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SUMMARY

Enterocyte bile acid stasis in early postnatal life results in bile
acid–induced cytotoxicity, oxidative stress, and a restitution
response. Blocking enterocyte apical membrane bile acid
uptake protects against ileal epithelial injury.

BACKGROUND & AIMS: Ileal bile acid absorption is mediated
by uptake via the apical sodium-dependent bile acid trans-
porter (ASBT), and export via the basolateral heteromeric
organic solute transporter a-b (OSTa-OSTb). In this study, we
investigated the cytotoxic effects of enterocyte bile acid stasis
in Osta-/- mice, including the temporal relationship between
intestinal injury and initiation of the enterohepatic circulation
of bile acids.

METHODS: Ileal tissue morphometry, histology, markers of cell
proliferation, gene, and protein expression were analyzed in
male and female wild-type and Osta-/- mice at postnatal days 5,
10, 15, 20, and 30. Osta-/-Asbt-/- mice were generated and
analyzed. Bile acid activation of intestinal Nrf2-activated path-
ways was investigated in Drosophila.

RESULTS: As early as day 5, Osta-/- mice showed significantly
increased ileal weight per length, decreased villus height, and
increased epithelial cell proliferation. This correlated with
premature expression of the Asbt and induction of bile
acid–activated farnesoid X receptor target genes in neonatal
Osta-/- mice. Expression of reduced nicotinamide adenine
dinucleotide phosphate oxidase-1 and Nrf2–anti-oxidant
responsive genes were increased significantly in neonatal
Osta-/- mice at these postnatal time points. Bile acids also
activated Nrf2 in Drosophila enterocytes and enterocyte-
specific knockdown of Nrf2 increased sensitivity of flies to
bile acid–induced toxicity. Inactivation of the Asbt prevented
the changes in ileal morphology and induction of anti-oxidant
response genes in Osta-/- mice.

CONCLUSIONS: Early in postnatal development, loss of Osta
leads to bile acid accumulation, oxidative stress, and a resti-
tution response in ileum. In addition to its essential role in
maintaining bile acid homeostasis, Osta-Ostb functions to
protect the ileal epithelium against bile acid–induced injury.
NCBI Gene Expression Omnibus: GSE99579. (Cell Mol Gastro-
enterol Hepatol 2018;5:499–522; https://doi.org/10.1016/
j.jcmgh.2018.01.006)
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n the hepatocyte, bile acids are synthesized from
Icholesterol, conjugated to taurine or glycine, and then
secreted into bile for storage in the gallbladder or passage
into the small intestine. During a meal, bile acids are present
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Abbreviations used in this paper: ARE, anti-oxidant response element;
Asbt, apical sodium-dependent bile acid transporter; CDCA, cheno-
deoxycholic acid; cRNA, complementary RNA; FGF, fibroblast growth
factor; FXR, farnesoid X receptor; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; GFP, green fluorescence protein; GSH,
reduced glutathione; GSSG, oxidized glutathione; Ibabp, ileal bile acid
binding protein; mRNA, messenger RNA; NEC, necrotizing enteroco-
litis; Nox, reduced nicotinamide adenine dinucleotide phosphate oxi-
dase; Nrf2, nuclear factor (erythroid-derived 2)-like 2; Ost, organic
solute transporter; PBS, phosphate-buffered saline; ROS, reactive
oxygen species; TNF, tumor necrosis factor; TUNEL, terminal deoxy-
nucleotidyl transferase–mediated deoxyuridine triphosphate nick-end
labeling; WT, wild type.
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in high concentration in the small intestine where they act
as detergents to facilitate absorption of fats, fat-soluble vi-
tamins, and cholesterol. After reaching the distal small in-
testine, bile acids are almost quantitatively reabsorbed by
ileal enterocytes, and carried back to the liver in the portal
circulation for uptake and resecretion into bile.1 This
enterohepatic circulation functions to safely store and then
promptly deliver bile acids to the intestinal lumen, while
limiting the systemic distribution and potential cytotoxicity
of these amphipathic molecules. The major membrane car-
riers that maintain the enterohepatic circulation of bile acids
are known and include specific transporters expressed on
the sinusoidal and canalicular membranes of the hepatocyte,
and on the apical brush border and basolateral membranes
of the ileal enterocyte.2 In ileum, the apical sodium-
dependent bile acid transporter (ASBT) (gene symbol:
SLC10A2) and the heteromeric organic solute transporter
a-b (OSTa-OSTb) (gene symbols: SLC51A-SLC51B) mediate
these steps, respectively.3,4 ASBT mutations in human be-
ings or inactivation of the Asbt in mice yields a primary bile
acid malabsorption phenotype that is characterized by
impaired intestinal bile absorption, induction of hepatic bile
acid synthesis, and increased fecal loss of bile acids in the
absence of ileal histologic or ultrastructural changes.5–7

Inactivation of Osta in mice also impairs intestinal bile
acid absorption. However, unlike Asbt-/- mice or patients
with ASBT mutations, Osta-/- mice show a complex pheno-
type that includes a paradoxic reduction in hepatic bile acid
synthesis and ileal hypertrophy.8,9 The changes in bile
acid metabolism are associated with altered gut-liver bile
acid signaling through the farnesoid X receptor (FXR)-
fibroblast growth factor (FGF)15/19-FGF receptor 4
pathway, and inactivation of FXR in Osta-/- mice reverses the
reductions in hepatic Cyp7a1 expression and bile acid syn-
thesis.8–10 By contrast, the altered ileal morphology in
Osta-/- mice is not affected by inactivation of FXR.11 The ileal
changes observed in Osta-/- mice, which include villous
blunting, are typically associated with epithelial damage and
subsequent healing.12 Although adult Osta-/- mice do not
show overt symptoms of intestinal injury, such as increased
inflammatory gene expression in ileum, bleeding, or diar-
rhea, newborn Osta-/- mice show a small postnatal growth
deficiency, and this may coincide with the onset of injury or
initiation of an adaptive response.8,9

The cause of the altered ileal morphology in Osta-/- mice
is unclear, but may involve bile acids. Conjugated bile acids
are fully ionized at physiological pH and are largely
membrane-impermeable in the absence of transporters. As
such, conjugated bile acid accumulation and intracellular
toxicity occurs when membrane transporters facilitate their
uptake and their cellular export is inhibited.13 Bile
acid–induced damage is best described for forms of liver
disease and has been studied for hepatocytes and the
biliary epithelium.14,15 For example, in progressive familial
intrahepatic cholestasis type 2, inherited mutations in the
bile salt export pump (gene symbol: ABCB11) blocks cana-
licular bile acid export, leading to the accumulation of bile
acids and subsequent hepatocellular damage.16 The
molecular mechanisms implicated in bile acid–induced
hepatocyte injury include induction of endoplasmic reticu-
lum stress and mitochondrial damage.14,17–20 However,
more recent studies have suggested that intracellular
conjugated bile acids indirectly stimulate hepatocyte che-
mokine expression and induce liver injury via a hepatocyte-
initiated inflammatory response.15,21 Beyond the liver and
biliary tract, there is a substantial flux of bile acids across
the ileal epithelium. Surprisingly little is known regarding
how the ileal enterocyte is protected against bile acid
cytotoxicity.22–24 In Osta-/- mice, we hypothesize that
continued ileal enterocyte Asbt-mediated bile acid uptake in
the absence of a mechanism for efficient export will in-
crease intracellular bile acid levels. This in turn can pro-
mote bile acid–induced injury and drive the apparent
epithelial damage observed. The ontogeny of bile acid
synthesis and transport has been carefully described in rats
and mice, with an abrupt induction of ileal Asbt expression
coinciding with concentrative bile acid uptake between
postnatal days 17 and 21.25–28 If bile acids are important
for the morphologic changes observed in Osta-/- mice, then
Asbt-mediated bile acid uptake into the ileal enterocytes
should precede or coincide with the intestinal injury. To
test this hypothesis, we investigated the temporal rela-
tionship in Osta-/- mice between the intestinal adaptive
response and initiation of active ileal bile acid absorption,
and whether inactivation of the Asbt is protective in Osta-/-

mice. The potential mechanisms underlying the postulated
bile acid–induced injury also were explored with a reduc-
tionist approach using the Drosophila model organism.

Materials and Methods
Animals, Treatments, and Tissue Collection

The Institutional Animal Care and Use Committees at the
Wake Forest School of Medicine and Emory University
approved these experiments. The Osta-/- and Asbt-/- mice
were generated as previously described.7,8 The mice were
backcrossed onto a C57BL/6J background for 8 generations
and compared with wild-type (WT) littermates on the same
background. The Osta-/-Asbt-/- mice were generated by
cross-breeding the corresponding null mice and compared
with lines generated from WT, Osta-/-, and Asbt-/- littermates
as controls. The mice were group-housed in ventilated cages
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(Super Mouse 750 Microisolator System; Lab Products,
Seaford, DE) containing bedding (1/8” Bed-O-Cobbs;
Andersons Lab Bedding Products, Maumee, OH) in the
same temperature- (22�C) and light/dark cycle– (12-h; 6
AM to 6 PM) controlled room of the animal facility to
minimize environmental differences. The breeding mice
were maintained in cages with standard bedding (1/8” Bed-
O-Cobbs) and pulp cotton fiber nesting material (Nestlets;
Ancare, Bellmore, NY), fed ad libitum rodent breeder chow
(21% of calories as fat; PicoLab Diet 20 no. 5058; catalog no.
0007689, LabDiet, St. Louis, MO), and offspring were
weaned at postnatal day 20. The higher fat content breeder
chow was fed to the dams because previous studies noted
small postnatal growth deficits in Osta-/- and Asbt-/- mice.7,8

Adult nonbreeding mice were maintained on rodent chow
(13% of calories as fat; PicoLab Diet 20 no. 5053, catalog no.
0007688, LabDiet). For the ontogeny study, WT and Osta-/-

breeders were closely monitored for pregnancy status.
Offspring were collected within 4 hours of the end of the
dark phase on postnatal days 5, 10, 15, 20, and 30. The sex
of the pups at day 5 was confirmed by genotyping for the
presence of the Y chromosome as described.29 Body weight,
small intestinal length, and segment wet weight were
recorded at necropsy from 2 to 4 litters (n � 7 mice) per
genotype and time point. For the ontogeny study, the small
intestine was divided into 3 equal-length segments for his-
tology and analysis of gene expression or 5 equal-length
segments for bile acid analysis; segments were flushed
with ice-cold phosphate-buffered saline (PBS) to remove
lumenal contents before weighing and analysis. For histo-
logic analysis, the small intestinal segments were fixed for
paraffin embedding. For measurements of bile acid content
or gene and protein expression, the tissues were flash-
frozen in liquid nitrogen and stored at -80�C before anal-
ysis. For analysis of the Asbt-Osta double-null mice, male
Osta-/-Asbt-/- and corresponding control mice were analyzed
at 10 days and at 8–10 weeks of age. The adult mice were
fasted for approximately 4 hours at the end of the dark
phase before being euthanized to isolate tissues. For the
adult Osta-/-Asbt-/- and control mice, the small intestine was
subdivided into 5 equal-length segments and flushed with
ice-cold PBS to remove lumenal contents before being fixed
for histologic analysis or flash-frozen in liquid nitrogen and
stored at -80�C for measurements of gene expression.8,10

Histologic and Immunohistochemical Analysis
The intestinal segments were flushed with PBS to remove

luminal contents, fixed overnight in 10% neutral formalin
(Sigma-Aldrich), and stored in 60% ethanol until processed
for histology. Each segment was cut into longitudinal strips,
stacked, and encased in 2% agarose before being embedded
in paraffin and processed by Children’s Healthcare of Atlanta
Pathology Services. Histologic sections (5 mm) were cut and
stained with H&E or used for immunohistochemical or
immunofluorescence analysis. Microscopy was performed at
the Emory University Integrated Cellular Imaging Core. The
average villus heights of the proximal and midintestinal
segments were measured for Osta-/- and WT mice at post-
natal days 5, 10, 15, 20, and 30. At least 20 well-oriented,
full-length, villus units per segment per mouse were
measured; quantitative analysis of the digitally acquired
images was performed using ImageJ software (National In-
stitutes of Health, Bethesda, MD).30 Because of the aberrant
morphology of the Osta-/- mice, quantitative measurements
of crypt height were not performed for distal (ileal) segment
at postnatal days 5, 10, 15, 20, and 30.

For detection of phosphohistone H3, a marker of cell
proliferation, paraffin-embedded ileal sections underwent a
heat-induced epitope retrieval procedure and were stained
using a rabbit anti-phosphohistone H3 (Ser10) primary
antibody (catalog no. 9701S, lot 13; Cell Signaling Technol-
ogy, Danvers, MA) and Alexa Fluor 488–conjugated goat
anti-rabbit antibody (catalog no. A-11034, lot 1670152;
Thermo Fisher Scientific, Waltham, MA). For detection of
apoptosis, terminal deoxynucleotidyl transferase–mediated
fluorescein-deoxyuridine triphosphate nick-end labeling
was performed using an in situ Cell Death Detection kit
(catalog no. 11684795910, lot 10711900; Sigma-Aldrich) as
described by the manufacturer. At least 3 mice were
included for each experimental group or condition, and 6–8
field views at a magnification of 20� were taken for each
ileal segment and analyzed for both phosphohistone H3 and
terminal deoxynucleotidyl transferase–mediated deoxyur-
idine triphosphate nick-end labeling (TUNEL)-positive cells.
Because individual crypt-villus structures were difficult to
discern for Osta-/- mice owing to the altered morphology,
comparisons were made using the number of phosphohi-
stone H3 or TUNEL-positive cells counted per unit of in-
testinal length. For detection of mouse ileal bile acid binding
protein (Ibabp) (Fabp6), paraffin-embedded ileal sections
underwent a heat-induced epitope retrieval procedure and
were stained using rabbit anti–fatty acid binding protein 6
primary antibody (catalog no. ab91184, lot GR245572-3;
Abcam, Cambridge, MA) and Alexa Fluor 488–conjugated
goat anti-rabbit antibody (catalog no. A-11034, lot 1670152;
Thermo Fisher Scientific).
Bile Acid and Glutathione Measurements
Feces were collected from single-housed adult mice over

a 72-hour period to measure the total bile acid content by
enzymatic assay.7 To measure ileal tissue–associated bile
acids, the small intestine was divided into 5 equal segments,
flushed with PBS, flash-frozen, and ground under liquid ni-
trogen using a mortar and pestle. After addition of [14C]cholic
acid (PerkinElmer Life Sciences, Boston, MA) to monitor bile
acid recovery, aliquots of ileal tissue were extracted in
ethanol and the bile acids were quantified by enzymatic
assay as described.31 To measure ileal tissue–associated
reduced and oxidized glutathione levels, the small intestine
was divided into 5 equal segments, flushed with PBS, and
ileum (segment 5) was used to isolate mucosal cells that
were frozen and stored at -80�C. After thawing, the samples
were extracted using perchloric acid and chemically modified
for analysis of dansyl derivatives by high-performance liquid
chromatography using a fluorescence detector (Children’s
Healthcare of Atlanta and Emory University’s Pediatric
Biomarkers Core, Atlanta, GA).32,33
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Microarray and Measurements of Messenger
RNA Expression

Total RNA was extracted from frozen tissue using TRIzol
reagent (Invitrogen, Carlsbad, CA). For microarray analyses,
ileal total RNA samples were purified further using an
RNeasy MinElute Cleanup Kit (74204; Qiagen, Hilden, Ger-
many), followed by quality assessment using an Agilent 2100
bioanalyzer. Samples with RNA integrity number values> 8.0
were carried forward for complementary RNA (cRNA) syn-
thesis and hybridization to GeneAtlas MG-430 PM Array
Strips (Affymetrix, Santa Clara, CA) following the manufac-
turer’s recommended protocol. Briefly, approximately 250 ng
of purified total RNA was reverse-transcribed and biotin-
labeled to produce biotinylated cRNA targets according to
the standard Affymetrix GeneAtlas 3’-IVT Express labeling
protocol (GeneAtlas 3’ IVT Expression Kit User Manual, P/N
702833 revision 4; Affymetrix). After fragmentation, 6 mg of
biotinylated cRNA was hybridized for 16 hours at 45�C with
the Affymetrix GeneAtlas Mouse MG-430 PM Array Strips.
Strips were washed and stained using the GeneAtlas Fluidics
Station according to standard Affymetrix operating proced-
ures (GeneAtlas System User’s Guide; P/N 08-0306 revision A
January 2010; Affymetrix) and subsequently scanned using
the GeneAtlas Imager system. Fluidics control, scan control,
and data collection were performed using the GeneAtlas In-
strument Control Software version 1.0.5.267 (Affymetrix).
The raw data generated were normalized using the robust
multi-array average method.34 Ontology and pathway anal-
ysis was performed using the Database for Annotation,
Table 1.List of Primer Sequences Used for Real-Time PCR An

Gene Forward primer

Asbt 5’ TGGGTTTCTTCCTGGCTAGACT 3’

Cyclophillin 5’ TTCTTCATAACCACAGTCAAGACC 3’

Cyp7a1 5’ AGCAACTAAACAACCTGCCAGTACTA 3’

Cyp8b1 5’ GCCTTCAAGTATGATCGGTTCCT 3’

Diet1 5’ CACTCCAATGGGATTGATGA 3’

FGF15 5’ GAGGACCAAAACGAACGAAATT 3’

GSTa1 5’ GGCAGAATGGAGTGCATCA 3’

GSTa3 5’ AGGGAACAGCTTTTTAACAAGAAA 3’

GSTa4 5’ CCCCTGTACTGTCCGACTTC 3’

GSTmu1 5’ GCAGCTCATCATGCTCTGTT 3’

GSTmu3 5’ CCCGCATACAGCTCATGATA 3’

Ibabp 5’ CAAGGCTACCGTGAAGATGGA 3’

Il1b 5’ TGTAATGAAAGACGGCACACC 3’

Nox1 5’ CGCTCCCAGCAGAAGGTCGTGATTACCAA

Nqo1 5’ AGCGTTCGGTATTACGATCC 3’

Nrf2 5’ CATGATGGACTTGGAGTTGC 3’

OSTa 5’ TACAAGAACACCCTTTGCCC 3’

OSTb 5’ GTATTTTCGTGCAGAAGATGCG 3’

SHP 5’ CGATCCTCTTCAACCCAGAT 3’

Slc13a1 5’ AATACGCGCTACCCTGATTG 3’

TNFa 5’ TCTTCTCATTCCTGCTTGTGG 3’

GST, glutathione-S-transferase.
Visualization and Integrated Discovery (DAVID).35 All
microarray analyses were performed by the Wake Forest
School of Medicine Cancer Genomics Shared Resource Core
(Winston-Salem, NC). Quantitative real-time polymerase
chain reaction analysis was performed and messenger RNA
(mRNA) expression levels were calculated based on the delta-
delta threshold cycle method; values are means of triplicate
determinations and expression was normalized using cyclo-
philin.8 The primer sequences are provided in Table 1.
Measurements of Protein Expression
Small intestinal extractswereprepared, subjected to sodium

dodecyl sulfate–polyacrylamidegel electrophoresisusinga4%–
20% gradient (Tris-Glycine Midi Gel; Invitrogen), and analyzed
by immunoblotting.8Blotswerestrippedbefore re-probingwith
antibodies to the different bile acid transport proteins or re-
probing with antibody to glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) to normalize for protein load. Protein
expression was quantified by densitometry using a Microtek
(Hsinchu, Tawain) ScanMaker i900 and FujiFilm (Tokyo, Japan)
Multiguage 3 software, and expression datawere normalized to
levels of the GAPDH loading control. Sources of the antibodies
used in the studywere as follows: anti-mouseAsbt,7 anti-mouse
Osta and anti-mouse Ostb,8 anti-mouse Ibabp (anti–fatty acid
binding protein 6, catalog no. ab91184, lot GR245572-3;
Abcam), anti-GAPDH (catalog no. MA5-15738; Thermo Fisher
Scientific), horseradish-peroxidase–conjugated goat anti-rabbit
antibody (catalog no. A9169, lot 015M48581; Sigma-Aldrich),
alysis

Reverse primer

5’ TGTTCTGCATTCCAGTTTCCAA 3’

5’ TCCACCTTCCGTACCACATC 3’

5’ GTCCGGATATTCAAGGATGCA 3’

5’ GATCTTCTTGCCCGACTTGTAGA 3’

5’ CGAAGTCCCAGGTAAGGAGA 3’

5’ ACGTCCTTGATGGCAATCG 3’

5’ TCCAAATCTTCCGGACTCTG 3’

5’ CCATCAAAGTAATGAAGGACTGG 3’

5’ GGAATGTTGCTGATTCTTGTCTT 3’

5’ CATTTTCTCAGGGATGGTCTTC 3’

5’ TTGCCCAGGAACTCAGAGTAG 3’

5’ CCCACGACCTCCGAAGTCT 3’

5’ TCTTCTTTGGGTATTGCTTGG 3’

GG 3’ 5’ GGAGTGACCCCAATCCCTGCCCCAACCA 3’

5’ AGTACAATCAGGGCTCTTCTCG 3’

5’ CCTCCAAAGGATGTCAATCAA 3’

5’ CGAGGAATCCAGAGACCAAA 3’

5’ TTTCTGTTTGCCAGGATGCTC 3’

5’ AGCCTCCTGTTGCAGGTGT 3’

5’ TTGGTTTTGCCACACTTGAA 3’

5’ GGTCTGGGCCATAGAACTGA 3’
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and horseradish-peroxidase–conjugated goat anti-mouse anti-
body (catalog no. sc-2005, lot K1915; Santa Cruz Biotechnology,
Dallas, TX).

Drosophila Bile Acid Resistance and Staining
Assays

The WT and indicated Drosophila lines were obtained
from previously described sources and maintained on
standard media at 25�C.36 Unless otherwise indicated, the
WT strain w1118 was used for all assays. Whole-animal
cytoprotection in Drosophila was measured in response to
dietary bile acids. Groups of 30–50 adult WT Drosophila
(age, 5 days) were starved for 3 hours and then transferred
to a vial containing a 2 � 2 cm piece of Whatman filter paper
(Sigma-Aldrich) soaked with a solution of 5% sucrose con-
taining the indicated concentration of bile acid. Survivors
were scored for up to 7 days or until 100% lethality. The
percentage of surviving flies were recorded and compared
by log-rank Martel–Cox test. For detection of nuclear factor
(erythroid-derived 2)-like 2 (Nrf2)/anti-oxidant response
element (ARE)-dependent green fluorescent protein (GFP)
expression, 5-day adult gstD1-gfp Drosophila were trans-
ferred to vials containing 5% sucrose plus 25 mmol/L che-
nodeoxycholate (CDCA) or to vials containing 5% sucrose
plus 25 mmol/L N,N’-dimethyl-4,40-bipyridinium dichloride
(Paraquot) as a positive control to induce oxidative stress.
After 30 minutes, the intestinal tract was removed, fixed in
4% paraformaldehyde, and fluorescence was detected by
confocal microscopy. For detection of reactive oxygen spe-
cies (ROS) generation, 5-day adult WT flies were transferred
to vials containing 5% sucrose or 5% sucrose plus 25 mmol/
L CDCA. After 12 hours, the intestinal tract was removed and
incubated with 100 mmol/L ROSstar 550 hydrocyanine ROS-
sensitive reagent (catalog no. PN926-20000; LI-COR,
Lincoln, NE) in Schneider’s Drosophila media at room tem-
perature. The intestine then was washed, fixed in 4%
paraformaldehyde, and the fluorescence was visualized by
confocal microscopy.37,38 Representative fluorescent images
of 4 independent measurements are shown.

Statistical Analyses
Mean values ± SEM are shown unless otherwise indicated.

The data were evaluated for statistically significant differ-
ences using the Mann–Whitney test, the 2-tailed Student t
test, or by analysis of variance (Tukey–Kramer honestly sig-
nificant difference) (GraphPad Prism; Mountain View, CA).
Differences were considered statistically significant at P< .05.

Access to the Data
All authors had access to the study data and reviewed

and approved the final manuscript.

Results
Ontogeny of the Morphologic Changes in Small
Intestine

As previously reported,8–10 Osta-/- mice backcrossed onto
the C57BL/6J background are viable, fertile, and similar to
WT littermates in terms of survival and gross appearance.
The body weights of male or female Osta-/- mice were similar
to WT mice at days 5, 10, and 15, but reduced at days 20 and
30 (Figure 1A). Small intestinal length and weight were
increased as early as day 5 in male and female Osta-/- mice
compared with WT mice, and remained increased at days 10,
15, 20, and 30 (Figure 1B and C). The increase in mass per
unit length was particularly evident for the distal small in-
testine (ileum) (Figure 1D). Analysis of the tissue
morphology and histology showed little change in the prox-
imal (duodenum) or midintestinal (jejunum) regions (data
not shown). The villus heights were similar between WT and
Osta-/- mice in the proximal and midintestinal segments at
postnatal days 5–15, with evidence of potential compensa-
tory increases in villus height in jejunum at days 20 and 30
(Figure 2). In contrast, the ileal morphology and histology
were altered dramatically in Osta-/- mice (Figure 3).
Compared with WT mice, the distal small intestine of Osta-/-

mice showed evidence of mucosal injury with features of
regeneration. Specifically, Osta-/- mice showed villous
blunting that ranged from mild to severe, which was prom-
inent at early ages of postnatal development (days 5, 10, and
15). The epithelium lining the villi showed regenerative
changes including cellular pseudostratification and loss of
nuclear polarity, particularly within the transit-amplifying
zone and crypt neck (Figure 3B). In addition, the epithe-
lium on the tips of villi in Osta-/- mice showed altered apical
borders and mucin synthesis. Although the tips of villi of WT
mice are lined by absorptive enterocytes with an intact brush
border and occasional mucin-producing goblet cells, the
villous tips of Osta-/- mice showed loss of the brush border
and replacement by markedly increased numbers of mucin-
secreting cells (Figure 3B). Consistent with increased rates
of cell turnover, numerous apoptotic epithelial cells also
were present near the villous tips as well as in the crypt
regions. The lamina propria of Osta-/- mice also contained
mildly increased numbers of lymphocytes and macrophages
with occasional neutrophils, eosinophils, and plasma cells. To
confirm the histologic impression of increased crypt mitotic
rate and the number of apoptotic cells in the ileum of Osta-/-

mice, cell proliferation and apoptosis were assessed using
phosphohistone H3 and TUNEL staining, respectively. As
early as postnatal day 5, there was an increase in the
numbers of proliferating (phosphohistone H3-positive) cells
in ileum of Osta-/- compared with WT mice (Figure 4),
consistent with the increased number of mitotic bodies noted
in the histopathology assessment. There was also a trend
toward an increased number of TUNEL-positive nuclei in the
ileal villus structures of Osta-/- vs WT mice (Figure 4). In
agreement with the histologic absence of an active inflam-
matory response, the mRNA expression for proinflammatory
genes tumor necrosis factor a (TNFa) and interleukin 1bwas
not increased consistently in the ileal tissue of Osta-/- mice
(Figure 5). There was a trend toward higher expression of
TNFa at early postnatal time points, with a significant in-
crease at day 10 in males, but this was followed by signifi-
cant reductions. In contrast to the markedly altered ileal
tissue morphology, the liver weights and liver histology were
similar in male and female WT and Osta-/- at postnatal days
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Figure 2. Intestinal morphology of proximal small intestine and jejunum in male and female WT and Osta-/- mice.
Quantitative morphometric analysis of small intestine of WT and Osta-/- mice. The small intestine of mice of the indicated age
and genotype was divided into 3 equal segments. H&E-stained sections from segments 1 and 2 were used to measure the
villus height in 20 well-oriented, high-power fields per mouse. Data are expressed as the means (n ¼ 3–5 mice per group).
Mean values ± SEM are shown. Significant differences between genotypes for that age were as follows: *P < .05.
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5, 10, 15, 20, and 30 (data not shown), in agreement with
previous studies of adult Osta-/- mice.39,40
Expression of Bile Acid Transporters and FXR
Target Genes in Distal Small Intestine

The intestinal morphologic changes in Osta-/- mice are
evident before the normal induction of ileal concentrative bile
acid uptake, which occurs between postnatal days 17 and 21
in WT mice.26,41 To determine if this temporal relationship is
altered in Osta-/- mice, ileal bile acid transporter expression
was examined in male (Figure 6) and female (Figure 7) WT
and Osta-/- mice. In WT male and female mice, the mRNA and
protein for Osta-Ostb were expressed abundantly in distal
small intestine at postnatal day 5, and increased 3- to 5-fold by
day 20. In Osta-/- mice, mRNA and protein for the Osta subunit
were undetectable (Figures 6A and 7A). For the Ostb subunit
(Figures 6B and 7B), the mRNA expression was increased in
Osta-/- mice, but levels of Ostb protein were reduced in the
absence of its partner protein Osta, as previously re-
ported.8,9,42 In WT mice, ileal Asbt mRNA and protein were
almost undetectable at postnatal days 5 and 10, and their
levels dramatically increased between postnatal days 15 and
20. By contrast, Asbt was expressed prematurely in Osta-/-

mice, with ileal mRNA levels increased 12- to 28-fold in days 5
and 10 male and female Osta-/- as compared with WT mice
(Figures 6C and 7C). This is associated with increased Asbt
protein expression. After day 15, ileal Asbt mRNA and protein
levels were lower in Osta-/- vs WT mice, in agreement with
previous findings that ileal Asbt expression is reduced in adult
(age, >8 wk) Osta-/- mice.10 An increase in Asbt expression in
the absence of Osta-Ostb–mediated bile acid export is pre-
dicted to increase the intracellular burden of bile acids in ileal
Figure 1. (See previous page). Ontogeny of the small intestina
mice. (A) Body weight (BW). (B) Small intestinal (SI) length. (C) S
length. The small intestine was subdivided into 3 equal-length s
ileum is shown as mg/cm length. Mice from 2 to 4 litters were i
age group (n ¼ 8–20 per group). Mean values ± SEM are show
age were as follows: *P < .05, **P < 0.01, ***P < .001, and ****
enterocytes and increase expression of target genes for the
bile acid–activated nuclear receptor FXR. Consistent with an
increased intracellular bile acid load, expression of the FXR
target genes Ostb (Figures 6B and 7B), the cytosolic bile acid
binding protein Ibabp (Fabp6) (Figures 6D and 7D), Shp
(Nr0b2) (Figures 6E and 7E), and the sodium-sulfate co-
transporter (Slc13a1) (Figures 6F and 7F) were induced in
male and female Osta-/- as compared with WT mice at post-
natal days 5–15. This was particularly evident for Ibabp,
whose mRNA and protein levels were increased more than
100-fold at postnatal days 5 and 10. By immunofluorescence,
Ibabp protein was readily detected in ileal enterocytes of
Osta-/-, but not WT mice at postnatal days 10 and 15
(Figure 6G). In agreement with the increased expression of
FXR target genes, the ileal tissue bile acid content also was
increased in 10-day-old Osta-/- vs WT mice (Figure 6H).
Molecular Mechanisms
Cellular accumulation of bile acids is associated with

injury in a variety of diseases or disorders. The cytotoxic
effects of bile acids have been attributed to several molec-
ular mechanisms, including detergent-associated membrane
damage, disruption of mitochondrial membrane potential,
enhanced generation of ROS, direct activation of cell death
receptors such as CD95/Fas and TNF-related apoptosis-
inducing ligand receptor 2, and induction of an inflamma-
tory response.15,22,43,44 To determine if similar mechanisms
may be engaged in Osta-/- mice, microarray analysis of ileal
gene expression was performed for adult male WT and
Osta-/- mice at approximately 56 days of age (GEO series
accession number: GSE99579). This analysis identified 244
differentially expressed genes (regulated more than 2-fold,
l morphologic changes in male and female WT and Osta-/-

mall intestinal weight. (D) Distal small intestinal weight per unit
egments and the weight of the distal third encompassing the
ncluded in the analysis for each sex, genotype, and postnatal
n. Significant differences between genotypes for that sex and
P < .0001.



Figure 3. Ontogeny of the morphologic and histologic changes in the distal small intestine of male and female WT and
Osta-/- mice. (A) Representative light micrographs of H&E-stained transverse sections of distal small intestine. Original
magnification, 20�. Scale bar: 100 mm. (B) Representative light micrographs of H&E-stained transverse sections of distal small
intestine from 10- and 15-day old WT and Osta-/- mice. Original magnification, 40�. Scale bar: 50 mm. The altered apical
border and mucin-producing goblet cells at the villus tips of Osta-/- mice are indicated by the black arrows. Mitotic figures,
apoptotic cells, and immune cells in the Osta-/- mice are indicated by the white arrows.

506 Ferrebee et al Cellular and Molecular Gastroenterology and Hepatology Vol. 5, No. 4
P < .05); the list included 54 and 190 genes that were
increased and decreased, respectively. The induced genes
are shown in the heat map in Figure 8A. Ontogeny analysis
performed for differentially expressed genes showed that
inactivation of Osta induced ileal gene expression for
pathways related to oxidation-reduction, cell proliferation,
and glutathione metabolism. In particular, there was
increased expression of oxidant-responsive genes, with



Figure 3. (continued)
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Nrf2/ARE target genes among the most highly induced. The
Nrf2 system responds to oxidative stress and is a major
regulator of cytoprotective pathways.45 In addition to the
glutathione-S-transferase genes, Nrf2/ARE target genes
induced in Osta-/- mice included those involved in gluta-
thione biosynthesis, such as glutamate-cysteine ligase cata-
lytic subunit (increased 1.7-fold), glutamate-cysteine ligase
modifier (increased 1.4-fold), and glutathione synthetase
(increased 1.6-fold), and those involved in glutathione
metabolism, such as glutathione reductase (increased 2.2-
fold) and glutathione peroxidase 2 (increased 1.5-fold). To
determine how these gene expression changes may relate to
the ileal glutathione redox status, the levels of reduced
glutathione (GSH) and oxidized glutathione (GSSG) were



Figure 4. Ileal proliferation and apoptosis. Quantitation of the number of phosphohistone H3 and TUNEL-positive cells per
unit area. Mice from 2 to 4 litters were included in the analysis for each genotype and postnatal age group (n ¼ 5–8 per group).
Mean values ± SEM are shown. Significant differences between genotypes for that age were as follows: *P < .05, **P < .01,
and ***P < .001.
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measured in ileal mucosa from adult Osta-/- and WT mice
(n ¼ 4/group). GSH levels (means ± SEM, 2.09 ± 0.99 vs
6.34 ± 1.06 nmol/mg protein; P < .05) and the GSH-to-GSSG
ratio (2.8 ± 1.2 vs 11.6 ± 3.0; P < .05), but not levels of
GSSG (1.02 ± 0.27 vs 0.62 ± 0.1.0 nmol/mg protein; P ¼ .22)
were reduced significantly in the ileal mucosa of Osta-/- vs
WT mice, respectively.

To determine if there are similar gene expression
changes in the neonatal mice, mRNA expression of the Nrf2
Figure 5. Expression of proinflammatory genes in ileum of m
the distal small intestine of individual mice (n ¼ 4–5 per group) an
normalized using cyclophilin. Mean values ± SEM are shown. S
were as follows: *P < .05, **P < 0.01.
target genes Gsta1, Gsta4, and Nqo1 was measured in male
and female WT and Osta-/- mice (Figure 8B). Consistent with
the microarray analysis, expression of these genes was
induced significantly in Osta-/- mice vs WT mice as early as
postnatal day 5. Because the ROS-generating enzyme
reduced nicotinamide adenine dinucleotide phosphate oxi-
dase 1 (Nox1) is expressed by the ileal epithelium and
potentially involved in the redox-signaling associated with
epithelial repair,38,46–48 Nox1 mRNA expression also was
ale and female WT and Osta-/- mice. RNA was isolated from
d used for real-time PCR analysis. The mRNA expression was
ignificant differences between genotypes for that age and sex



Figure 6. Expression of bile acid transporters and FXR target genes in distal small intestine of male WT and Osta-/-

mice. Expression of mRNA and protein for bile acid transport–related genes: (A) Osta, (B) Ostb, (C) Asbt, and (D) Ibabp.
Expression of mRNA for FXR target genes: (E) Shp and (F) Slc13a1. For mRNA expression measurements, RNA was isolated
from the distal small intestine of individual male mice (n ¼ 4–5 per group) and used for real-time PCR analysis. The mRNA
expression was normalized using cyclophilin. For protein expression, extracts were prepared from distal intestine from in-
dividual male mice. Equal amounts of protein from 3 to 5 mice per group were pooled and duplicate samples were subjected
to immunoblotting analysis. Blots were stripped and re-probed using antibodies to GAPDH as a loading control. (G) Im-
munostaining of transverse sections of distal small intestine for Ibabp. Original magnification: 20�. Scale bar: 100 mm. (H)
Ileal bile acid content of day 10 male WT and Osta-/- mice. Bile acids were extracted from terminal ileum (last 20% of the
small intestine) of 10-day-old male WT or Osta-/- mice and quantified by enzymatic assay. The bile acid content is expressed
as mass per whole ileum, mass per unit length of ileum, and mass per unit weight of ileum. For mRNA expression, bars
indicate means ± SEM. Significant differences between genotypes for that age were as follows: *P < .05, **P < .01, and
***P < .001, ****P < .0001.
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Figure 6. (continued)
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measured and shown to be increased significantly in
neonatal Osta-/- mice (Figure 8C).
Nrf2 Protects Against Bile Acid Cytotoxicity
The results suggest that bile acids are inducing oxidative

injury that is countered by expression of Nrf2-regulated
cytoprotective genes. The findings are in agreement with a
prior in vitro study in Caco-2 cells that showed bile acids such
as deoxycholic acid and lithocholic acid induced Nrf2-ARE
target gene expression and Nrf2-knockdown cells were
more susceptible to lithocholic acid–induced toxicity.49 To
directly test if intestinal Nrf2 is protective against bile
acid–induced cytotoxicity in vivo, the model organism
Drosophila was used. Components of the Nrf2 signaling
pathway are conserved and fully developed in Drosophila,



Figure 7. Ontogeny of distal intestinal expression of bile acid transporters and FXR target genes in female WT and
Osta-/- mice. Expression of mRNA and protein for bile acid transport–related genes: (A) Osta, (B) Ostb, (C) Asbt, and (D) Ibabp.
Expression of mRNA for FXR target genes: (E) Shp and (F) Slc13a1. RNA was isolated from the distal small intestine of in-
dividual female mice (n ¼ 4–5 per group) and used for real-time PCR analysis. The mRNA expression was normalized using
cyclophilin. Mean values ± SEM are shown. Significant differences between genotypes for that age were as follows: *P < .05,
**P < .01, ***P < .001, and ****P < .0001. For protein expression, extracts were prepared from distal intestine from individual
mice. Equal amounts of protein from 3 to 5 mice per group were pooled and duplicate samples were subjected to immu-
noblotting analysis. Blots were re-probed using antibodies to GAPDH as a load control.
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Figure 8. Ileal expression of Nrf2 ARE target genes. (A) Microarray analysis of ileum in adult male WT and Osta-/- mice.
Differentially expressed genes whose expression was induced (2-fold change; P < .05; n ¼ 4) in Osta-/- vs WT mice are shown
as a heat map. The blue line indicates the Z score for each gene. (B) Expression of mRNA for Nrf2 target genes in male and
female WT and Osta-/- mice. (C) Expression of Nox1mRNA in ileum of male and female WT and Osta-/- mice. RNA was isolated
from the distal small intestine of individual mice at the indicated ages (n ¼ 4–5 per group) and used for real-time PCR analysis.
The mRNA expression was normalized using cyclophilin. Mean values ± SEM are shown. Significant differences between
genotypes for that age and sex were as follows: *P < .05, **P < .01, ***P < .001, and ****P < .0001.
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where Nrf2 functions in oxidative stress tolerance,50 and in
ROS-induced cytoprotective mechanisms in the gut.36

Although invertebrates lack bile acids,51 we reasoned that
the ability of the Nrf2 pathway to respond to bile acids as an
environmental insult may be evolutionarily conserved in
Drosophila. We first examined the sensitivity of adult
Drosophila to bile acid feeding. The concentration of bile acids
selected for these studies were based on levels measured in
the intestinal lumen of human beings and experimental ani-
mal models, which are in the millimolar range.52–54 However,
because the intestine in Drosophila is covered by a protective
membrane (the peritrophic matrix) and likely lacks trans-
porters for membrane-impermeable conjugated bile acids,
the flieswere fed unconjugated hydrophobic bile acids, which



Figure 8. (continued)
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Figure 9. Bile acid cytotoxicity and protective role of intestinal Nrf2 (Cap ‘n’ collar isoform-c [cncC]) in Drosophila. (A)
Relative survival of 5-day-old adult Drosophila in response to feeding CDCA or deoxycholic acid (DCA). Log-rank test for
CDCA or DCA vs sucrose, P < .001, n ¼ 30–44 per group. (B) Relative survival of 5-day-old adult Drosophila in which the levels
of cncC (UAS-CncCIR) are diminished; log-rank test for myolA-GAL4 vs myolA-GAL4, UAS-cncCIR, P < .0001, n ¼ 50 per
group. (C) Detection of ARE-dependent GFP expression in the midgut of gstD-gfp adult Drosophila fed sucrose, sucrose plus
chenodeoxycholic acid, or sucrose plus paraquat. (D) ROS generation in midgut after ingestion of sucrose or sucrose plus 25
mmol/L CDCA. ROS were detected by oxidation of the hydrocyanine ROS-sensitive dye, Hydro-Cy3. Images within a panel
were taken at the same confocal settings: original magnification, 20�.
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would not require a specific transporter for enterocyte up-
take. Despite the presence of the peritrophic membrane, we
observe reduced survival of adultWTDrosophila-fed CDCA at
concentrations as low as 6.25 mmol/L, and almost 100%
lethality within 100 hours at 25mmol/L (data not shown). As
shown in Figure 9A, feeding the bile acids CDCA or
deoxycholic acid to the flies induced death within 4 days. To
examine the potential cytoprotective role of intestinal Nrf2
(known as Cap ‘n’ collar isoform-c in Drosophila), the effect of
bile acid feeding on survival of midgut enterocyte-specific
Cap ‘n’ collar isoform-c–deficient Drosophila was deter-
mined. Reduction of enterocyte Nrf2 expression significantly



Figure 10. Bile acid metabolism and small intestinal morphologic changes in adult male WT, Asbt-/-, Osta-/-, and
Asbt-/-Osta-/- mice. (A) Fecal bile acid excretion. (B) Ileal expression of Asbt and FGF15 mRNA. (C) Hepatic expression of
Cyp7a1 and Cyp8b1 in adult male mice for the indicated genotypes. The mRNA expression (n ¼ 5) was determined by real-
time PCR analysis (in triplicate) and normalized using cyclophilin. The mRNA expression is expressed relative to WT (set at
100%). Male mice (age, 8 wk) were included in the analysis (n ¼ 5 per genotype). Mean values ± SEM are shown. Different
lowercase letters indicate significant differences (P < .05) between genotypes. BW, body weight.
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decreased survival further in response to CDCA feeding
(Figure 9B). A GFP reporter fly bearing an anti-oxidant
response element–dependent promoter (gstD1-gfp) that
responds to Nrf2 activation then was used to directly deter-
mine if bile acid feeding activates the Nrf2-ARE pathway in
gut. In that reporter fly model,50 feeding CDCA to adult flies
induced GFP expression in posterior midgut and hindgut to
levels observed for Paraquat, a known inducer of oxidative
stress and the Nrf2 pathway (Figure 9C). Because Nrf2 ac-
tivity can be induced bymechanisms in addition to ROS,55 we
also examined local generation of ROS in response to bile acid
feeding using a redox-sensitive hydrocyanine dye.38,56 Fluo-
rescent imaging showed that ingestion of CDCA induced the
generation of ROS in midgut (Figure 9D), providing further
in vivo evidence that CDCA is a potent activator of the cyto-
protective Nrf2 pathway in enterocytes.
Inactivation of the Asbt Prevents Ileal Injury in
Osta-/- Mice

The findings suggest that continued Asbt activity in the
absence of the basolateral bile acid transporter Osta-Ostb
leads to ileal accumulation of cytotoxic levels of bile acids
early in life, which induces an oxidative stress–related
injury and restitution response. To directly test this hy-
pothesis, the Asbt null allele was crossed into Osta-/- mice.
In mice, the Asbt accounts for the vast majority of bile acid
absorption from the gut lumen, with negligible contribu-
tions by other mechanisms.7 As such, if enterocyte bile acid
uptake is required for the intestinal injury/restitution
phenotype, inactivation of the Asbt should be protective.
The Osta-/-Asbt-/- mice are viable and fertile; crosses be-
tween heterozygous mice produced the predicted Mende-
lian distribution of WT and mutant genotypes. The adult
Osta-/-, Asbt-/-, and Osta-/-Asbt-/- mice were indistinguishable
from WT mice in terms of survival and gross appearance. To
confirm that inactivation of the Asbt was sufficient to block
intestinal bile acid uptake, fecal bile acid excretion and
expression of hepatic and intestinal genes involved in bile
acid metabolism were measured. As shown in Figure 10A,
fecal bile acid excretion was similar in WT and Osta-/- mice,
and inactivation of the Asbt in Osta-/- mice increased fecal
bile acid excretion almost 6-fold to levels observed in Asbt-/-

mice. In ileum, expression of the Asbt was reduced in Osta-/-

mice and undetectable in Asbt-/- and Asbt-/-Osta-/- mice. In
agreement with the reduced bile acid uptake in the absence
of the Asbt, expression of ileal FGF15 mRNA was reduced
dramatically in Osta-/-Asbt-/- and Asbt-/- mice to almost un-
detectable levels (Figure 10B). The intestinal bile acid
malabsorption was associated with significant increases in
the mRNA expression for hepatic Cyp7a1 and Cyp8b1,
critical enzymes for bile acid synthesis (Figure 10C).

Because Osta-Ostb shows a gradient of expression along
the cephalocaudal axis of the small intestine with highest
expression levels in ileum, the segmental intestinal mass
was examined in adult mice (age, 2 mo) for the different
genotypes. For distal ileum (segment 5), the intestinal
weight per unit length was increased significantly
(approximately 45%) in male Osta-/- mice (Figure 11A), and
restored to near WT levels in Osta-/-Asbt-/- mice. Histologi-
cally, the ileum of postnatal day 10 and adult (age, 8 wk)
Osta-/-Asbt-/- mice was almost indistinguishable from WT



Figure 11. Inactivation of the Asbt prevents ileal injury in Osta-/- mice. (A) Small intestinal weight per unit length in adult
(age, 8 wk) WT, Asbt-/-, Osta-/-, and Asbt-/-Osta-/- male mice. The small intestine was subdivided into 5 equal-length segments
and the weight of each is shown as mg/cm length. Mean values ± SEM (n ¼ 5 mice per group) are shown. Distinct lowercase
letters indicate significant differences (P < .05) between genotypes for that particular intestinal segment. (B) Representative
light micrographs of H&E-stained transverse sections of distal small intestine from day 10 and adult (age, 8 wk) WT, Asbt-/-,
Osta-/-, and Asbt-/-Osta-/- male mice. Original magnification, 20�. Scale bar: 100 mm. (C) Gsta1, Gsta3, Gsta4, Gstmu1, and
Gstmu3 mRNA expression in adult male mice for the indicated genotypes. The mRNA expression (n ¼ 5 mice per group) was
determined by real-time PCR analysis (in triplicate) and normalized using cyclophilin. The mRNA levels are shown relative to
WT (set at 100%). Different lowercase letters indicate significant differences (P < .05) between genotypes for that gene.
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mice, showing only mild epithelial reactive changes
(Figure 11B). Furthermore, transcript levels of Nrf2 target
genes Gsta1, Gsta3, Gsta4, Gstmu1, and Gstmu3 were
increased from 3- to 8-fold in adult male Osta-/- mice vs WT
mice, but reduced to WT levels in the Osta-/-Asbt-/- mice
(Figure 11C). Together, these findings provide compelling
evidence in support of the hypothesis that continued
expression of the Asbt in the absence of Osta-Ostb leads to
ileal bile acid stasis and injury. In that event, the Nrf2
pathway is one component of the adaptive response that
functions to protect the ileal enterocyte from bile
acid–induced cytotoxicity.
Discussion
The major finding of this study was that Osta-Ostb is

required to protect the terminal ileum from bile
acid–induced injury. We propose that inactivation of Osta-
Ostb combined with continued Asbt expression results in
bile acid accumulation, injury, and morphologic changes
starting in early postnatal development. In a similar fashion,
it has been postulated that hepatic Osta-Ostb plays a role in
protecting against bile acid accumulation in hepatocytes
under cholestatic conditions.39,57,58 In Osta-/- mice, enter-
ocyte bile acid stasis is associated with significant histologic
mucosal alterations, including villous blunting, crypt
hyperplasia, increased proliferation, apoptosis, and an in-
crease in the number of mucin-secreting cells at the villous
tips. These changes occur in the absence of histologic evi-
dence of necrosis or an active inflammatory response.
Despite a mild increase in TNFa mRNA levels early in
postnatal development, ileal mRNA levels of TNFa and
interleukin 1b are lower than WT mice by day 30, in
agreement with our previous studies of adult Osta-/- mice.10

The mechanisms responsible for the lower ileal cytokine
mRNA levels in the postweaning Osta-/- mice are unclear,
but may be related to persistent increases in Nrf2 and
antioxidant activity. For example, previous studies have
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shown that administration of L-cysteine can increase
intestinal Nrf2 activity, reduce intestinal cytokine levels, and
suppress lipopolysaccharide-induced intestinal inflamma-
tion in a piglet model.59 In addition, intestinal levels of
proinflammatory cytokines were found to be higher in
Nrf2-/- vs WT mice after traumatic brain injury.60

In WT mice or rats, ileal Asbt expression and active bile
acid uptake remains low in early postnatal development,
increasing after day 15.26–28 In contrast, there is an early
induction of Asbt expression in Osta-/- mice, correlating with
increased expression of bile acid–activated FXR target genes,
including Shp and Ibabp. Although premature ileal Asbt
expression had been noted previously in mice and rats under
pathophysiological conditions such as experimental induction
of necrotizing enterocolitis (NEC)23,61 or formula feeding,62

the underlying cause was not identified. Our attempts to
interrogate the pathways/factors known to regulate the Asbt
failed to identify a mechanism for the altered ileal Asbt
temporal pattern in Osta-/- mice. Among those factors that
regulate Asbt expression are FXR,63,64 GATA4,31,65 triste-
traprolin (TTR)/Human antigen R (HuR),66,67 and caudal
(CDx) transcription factors 1 and 2.68 FXR is activated early
in postnatal development in Osta-/- mice, but is unlikely to be
involved because the ileal morphologic changes still are
present in Osta-/-Fxr-/- mice.10 GATA4 and TTP/HuR are
important regulators of ASBT gene transcription and RNA
stability, respectively, in small intestine, and CDX1/2 are
important transcriptional regulators of many intestinal
genes.69 However, the ileal mRNA expression of these factors
was similar in male and female WT and Osta-/- mice at the
early postnatal ages examined (data not shown), arguing
against a direct role. Nrf2 has not been reported to directly
regulate the Asbt, but Nrf2-/- mice have reduced levels of ileal
Asbt expression and bile acid absorption.70 That observation
raises the possibility that Nrf2 may contribute to the early
postnatal increase in Asbt expression in Osta-/- mice. How-
ever, it also should be noted that the relative increase in Asbt
expression is transient and ileal Asbt mRNA and protein
expression is reduced in postweaning adult Osta-/- mice
compared with age-matched WT male or female mice.10

Finally, these studies have equated ASBT expression with
bile acid uptake because the ASBT appears to have a rela-
tively narrow specificity and no endogenous substrates other
than bile acids have yet been identified.71,72 Although the
protection against ileal injury observed in Asbt-/-Osta-/- mice
supports the hypothesis that the phenotype is secondary to
bile acid trapping, it is possible that ASBT transports another
solute besides bile acids or its activity is coupled to another
cellular pathway, which is responsible for the phenotype.

The cellular and molecular mechanisms of hepatocyte
injury caused by retention of hydrophobic bile acids in
cholestatic disease have been the subject of intensive
study.14,15,22 In contrast, less is known regarding the mecha-
nisms and signaling pathways underlying the cytotoxic effects
of bile acids in other cell types and in extrahepatic tissues.24,73

This is particularly true for ileal enterocytes,which by virtue of
their role in the enterohepatic circulation are exposed to a high
daily flux of bile acids.74 In the 10-day-old Osta-/- mice, ileal
tissue bile acid levels were increased vs WT mice, and ranged
from approximately 1.5 to 3 mmol/g of tissue. A limitation of
thesemeasurements of tissue-associated bile acids (which are
primarily in themucosa vsmuscularis layers) is that it doesnot
distinguish between the extracellular and intracellular com-
partments or directly measure the bile acid concentrations
within the enterocytes.However, the ileal tissuebile acid levels
in the 10-day-old Osta-/-mice are appreciable and in the range
of that observed in liver of bile duct–ligated mice.75 In the gut,
bile acids such as deoxycholate have been shown to induce
apoptosis in colonocytes through mechanisms involving
protein kinase C delta76 and phospholipase A2,77 possibly by
altering plasmamembrane organization.78 Indeed, amyriad of
pathways have been implicated in bile acid–induced cytotox-
icity, including altering mitochondrial outer membrane
structure,79 inducing mitochondrial membrane permeability
transition,43,77,80 activating Nox,77,81,82 and signaling via
epidermal growth factor receptor and CD95/Fas.22,24,83 One of
themost important and relevant pathways for this study is bile
acid–induced generation of ROS and oxidative stress, sec-
ondary to bile acid interaction with plasma membrane en-
zymes such asNox and interactionwith themitochondria.84–86

Low to moderate levels of ROS maintain tissue homeostasis
and promote cell proliferation and survival,87 but higher ROS
levels can induce cell damage and death.77,81,82,87 In response,
cells engage an evolutionarily conserved system, the Nrf2
pathway, to induce expressionof a regulonof genes involved in
xenobiotic and ROS detoxification, including those involved in
glutathione synthesis and utilization, thioredoxin production
andutilization, andquinonedetoxification.87 In vitro studies of
cells, including intestine-derived Caco-2 cells, have shown that
bile acids can induce ROS88 and increase expression of Nrf2-
activated genes.49 However, activation of Nrf2 by bile acids
in enterocytes has not been shown in vivo. In this study, we
show that blocking ileal enterocyte bile acid export in Osta-/-

mice leads to significant induction of Nrf2/ARE cytoprotective
gene expression that correlates with the ileal morphologic
changes. Tissue ROS levels were not directly measured in this
study, but ileal levels of reduced glutathione were found to be
decreased in Osta-/- mice. In conjunction with the changes in
gene expression, these findings suggest that induction of the
glutamate-cysteine ligase/glutathione synthetase/GSH axis
and expression of glutathione reductase, glutathione peroxi-
dase 2, and glutathione-S-transferase may be quenching ROS
or otherwise neutralizing free radicals to protect the epithe-
lium and promote restitution. Exploration of this mechanism
in intestine of the reductionist Drosophila model directly
showed increased generation of ROS, activation of Nrf2-ARE
signaling, and reduced survival of midgut enterocyte-specific
Nrf2-deficient flies in response to CDCA feeding, supporting
the concept of enterocyte bile acid–induced oxidative stress
and injury. However, in addition to a pathophysiological role in
promoting cell damage, ROS also has a physiologic role in
stimulating cell proliferation and tissue restitution.89 In
particular, there is compelling evidence thatROSgenerationby
Nox1 in thegut epitheliumstimulates enterocyteor colonocyte
proliferation and is required for restitution and wound repair
after mechanical injury or chemical-induced colitis.38,47,90–92

In that regard, the significant early induction of Nox1 expres-
sion may have a role in promoting ileal mucosal repair in



Figure 12. Osta-Ostb protects the ileum against bile acid accumulation and bile acid–induced injury. The schematic
summarizes our findings. OSTa-OSTb functions along with the ASBT to reabsorb bile acids from the ileal lumen and
to maintain their enterohepatic circulation. Osta deficiency leads to ileal morphologic changes associated with increased
enterocyte proliferation and apoptosis. In the ileal epithelium, loss of Osta leads to increased bile acid retention and
increased FXR target gene expression early in postnatal development. This is associated with increased oxidative stress,
increased expression of Nrf2/anti-oxidant and cytoprotective genes, and restitution of the epithelium.
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Osta-/- mice. Although the adaptive mechanisms are not suf-
ficient to restore the ileal morphology back to that of the WT
mice, it should be noted that the Osta-/- mice survive and
continue to thrive. The persistence of the ileal morphologic
changesmaybebecause thehypothesizedoffending agent, bile
acids, continuously are synthesized and secreted into the small
intestine over the life of themouse. As a result, an unremitting
but controlled cycle of epithelial injury and restitution ensues.
A schematic summarizing the findings and proposed mecha-
nismsunderlying the intestinal changes associatedwith loss of
Osta is shown in Figure 12.

In theory, enterocyte injury secondary to imbalanced
expression of the ASBT and OSTa-OSTb may be involved in
human disease. For example, this mechanism may contribute
to the pathogenesis of NEC because ASBT expression has
been reported to be higher in premature infants diagnosed
with NEC vs premature infants with non-NEC diagnoses.61

Furthermore, in rat and mouse models of NEC, ileal damage
correlated with increased Asbt expression and intracellular
bile acid accumulation, and administration of an ASBT in-
hibitor or inactivation of the Asbt gene was protective.23,61 By
comparison with the NEC models, the intestinal phenotype is
relatively mild in Osta-/-mice, although the pups are born full-
term and dam-fed, raising the possibility that the neonatal
Osta-/- mice may be particularly susceptible to additional
stressors such as hypoxia or formula feeding. Outside of in-
flammatory bowel disease, ileal atrophy is not often seen
without accompanying duodenojejunal changes,93 but cases
of apparent primary ileal villous atrophy and bile acid
malabsorption of unknown etiology have been reported.94–96

Although the relationship of these disorders and the intestinal
bile acid transporters remains to be determined, it should be
noted that an inherited OSTb (SLC51B) deficiency recently
was identified in a family with 2 affected brothers. These
pediatric patients presented with congenital diarrhea, fat-
soluble vitamin deficiency, and increased liver serum chem-
istries.97 Although a cursory endoscopic examination showed
no obvious ileal abnormalities in the older affected sibling,
additional studies will be required to determine the mecha-
nisms underlying the patients’ diarrhea and apparent steat-
orrhea. Their clinical presentation may be owing solely to bile
acid malabsorption and reduced luminal bile acid concen-
trations, similar to patients with ASBT mutations.5,6 Alterna-
tively, changes in the ultrastructure of the ileal mucosa
secondary to imbalanced ASBT and OSTa-OSTb expression
also may contribute to the phenotype.

In conclusion, we have provided data indicating that in
addition to its role in maintaining the enterohepatic circu-
lation of bile acids, Osta-Ostb appears to play a major role in
protecting the ileal epithelium against bile acid accumula-
tion and injury. Inactivation of Osta resulted in increased
expression of FXR target genes as well as villous blunting,
cell apoptosis, and oxidative stress in early postnatal
development. There is also an early robust induction of Nrf2
anti-oxidant and cytoprotective target genes, which may be
involved the subsequent healing and restitution response.
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