
The first dominant mode, Mode 8, involves a scissoring motion about the CTDs of Hsp90Ec
(Figure 5a, Supplementary Movies S5 and S6). The covariance matrices are represented for
the first protomer of Hsp90Ec (bound to DnaK) consisting of residues 1 to 624, followed
by the second protomer of Hsp90Ec (unbound) consisting of residues 625 to 1248, while
residues 1249 to 1853 correspond to DnaK (Figure 5b,d). In the covariance matrix for
Mode 8 (Figure 5b), there are correlations about the N-M and M-C domains of individual
protomers, as observed in the calculations of Hsp90Ec alone (Figure 3). Additionally, DnaK
acts as a rigid body with the NBD and SBD exhibiting high correlations within domains and
anticorrelation between the two domains. Movement of the DnaK SBD is highly correlated
with the movement of the M-C domain of which it is bound. This rotational motion
orients the substrate binding domain of DnaK centered within the substrate binding site of
Hsp90Ec [71], poised to deliver a client protein. The NBD of DnaK moves anticorrelated
to the region in the middle domain of which it is bound; instead it is highly correlated to
the motion of N-M domain of the opposite unbound Hsp90Ec protomer. The presence of
DnaK bound to the first protomer of Hsp90Ec changes the interdomain correlation relative
to the unbound protomer; there is less correlation between the N-M-domain and a higher
correlation in the M-C domain by comparison.

The second dominant mode, Mode 10, is characterized by a torsional motion about the
CTD dimerization domain (Figure 5c and Supplementary Movies S7 and S8). In Mode 10,
relatively high correlations are observed in N-M and M-domains are observed in the DnaK
bound Hsp90Ec protomer (Figure 5d), suggesting rigid body movements. In contrast, high
correlations are observed in M-C domains in the unbound Hsp90Ec protomer. The binding
of DnaK to one Hsp90Ec protomer removes the symmetry that was previously observed in
the Hsp90Ec alone model. Additionally, correlations are observed within the individual
domains of DnaK indicating that the NBD, SBD-α and SBD-β all move as separate rigid
bodies. There is a strong anticorrelation between the SBD-α and SBD-β. This is the region
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that a substrate protein would be bound in the DnaK ADP conformation. These movements
indicate a possible release mechanism of a substrate protein from the DnaK SBD to the
Hsp90Ec substrate binding region [71].

Figure 4. Normal modes of asymmetric DnaK bound Hsp90Ec (a) Structural overlap of DnaK bound
Hsp90Ec model with ADP bound Hsp90Ec to identify the dominant modes that contribute to the
biological movement. The closed circles represent the overlap for individual modes. Lines are
drawn for clarity. Nonzero modes with the highest structural overlap are considered. (b) The sum of
the individual amino acid fluctuations in both modes 8 and 10 are represented on the structure of
Hsp90Ec. Blue represents static residues while red highlights highly mobile residues.

The overall magnitude of relative amino acid displacements in both dominant modes
follow a similar trend, with suppressed fluctuations in the Hsp90Ec protomer that is bound
to DnaK by an average of 2 fold in comparison to the unbound protomer (Supplementary
Figure S2). Hsp90Ec residues that are in contact with DnaK and residues in the M-C domain
are relatively immobile (displacement≤ 0.02). This results in a stabilization of the substrate
binding residues of the DnaK bound Hsp90Ec protomer, though not the unbound pro-
tomer, which still exhibits much more flexibility by comparison (Supplementary Figure S2).
Figure 4b highlights the sum of the fluctuations in both modes, showing immobility of the
bound Hsp90Ec protomer and the DnaK NBD and conversely the flexibility of the opposite
Hsp90Ec protomer and the highly mobile region on the SBD of DnaK. Taken together, these
motions could indicate a potential role in client protein hand-off. DnaK acts to stabilize
the Hsp90Ec protomer and prevent it from undergoing conformational changes similar
to some cochaperones like Hop or Sti1 of eukaryotic Hsp90s. This increased stabilization
encompasses the substrate binding region of Hsp90Ec, which provides a stable interacting
surface for a substrate to bind. Similarly, residues in the DnaK NBD that are located in the
ATP binding pocket (K70, P143, Y145, F146, R151, E171) or in contact with the Hsp90Ec
middle domain (Figure 1c) are immobile (relative displacement <0.02) and potentially act
to stabilize the bound configuration of the chaperones to ensure client protein delivery. The
residues of the ATP binding lid of Hsp90Ec also exhibit limited mobility in both protomers
relative to the Hsp90Ec alone model, with relative displacements from '0.025 to 0.04 in
either protomer when DnaK is bound. In contrast, the most mobile residues aside from
those in the N domain of the unbound protomer are located in the α-helical portion of the
SBD of DnaK, potentially acting to release a bound client protein from DnaK to Hsp90Ec.
The fluctuations in both dominant modes of DnaK are in agreement with several other
studies of Hsp70/DnaK that report rigid body movements of the NBD and SBD [110],
large fluctuations within the SBD and small fluctuations in the NBD [111], and the opening
between the SBD-α and SBD-β [112].
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Figure 5. Motions associated with significant normal modes of Hsp90Ec when one DnaK is bound.
(a) Mode 8 involves a scissoring motion about the CTD domains of Hsp90Ec with DnaK undergoing
torsional motions perpendicular to the protomer of Hsp90Ec which it is bound. The DnaK SBD is
placed into the client binding site of Hsp90Ec (b) Covariance matrix of amino acid pairs for Mode
8 (c) Mode 10 is a torsional motion of Hsp90Ec about the CTD dimerization domain with DnaK
undergoing torsions about the same axis as Hsp90Ec. (d) Covariance matrix of amino acid pairs for
modes 10. The DnaK SBD-α and SBD-β open to potentially release a client. Arrows in (a,c) indicate
the amplitude and direction of motions of amino acids in each mode. The NBD of DnaK is colored in
grey with the SBD-α in mauve and the SBD-β in red. Correlated movements in covariance matricies
(b,d) are highlighted in red while anticorrelated movements are represented in blue.

3.3. DnaK-Hsp90Ec Stoichiometry of 1:1 Returns the Conformational Flexibility and Symmetry
within Hsp90Ec

Symmetry in Hsp90 complexes and remodeling mechanisms remains an open question
in the field, with preference toward asymmetry [7,113–117]. In order to address symmetry
for DnaK binding we produced a Hsp90Ec-DnaK model with a 1:1 stoichiometry. We
modeled a second DnaK, also in the ADP bound conformation, onto the opposite Hsp90Ec
protomer (see Methods) and then carried out the ENM calculations and computed the
vibrational modes. The functional overlap of these modes with the closed state of Hsp90Ec
(Figure 6a) reveals three dominant modes, modes 13, 28, and 8, that contribute about
equally with 35–38% overlap with the eigenvectors to the closed state. The fluctuations of
Hsp90Ec in Mode 13 in the symmetric DnaK bound model are highly comparable to Mode
8 movements in the Hsp90Ec conformation in the absence of DnaK, characterized by a
torsional motion about the CTD of Hsp90Ec (Figure 7a, Supplementary Movies S9 and S10).
The covariance matrices are represented for the first protomer of Hsp90Ec (bound to DnaK
molecule 1) consisting of residues 1 to 624, followed by the second protomer of Hsp90Ec
(bound to DnaK molecule 2) consisting of residues 625 to 1248, while residues 1249 to 1853
correspond to DnaK molecule 1 and residues 1854 to 2458 correspond to DnaK molecule 2
(Figure 7b,d,f). There is a high correlation in movements within the N-M and M-C domains
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of Hsp90Ec (Figure 7b); however, the fluctuations are suppressed about 2 fold relative
to Mode 8 when DnaK was not bound (Supplementary Figure S1 (red), Supplementary
Figure S3 (black)). In Mode 13, the DnaK molecules move anticorrelated with each other.
Within a DnaK molecule there are high correlations within the NBD, SBD-α, and SBD β.
The motions of the SBD-α and SBD-β are anticorrelated, which would result in opening
of the SBD-α and SBD-β to potentially release a client protein from DnaK. Additionally,
a movement of the DnaK SBD into the client binding site of Hsp90Ec is observed and an
opening of the SBD of DnaK molecules to potentially transfer a client protein to Hsp90Ec.
However, the symmetric movements of the DnaK molecules in opposite directions would
result in a clash of the DnaK SBD’s in the substrate binding region of Hsp90Ec, rendering
this motion of low biological relevance.

Figure 6. Normal modes of symmetric DnaK bound Hsp90Ec (a) Structural overlap of the two DnaK
bound Hsp90Ec model with ADP bound Hsp90Ec to identify the dominant modes that contribute to
the biological movement. The closed circles represent the overlap for individual modes. Lines are
drawn for clarity. Nonzero modes with the highest structural overlap are considered.(b) The sum of
the individual amino acid fluctuations in both modes 13, 28, and 8 are represented on the structure of
Hsp90Ec. Blue represents static residues while red highlights highly mobile residues.

The second dominant mode, Mode 28 reflects a torsional type motion of Hsp90Ec with
rotations of the CTD (Figure 7c, Supplementary Movies S11 and S12). The NTD and the
M-C domains of Hsp90Ec move as rigid bodies (Figure 7d) with both protomers moving
symmetrically and both DnaK molecules moving symmetrically. In this mode the M-C
domains of both protomers are moving together with high correlation, while the N-M
domains of both protomers and both DnaK molecules are moving anticorrelated. There is
also high correlation within individual DnaK molecules in the NBD and the SBD, where
subdomains α and β move together with high correlation. The DnaK SBD and the Hsp90Ec
M-domain exhibit the smallest overall fluctuations in this mode (Supplementary Figure
S3, red), which also include the sites of direct interaction on both proteins. The largest
displacements are located on regions in the N- and C- domains of Hsp90Ec protomers and
the NBD of both DnaK molecules.

The third dominant mode, Mode 8, consists of a torsional motion of the Hsp90
protomers with DnaK moving in concert (Figure 7e, Supplementary Movies S13 and S14).
The fluctuations in Mode 8 appear similar to those of Mode 13 with symmetric rigid-body
movements of the Hsp90Ec N-M and M-C domains (Figure 7b,f). However, the fluctuations
of DnaK move outward from the Hsp90Ec client binding pocket, rendering it incompatible
with client transfer. In Mode 8, there is a very strong correlation of the entire SBD of
both DnaK molecules. The fluctuations of individual amino acids in Mode 8 is also very
similar to Mode 13 (Supplementary Figure S3, blue and black, respectively), with the largest
displacements in the DnaK SBD and Hsp90Ec NTD and CTD while the Hsp90Ec MD and
DnaK NBDs are relatively immobile.
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Figure 7. Motions associated with significant normal modes of one Hsp90Ec dimer when two DnaK
monomers are bound. (a) Mode 13 is characterized by a torsional motion about the C-terminus of
Hsp90Ec. The DnaK SBDs are oriented toward the client binding region of Hsp90Ec resulting in steric
clashes. (b) The covariance matrix of amino acid pairs for Mode 13. (c) Mode 28 involves a torsional
motion of Hsp90Ec about the CTD dimerization domain. The NBD of both DnaK molecules moves
away from the axis of Hsp90Ec while the DnaK SBDs are immobile. (d) The covariance matrix of
amino acid pairs for Mode 28. (e) Mode 8 also involves a torsional motion about the Hsp90Ec CTD
similar to Mode 13, but with the SBDs of each DnaK moving away from the Hsp90Ec vertex. (f)
Covariance matrix of amino acid pairs for Mode 8. Arrows in (a,c,e) indicate the amplitude and
direction of motions of amino acids in each mode. Correlated movements in covariance matrices
(b,d,f) are highlighted in red while anticorrelated movements are represented in blue.

Taken together, the presence of the second DnaK molecule to create a symmetric
complex with 1:1 stoichiometry returns the fluctuations of the system to symmetry. In all
three modes, symmetric patterns of covariance were observed for the Hsp90Ec protomers
and both DnaK molecules. In addition, the relative fluctuations of the Hsp90Ec residues
in the symmetric DnaK complex are decreased (Figure 6b) compared to Hsp90Ec alone
(Figure 2b); this rigidity in Hsp90Ec is symmetric. In contrast, the fluctuations in the
symmetric DnaK model suggest this complex is less rigid than the asymmentric DnaK
model (Figure 4b), that only suppressed the Hsp90Ec fluctuations in the DnaK bound
protomer. Furthermore, the DnaK molecules are more mobile in their NBD, linker, and
SBD-β regions in the symmetric model, while these regions are rigidified in the asymmetric
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model. Figure 6b highlights the fluctuations of individual amino acids in the symmetric
complex, summed over the three dominant modes. Similar to what was observed in the
asymmetric DnaK model, the ATP binding lid for Hsp90Ec exhibits limited mobility, with
relative fluctuations between '0.05 and 0.07. Similarly, the residues of DnaK located in the
ATP binding pocket are also relatively immobile with displacements ≤0.025.

3.4. SPM Analysis Reveals a Change in the Allosteric Wiring Network When DnaK
Is Bound

The structural perturbation method (SPM) identifies residues that are critical for
function (see Methods). These can be considered “hot-spot” residues responsible for
transmitting the allosteric signal for the large scale conformational changes. We focus on
the top '2% (38) of residues involved in this network for each of the models. The residues
involved in the allosteric wiring for the two dominant modes of the Hsp90Ec alone model
are shown as cyan spheres in Figure 8a,b and listed separately in Supplementary Table S1.
The number of conserved residues in Supplementary Table S1 indicate that about two thirds
of the residues involved in allosteric wiring in each model are conserved. In the Hsp90Ec
alone model, hot-spot residues are symmetric in both protomers and involve residues in the
CTD and M-domain of Hsp90Ec. This allosteric network involves one residue determined
to be important for substrate binding (E466) [71]. In contrast, the the hot-spot residues
of Hsp90Ec in the asymmetric DnaK bound model are distributed asymmetrically within
each protomer (Figure 8c,d) for both dominant modes. Overall, many of the same Hsp90Ec
residues involved in the allosteric signal transmission are shared with the Hsp90Ec alone
model (highlighted in blue in Supplementary Table S1). The residues involved in the
allosteric wiring of the DnaK-bound protomer now incorporate two additional residues
involved in the client binding site (W467 and L553, in addition to E466). These substrate
binding residues were shown to be defective in ATPase activity and in protein remodeling
assays with the DnaK chaperone system [71], which is supported by their importance in
transmitting allosteric signals. This SPM data for Hsp90Ec is in agreement with the normal
mode observations (Figures 4 and 5) that indicate asymmetry, as the Hsp90Ec protomer with
DnaK is rigidified and does not move similarly to the unbound protomer. The allosteric
signaling network DnaK bound Hsp90Ec protomer involves additional residues in the
N- and M-domains, some of which are near but not directly involved in the interaction
with DnaK. Some DnaK residues involved in this network are located within the flexible
linker, which is responsible for transmitting the allosteric signal between the NBD and
the SBD. The SBD residues are located at the SBD-α-SBD-β interface that is involved in
opening to allow substrate binding or release. Similar residues have been reported to be
involved in the allosteric signaling of DnaK [118–120]. This SPM data further supports the
hand-off of client from DnaK to Hsp90Ec given the involved residues in the SBD of DnaK
and the propagation of allostery from the C-domain to the region where DnaK is bound
on Hsp90Ec.

While the symmetric DnaK bound Hsp90Ec model does not seem biologically relevant
due to the steric clashes in one of the dominant modes, we also performed the SPM analysis
on this model. Interestingly, the hot-spot residues predominantly involved either DnaK or
Hsp90Ec (Supplementary Figure S4, Supplementary Table S1). These results suggest that in
these modes, DnaK and Hsp90Ec are working independently of each other. This would
be counterproductive in contrast to a model where the allosteric signal is communicated
throughout the bound complex to coordinate the Hsp90Ec and DnaK ATP-dependent
chaperone cycles. The hot-spot residues of DnaK and Hsp90Ec are located in residues
involved in the direct interaction [66]. This region on the NBD of DnaK is important
for the interaction with the SBD of DnaK as well as cochaperones in the J-protein family.
Additionally, residues of DnaK including R272, R261, Y15, Y41, K71, R72, E175, and H227
have been shown to be important for allosteric communication in the Hsp70 ATPase
domain [121]. However, in these models none of these residues are utilized in any of
the dominant modes, suggesting a rewiring of the allosteric mechanism when interacting
with Hsp90Ec.
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Figure 8. Hot-spot residues for the Hsp90Ec and asymmetric Hsp90Ec-DnaK models. The top 2% (38)
residues were mapped on the structures as cyan beads to indicate the amino acids involved in the
allosteric wiring diagrams for each mode. (a,b) unbound Hsp90Ec modes 7 and 8 (c,d) asymmetric
Hsp90Ec-DnaK modes 8 and 10, respectively. All two-dimensional graphs in this paper including
displacement graphs and correlation matrices were made using Python [122] and MatPlotLib [123].
Three-dimensional protein models were made with both PyMol [124] and VMD [125]. Raster images
were edited using GIMP [126] and vector images were edited using Inkscape [127].

4. Discussion

This work explores the coupling of the Hsp90Ec and DnaK chaperone cycles by their
direct interaction. We probe the fluctuations of three different Hsp90Ec models with 0, 1,
and 2 DnaK molecules bound to dissect the role of symmetry in binding. The covariance
and displacement plots indicate a high symmetry of motions in the models without DnaK or
with symmetrical DnaK binding. When one DnaK is bound to Hsp90Ec, the fluctuations are
suppressed in the Hsp90Ec protomer that is bound to DnaK. This could act to stabilize the
apo conformation of that protomer and prevent conformational changes to the closed state.
ENM calculations of other Hsp90-cochaperone complexes[128,129] reveal some similarities
to DnaK binding. For instance the kinase client recruiter, Cdc37, binding to Hsp90 causes
the mobile ATP binding lid of Hsp90 to become rigid. Binding of the cochaperone Aha1
causes long range perturbations in the structure across multiple domains and increases
stability in these regions. The late acting cochaperone p23 increases structural rigidity
throughout residues in the N-, M-, and C- domains of Hsp90 as well. While these studies
were performed with yeast or human Hsp90 structures, the homologous residues impacted
in Hsp90Ec differ from identified hot-spot residues in our studies, suggesting that DnaK is
acting by a distinct mechanism.

Fluctuations within the asymmetrical model of Hsp90Ec with one DnaK molecule
appear to have biological relevance, with the placement of the DnaK SBD over the client
binding site of Hsp90Ec and the shearing of SBD-α and SBD-β of DnaK to release a client
protein. SPM analysis of this model reveals a similar wiring in Hsp90Ec to the Hsp90Ec alone
model, with additional hot-spots identified in the client binding region of Hsp90Ec and in
the SBD and interdomain linker of DnaK. In contrast, the symmetric DnaK bound model
produces fluctuations that result in steric clashes of the DnaK SBDs. These fluctuations
result in a less stable protein-protein interface. Only the regions of Hsp90Ec where DnaK is
bound are stabilized, as opposed to the entire DnaK bound protomer in the asymmetric
model. Additionally, the DnaK NBD, linker, and SBD-β are more mobile than in the
asymmetric model. The SPM analysis of the symmetric model revealed that the chaperone
cycles were not coupled in two of the three dominant modes, with the majority of hot-spot
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residues located in either Hsp90Ec or DnaK. Taken together, this data supports a model of
asymmetric DnaK binding.

Mechanistic asymmetry in Hsp90 remains a highly studied topic in the field. Much
work has been done to understand the Hsp90 chaperone cycle, the effects of cochaperones,
and cochaperone stoichiometry in protein complexes. Many Hsp90 complexes in the
absence of clients exist in symmetric configurations with both protomers populating similar
conformations [30,130–133]. Though, an asymmetric conformation of the mitochondrial
Hsp90 in absence of client has been observed [114]. Hsp90s also exist in asymmetric states
that are important for client protein folding. A combination of biochemical and biophysical
experiments have suggested that Hsp90 interacts asymmetrically with client proteins [134].
One study has shown that Hsp90 can bind two client proteins simultaneously [135], but
cochaperones such as Cpr6 or p23 change the stoichiometry of GR binding and induce
asymmetry in the chaperone cycle [22]. The current model of protein remodeling in
bacterial systems begins with the DnaK chaperone system, including a J protein and NEF,
in client recognition and early remodeling. The client will then be transferred from DnaK
to Hsp90, through the direct interaction of the chaperones, for subsequent remodeling [72].
The asymmetric model presented in this work is consistent with this mechanism. If only
one client protein can be acted upon by Hsp90, then only one DnaK molecule would be
needed to transfer a client.

While the work in this study is focused on the interactions between bacterial Hsp90
and Hsp70, the insights gained here may be valuable for further examinations of eukary-
otic Hsp90 and Hsp70 family members. Hsp90Ec and DnaK are about 40–50% similar
to mammalian homologs; they have been shown to be highly similar in structure and
function [31,136]. The results from SPM and sequence alignment show that the most
important residues for allosteric conformational changes in these chaperones are highly
conserved throughout the Hsp90 and Hsp70 families. Unlike the bacterial systems, eu-
karyotic Hsp90 has at least 20 cochaperones that participate in targeting client proteins
to Hsp90 and modulate the conformational dynamics in the Hsp90 protein remodeling
cycle [9,39,75,76,137–144]. These eukaryotic cochaperones may interact symmetrically or
asymmetrically at different points during the chaperone cycle. The Hop/Sti1 cochaperone
inhibits the ATPase activity of Hsp90 and facilitates the interaction between Hsp70 and
Hsp90. In complexes with only eukaryotic Hsp90 and Hop/Sti1, varying symmetry has
been observed with stoichiometry of 1:1 or 2:1, respectively [77,145,146]. However, one
Hop/Sti1 molecule effectively stabilized Hsp90 and rendered it incompetent for ATP hy-
drolysis [77,147,148]. Similarly, the cochaperone p23/Sba1 is also an inhibitor of ATPase
activity, acting late in the chaperone cycle to stabilize the closed conformation of Hsp90.
The Hsp90-p23 complex was resolved in a symmetric conformation [116], though biochem-
ical experiments observed asymmetric binding in vitro [149,150]. Other cochaperones such
as Aha1, a stimulator of ATPase activity, bind to one protomer and facilitate ATP hydrolysis
of both Hsp90 protomers [151].

Asymmetry is common in ternary Hsp90 complexes, similar to the observation of
binary complexes with cochaperones. The cochaperone Cdc37 facilitates the delivery of
client kinases to eukaryotic Hsp90 [152], similar to the role of DnaK. Ternary complexes
of a client protein, Cdk4, with Cdc37 and Hsp90 indicate asymmetry in the complex with
one Cdc37 and Cdk4 per Hsp90 dimer [18,153]. Another cochaperone, Hop/Sti1, facilitates
the interaction between Hsp70 and Hsp90 [39], though a direct interaction between Hsp70
and Hsp90 in the absence of this cochaperone has been observed [67]. Multiple structures
of the client loading complex of eukaryotic Hsp90s with Hsp70, Hop/Sti1 and a model
client protein, glucocortocoid receptor (GR) have been resolved. While the exact binding
configurations differ and may provide snapshots in time of the dynamics in remodeling
mechanisms, the stoichiometry involves asymmetry in Hop/Sti1 and Hsp70 binding to the
Hsp90 dimer [14,146]. During preparation of this manuscript, a recent cryo-EM structure of
this client loading complex in high resolution was made available. In contrast to previous
observations, this complex was symmetric in Hsp70 binding with one molecule bound



Int. J. Mol. Sci. 2021, 22, 2200 15 of 21

at each Hsp90 protomer within the homologous region indicated in Figure 1 from the E.
coli system. However, the two Hsp70 SBDs are not fully visible. In the low resolution
structures, one Hsp70 SBD can be visualized interacting at the M-C domain of an Hsp90
protomer while the second Hsp70 SBD is still not resolved. This could be due to the
inherent flexibility of the DnaK SBD and DnaK not populating a stable conformation, such
as the ADP bound state as observed in the other DnaK molecule in this complex.

In this work we provide evidence to support asymmetric binding of DnaK by Hsp90.
This system in bacteria does not include a homologous Hop/Sti1 bridging protein to
facilitate the transfer of a client; hence, DnaK may be playing the role of this cochaperone
in E. coli to arrest Hsp90 in a stable conformation for client transfer. In symmetric DnaK
bound complexes, we have only investigated models that include two DnaK in the ADP
bound conformation. We cannot rule out additional asymmetric complexes where DnaK
populates an intermediate state. The current structures of DnaK available include those
used in this study in the ADP bound state and the ATP bound conformation [11,50]. In
previous studies it has been shown that the ATP bound conformation is incompatible
with Hsp90Ec binding, because the same interface on the DnaK NBD that interacts with
Hsp90Ec also interacts with the DnaK SBD. To our knowledge, no undocked NBD-SBD
DnaK conformations exist that render the Hsp90Ec interacting region of DnaK available for
binding. Future studies of DnaK conformations are needed to explore this avenue. Overall,
this work is beginning to shed light on the molecular details in the coupling of the Hsp90
and DnaK chaperone cycles and how the chaperones modulate each other.
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SBD substrate binding domain
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