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Abstract

Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during
the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection
in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has
so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate
transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC)
criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method
enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental
findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif
families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering.
Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce
entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent
common or distinct binding specificities.
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Introduction

An important goal of biological research is to understand the

mechanisms that control gene expression. Of key interest are

transcription factors (TFs) that bind to specific functional elements

in the DNA and from there regulate expression of target genes.

Binding site sequences recognized by individual TFs often exhibit

distinct patterns of more or less stringent nucleotide preferences at

different positions, also denoted as DNA sequence motifs. There

are commercial and public databases like TransfacH (public or

commercial) [1] and Jaspar (public) [2] that maintain libraries of

DNA sequence motifs in the form of Position-specific Frequency

Matrices (PFMs). The PFM is a 46L matrix whose columns

describe nucleotide preferences at corresponding binding site

positions by their absolute or relative frequencies.

In recent years there has been increased interest in methods to

quantitatively compare DNA sequence motifs. There are two

eminent applications for such methods in the current literature. One

is to search a library of known motifs with a newly discovered

pattern to check its novelty or to derive hypotheses about TF

families that could be assigned to the search pattern. This database

search application is of increasing importance for the widely

adopted ChIP-seq and ChIP-chip assays that enable computational

extraction of DNA sequence motifs from large sets of genomic

regions bound by a transcription factor of interest [3,4]. In the

second application, quantitative comparison forms the basis to

define groups or families of motifs. The growing body of known

binding motifs for different transcription factors has stimulated

interest to assign patterns to groups representing distinct specific-

ities. While DNA sequence motifs in databases are typically defined

for a narrow selection of proteins such as a group of isoforms, a

subfamily or a complex, motif families may widen the scope to

represent the DNA-binding properties, e.g., of a whole class of

transcription factors.

A number of methods have been developed for motif

comparison. Kielbasa et al. [5] proposed a combination of Chi2

distance and correlation coefficients of Position-specific Weight

Matrix (PWM) scores to group highly similar binding specificities.

Mahony et al. [6] compared global and local alignment algorithms

as well as column-wise similarity metrics with respect to their

ability to recognize motifs belonging to the same transcription

factor class and developed methods to cluster PFMs into

representative Familial Binding Profiles (FBPs) [7]. By now, many

tools are available for motif comparison and clustering such as

MatCompare [8], STAMP [6,9], T-Reg Comparator [10],

MATLIGN [11], Tomtom [12], Mosta [13], or KFV [14].
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A large group of methods compares motifs on the basis of

column-wise scores that scale the similarity or dissimilarity of

aligned motif positions. Column-wise scores that have been

described for DNA sequence motif analysis include Chi2 statistics

[5], Kullback-Leibler divergence [10], Pearson correlation [6],

Fisher-Irwin test P-values [8], absolute, squared or Euclidean

distances [15,7,12], generalized log-odds scores [16,17], Bayesian

methods [18], or fuzzy integral techniques [19]. One advantage of

column-wise scoring is its straightforward application within

standard local or global alignment algorithms, e.g. [6]. Other

methods assess motif similarity on the basis of how binding sites

are predicted by corresponding PWMs. Similar to the score

correlation approach described in [5], the Mosta algorithm

analyzes the tendency of binding sites to overlap when they are

predicted with two PWMs at a certain score threshold and for a

certain background distribution of nucleotides [13]. Finally, the

alignment-free KFV method evaluates the similarity of fixed-

length k-mer vectors to which motifs are converted [14]. In this

work we present the information coverage (IC) criterion as a

further enhancement of column-wise scoring. The IC evaluates the

fraction of information of compared motifs that is covered by an

alignment. Alignments between related and unrelated motifs

exhibit different IC distributions. Combination of the IC with

existing motif alignment scores improved their motif classification

performance.

Despite the great interest in classification and clustering of DNA

sequence motifs, little progress has been made to define families of

motifs that methods aim to identify. Validation of motif clustering

results mainly addressed their homogeneity with respect to

structural classes of TFs, such as ETS, homeobox or nuclear

receptor proteins. On the other hand, inference of clusters relied

on ad-hoc cut-offs to prevent potential false merges of PFMs into

common groups or cut hierarchical clustering trees at an optimal

height that balanced inter- and intracluster variability, see e.g.

[6,13,14]. Neither of these strategies used information about

known motif families to define such thresholds.

In this work we therefore undertook a first step to compile a

comprehensive collection of motif families that can be used as a

goal set for motif clustering methods. We denote as motif family a

(sub)set of motifs from the same TF class with a common, distinct

binding specificity. Methods developed in this work aimed at

identifying clusters of motifs that correspond to such motif families

and to propose a representative FBP. Our analyses used a set of

1001 Transfac matrices that were assigned to 35 motif classes

mainly corresponding to distinct classes of DNA-binding protein

domains [20–22]. To subgroup them into motif families, we next

devised a network analysis-approach. This procedure constructed

networks of Transfac matrices that revealed families of similar

motifs as modules of highly connected nodes. Computational

graph-cluster analysis confirmed our manual observations based

on network visualizations. Furthermore, we examined the

concordance between extracted motif clusters and phylogenies of

corresponding DNA-binding domains as well as experimental

knowledge regarding specificities of certain types of transcription

factors. According to this assessment, the motif clusters matched

protein domain families as well as prior expectations about DNA-

binding properties of some well-described transcription factors. A

set of motif families assembled on the basis of network analysis

results was then applied to train a probabilistic classifier. The

classifier was designed to assign a probability to the hypothesis that

two PFMs belong to the same motif family given their similarity

score and offers a natural decision threshold. We integrated the

new classification function into a novel algorithm for unsupervised

motif clustering and demonstrate its ability to extract meaningful

motif clusters that are represented by Familial Binding Profiles.

Our workflow for the general goal of clustering DNA sequence

motifs depicted in this article can be summarized as follows. We

first describe novel information coverage-scores and their valida-

tion. We then illustrate the use of the best score for further analysis

of motif networks and extraction of motif families. Finally, we

report on the development and validation of a new probabilistic

classifier that enabled us to conduct motif clustering in an

unsupervised fashion and accurately reproduced the entrained

motif families.

Results

Improvement of motif similarity scores by augmentation
with information coverage

Our motif alignment program m2match [17] was designed to

search for pairwise ungapped local alignments between PFMs.

The algorithm selects an optimal alignment according to the score

which is the sum of individual column-column scores (column-wise

scoring). For this study we developed new composite scores that

integrate an alignment feature denoted as information coverage.

Information coverage refers to the fraction of information of the

motifs that is covered by their alignment. The information of a

DNA sequence motif is determined by probability distributions

over nucleotides in each of its positions. Figure 1A shows

alignments with different information coverage. The alignment

of basic helix-loop-helix (BHLH) matrices for transcription factors

E47 and MyoD (Fig. 1A top) reaches out over most of the

informative positions, whereas the (local) alignment of the E47

motif with a PFM for the MADS transcription factor RSRF

(Fig. 1A bottom) omitted several informative positions (gray logo

positions). In our study set from the Transfac database alignments

between matrices of the same class (intra-class alignments)

exhibited a pronounced peak at high IC values which is absent

in the IC distribution obtained from inter-class alignments

(Fig. 1B).

We subsequently derived new scores that take into account the

information coverage of alignments. The new scores extend

Author Summary

Transcription factors play a central role in the regulation of
gene expression. Their interaction with specific elements in
the DNA mediates dynamic changes in transcriptional
activity. Databases store a growing number of known DNA
sequence patterns, also denoted as DNA sequence motifs
that are recognized by transcription factors. Such data-
bases can be searched to find a match for a newly
discovered pattern and that way identify the potential
binding factor. It is also of interest to cluster motifs in order
to examine which transcription factors have similar
binding properties and, thus, may promiscuously bind to
each other’s sites, or how many distinct specificities have
been described. To gain deeper insight into the similarities
between DNA sequence motifs, we analyzed a compre-
hensive set of known motifs. For this purpose we devised a
network-based approach that enabled us to identify
clusters of related motifs that largely coincided with
grouping of related TFs on the basis of protein similarity.
On the basis of these results, we were able to predict
whether two motifs belong to the same subgroup and
constructed a novel, fully-automated method for motif
clustering, which enables users to assess the similarity of a
newly found motif with all known motifs in the collection.

Computational Identification of Motif Families
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previously described Euclidean distance (ED) [12] and sum-of-

squared distance (SSD) [7] metrics by information coverage terms

and are straightforward to compute. Specific variants implement-

ed in m2match are denoted as ED.ave, ED.sqr, SSD.ave, and

SSD.sqr (Material and Methods). We carried out a comparison of

existing and new methods with respect to two different perfor-

mance statistics as well as two different libraries of PFMs, Transfac

and Jaspar [1,2].

Figure 2 shows best hit and class-depth statistics achieved by

different methods for the 12 largest Transfac classes with at least

20 PFMs. Overall, integration of IC indeed improved ED as well

as SSD scores, with ave and sqr variants showing similar

performance. Differences were rather small according to the best

hit assessment. The ability to recognize other class members

increased most strongly with regard to the class-depth statistic

where differences up to 5% were recorded for the median values

(see also Table 1 below). In few cases, e.g. in the homeobox (HOX)

or MADS classes, the ED score was slightly better than ED.ave

and ED.sqr scores according to class-depth. However, the

improvements visibly outweigh minor performance decreases.

Best hit statistics for SSD.ave and SSD.sqr scores were similar or

slightly worse than for the SSD score, whereas consideration of IC

again improved class-depth statistics in most classes. Some score

methods excelled on some classes, but at the same time exhibited

difficulties with other classes. For instance, Mosta did not perform

as well as other methods on the STAT class according to best hits,

and on the HOX class according to class-depth, but the method

was ahead on the FORKHEAD class according to class-depth. In

contrast, we observe that results of the IC-extended ED and SSD

scores were consistently at a high level without bearing remarkable

weaknesses for particular TF classes.

Table 1 summarizes our results on the Transfac data set for

different sets of motif classes. The values show that inclusion of the

information coverage led to an overall improvement of ED scores,

especially according to class-depth. Based on the summary values,

results were similar for SSD scores, but inclusion of IC did not

accomplish as strong improvements as for ED scores. Average

values over the six leftmost columns confirm that ED.ave and

ED.sqr scores achieved the best overall performance among all of

the compared methods.

The strongest methods of the previous comparison were selected

to further compete on the Jaspar CORE database. Here we

calculated best hit and class-depth statistics for the five largest

Jaspar families as well as the Jaspar families with at least 10 motifs,

including the zinc finger family (see Material and Methods).

Results are summarized in Table 2. As for the Transfac data set,

integration of information coverage improved motif classification

by ED and SSD scores and the extended scores were competitive

to the other state-of-the-art methods. Notably, the advantage of

SSD.ave and SSD.sqr scores over the SSD score is more

pronounced on the Jaspar data set than on the Transfac collection.

On the set of families with at least 10 motifs, the ED.sqr achieved a

6% better performance than the ED score with respect to class-

depth. Again ED.sqr and ED.ave scores attained highest average

values over best hit and class-depth criteria (Table 2), which is in

concordance with the Transfac results. We therefore carried out

further analysis of motif relationships using m2match with the

ED.sqr score.

Motif network analysis
Network analysis was applied to further split motif classes into

clusters of closely related binding specificities. We compiled

networks connecting each motif with other class members that

achieved a higher score than non-class members. Finally, we

applied the Markov Clustering Algorithm (MCL) [23] to each

motif network containing at least 5 motifs. This network-based

approach was motivated by our class-depth analysis. The class-

depth statistic assumed distinct, motif class-specific levels across

methods that participated in the comparison (Fig. 2). For instance,

class-depth values were below 20% in the two largest classes,

HOX and C2H2 zinc fingers (ZFC2H2), whereas most methods

achieved a class-depth over 50% for the classes ETS, FORK-

HEAD, and E2F. However, the four smallest classes STAT,

MADS, REL, and HMG were associated with lower values

(Fig. 2B), which rules out that class-depth levels depended on motif

class sizes. We conjectured that these class-specific levels originated

from the existence of motif families that formed subgroups of

highly similar matrices within classes.

Network analysis predicted in total 125 and 135 clusters

(including disconnected singletons) when using ED.sqr or ED

scores, respectively (Table S1). No connections between matrices

Figure 1. Intra-class alignments cover a higher fraction of motif
information than inter-class alignments. (A) Example alignments
illustrate the information coverage (IC) criterion. Depicted are m2match
outputs of an intra-class alignment for two TFs of the BHLH class E47
and MyoD (top) and an inter-class alignment for the E47 motif and the
PFM of MADS transcription factor RSRF (bottom). (B) Histograms of IC
values observed in intra-class and inter-class alignments. Alignments
were selected using the Euclidean distance (ED) score and information
coverage was calculated using the sqr formula (Material and Methods).
In total there were 436080 inter-class and 64420 intra-class alignments.
Intra-class alignments showed a tendency for higher IC than inter-class
alignments and specifically exhibited a pronounced peak at high IC
values which is absent in the inter-class distribution.
doi:10.1371/journal.pcbi.1002958.g001
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were obtained in the ATHOOK class (Table S2). In ten TF classes

comprising 6 to 60 matrices all PFMs were drawn together into a

single cluster, not taking into account disconnected motifs (Table

S2). These classes encompass well-characterized TF classes such as

basic helix-span-helix (BHSH), ETS, FORKHEAD, or GATA

zinc fingers (ZFGATA). Networks of another ten classes were each

split into two clusters by MCL (Table S3). Finally, between 2 and

12 clusters were identified in the classes REL, basic leucine-zipper

(BZIP), BHLH, nuclear receptor zinc fingers (ZFC4-NR),

ZFC2H2, and HOX. Thus, C2H2 zinc finger and homeobox

classes exhibited an outstanding number of different binding

specificities, whereas other TF classes comprised much fewer

different motif types (1–3 without singletons, 1–6 with singletons).

We compared motif network clusters to phylogenies of DNA-

binding domains for the classes BHLH, BZIP, HMG, MADS,

REL, SMAD, STAT and ZFC4-NR. A detailed discussion of

several of these classes is provided in the supplement (Text S1).

Overall, the extracted motif clusters were closely correlated with

subtypes of DNA-binding domains. Strongest departures between

motif clusters and protein domain phylogenies were observed in

BZIP and STAT classes and, according to our assessment, induced

by different types of spacers or different numbers of half-sites

covered by PFMs (Text S1).

Motif clusters often correlated with broader protein families or

subfamilies such as BHLH-Zip, CREB/ATF, SMAD factors in

BHLH, BZIP and SMAD classes, respectively. SREBP matrices in

the BHLH class and 3-Ketosteroid receptors of the nuclear

receptor class presented exceptions to this trend. In compliance

with the dual binding specificities of SREBP [24], network analysis

assigned its motifs to two clusters, with one reserved exclusively for

the SREBP-specific pattern. In the nuclear receptor class, motif

clusters accurately distinguished the half-site specificity of 3-

Ketosteroid (NR3C) receptors from other nuclear receptors,

whereas the protein phylogeny reflects the standard grouping of

Estrogen and Estrogen-related receptors (NR3A and NR3B) with

those of the NR3C type [25] (Fig. 3). However, half-sites

recognized by NR3A and NR3B proteins resemble the pattern

bound by non-NR3 receptors and therefore Estrogen receptor

matrices were allocated in one cluster with PFMs of non-NR3

receptors (Fig. 3). The molecular causes of different DNA-binding

preferences within the nuclear receptor class have been described

in detail by Zilliacus et al. [26].

In summary, the network-based analysis delivered meaningful

results for a wide range of transcription factor classes. Also in the

large and diverse HOX and ZFC2H2 classes the method proposed

groups of motifs dominated by closely related transcription factors.

In addition, some cases could be highlighted where computational

predictions accurately fit prior experimental knowledge such as for

SREBP factors or nuclear receptors.

A discriminative classifier for motif families
In the following we used clusters of Transfac matrices derived

through motif network analysis to train a classifier for motif

families. It was the ultimate goal of our study to predict common

motif family membership purely by computational means. The

conceived classifier accomplished this on the basis of the motif

similarity score without requiring information about TF classes.

For this we compiled a list of 47 Transfac matrix sets for 26 motif

classes (Table S4). These were used as representatives of motif

families for the classifier training. Some minor modifications were

made to the raw MCL clusters in order to omit some potential

false positive or uncertain cluster members which are described in

the supplement. For instance, we discarded the V$NMYC_02

matrix that was falsely assigned to the BHLH-only cluster.

To make alignment scores for PFM pairs of different lengths

comparable we estimated the dependence of mean and variance of

inter-class scores on the space of possible alignments (Fig. 4A).

Raw ED.sqr scores were subsequently adjusted according to the

Figure 2. Best hit and class-depth statistics achieved by different methods. The plots cover the 12 largest classes of the Transfac set with at
least 20 motifs. Each bar group represents one motif class. (A) Best hit (B) Class-depth.
doi:10.1371/journal.pcbi.1002958.g002

Table 1. Best hit and class-depth statistics obtained with different methods on the set of classified Transfac PFMs.

Best hit Class depth (Med) Class depth (Lqr) Class depth (Uqr)

Method Top 5 Min 20 Min 10 Top 5 Min 20 Min 10 Top 5 Min 20 Min 10 Top 5 Min 20 Min 10 Average

ED.ave 0.94 0.95 0.95 0.14 0.36 0.39 0.07 0.26 0.30 0.27 0.46 0.49 0.62

ED 0.93 0.93 0.93 0.12 0.32 0.34 0.05 0.21 0.22 0.24 0.42 0.44 0.59

ED.sqr 0.94 0.95 0.95 0.15 0.36 0.39 0.07 0.26 0.30 0.27 0.46 0.49 0.62

SSD.ave 0.93 0.94 0.94 0.13 0.34 0.37 0.07 0.23 0.29 0.27 0.45 0.49 0.61

SSD 0.93 0.94 0.94 0.12 0.31 0.34 0.05 0.19 0.20 0.24 0.41 0.43 0.60

SSD.sqr 0.93 0.94 0.94 0.14 0.34 0.38 0.07 0.23 0.29 0.27 0.45 0.49 0.61

PCC 0.90 0.92 0.90 0.08 0.25 0.24 0.04 0.14 0.13 0.17 0.36 0.35 0.55

LSO 0.90 0.88 0.84 0.12 0.30 0.32 0.04 0.17 0.20 0.24 0.39 0.40 0.56

LSO.KL 0.92 0.93 0.92 0.13 0.32 0.33 0.06 0.22 0.24 0.24 0.42 0.43 0.59

Mosta.GC.4 0.91 0.89 0.90 0.13 0.34 0.37 0.07 0.21 0.24 0.22 0.44 0.46 0.59

Mosta.GC.5 0.91 0.90 0.91 0.13 0.35 0.38 0.07 0.22 0.25 0.24 0.46 0.47 0.60

KFV 0.92 0.93 0.94 0.13 0.31 0.34 0.06 0.17 0.21 0.30 0.42 0.45 0.59

Values were summarized for different subsets of motif classes. Top 5: the five largest classes; Min 20: classes with at least 20 members; Min 10: classes with at least 10
members. For the class depth averages of upper (Uqr) and lower quartiles (Lqr) as well as medians (Med) are given. Highest values in each column are highlighted in
bold. The Average summarizes the six leftmost columns.
doi:10.1371/journal.pcbi.1002958.t001
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Table 2. Best hit and class-depth statistics obtained with different methods on the Jaspar CORE set.

Best hit Class-depth (Med) Class-depth (Lqr) Class-depth (Uqr)

Method Top 5 Min 10 Top 5 Min 10 Top 5 Min 10 Top 5 Min 10 Average

ED.ave 0.80 0.77 0.18 0.23 0.02 0.09 0.30 0.34 0.50

ED 0.79 0.78 0.14 0.18 0.02 0.08 0.27 0.32 0.47

ED.sqr 0.80 0.78 0.18 0.24 0.02 0.10 0.31 0.34 0.50

SSD.ave 0.80 0.78 0.15 0.21 0.02 0.09 0.27 0.32 0.48

SSD 0.78 0.76 0.10 0.16 0.02 0.07 0.23 0.30 0.45

SSD.sqr 0.80 0.78 0.15 0.21 0.02 0.09 0.27 0.32 0.49

Mosta.GC.4 0.77 0.72 0.16 0.22 0.02 0.09 0.27 0.34 0.47

Mosta.GC.5 0.80 0.72 0.20 0.24 0.03 0.10 0.27 0.33 0.49

KFV 0.77 0.77 0.16 0.21 0.01 0.09 0.26 0.33 0.48

Values were summarized for different subsets of motif classes. Top 5: the five largest classes; Min 10: classes with at least 10 members. For the class-depth averages of
upper (Uqr) and lower quartiles (Lqr) as well as medians (Med) are given. Highest values in each column are highlighted in bold. The Average summarizes the four
leftmost columns.
doi:10.1371/journal.pcbi.1002958.t002

Figure 3. Motif network and DNA-binding domain phylogeny for the ZFC4-NR class. (A) Motif network of nuclear receptor motifs with
colors indicating clusters extracted by MCL. (B) Phylogeny of nuclear receptor DNA-binding domains represented by matrices in the motif network.
Branch colors correspond to MCL clusters in A. (C) Motif logos were generated using WebLogo [33] for binding sites of NR3C proteins (top), estrogen
receptor (middle), and nuclear receptors from other families (bottom). The half-site logos illustrate that estrogen receptor motifs were correctly
clustered separately from NR3C matrices and with the other nuclear receptors.
doi:10.1371/journal.pcbi.1002958.g003
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following formula:

Sadj x,La
:Lbð Þ~ x{ m La

:Lbð Þz2:s La
:Lbð Þð Þ ð1Þ

In (1), x is the raw score, La and Lb are the lengths of matrices a

and b, m() is the conditional mean and s() is the conditional

standard error estimated by non-parametric regression. Next we

compared distributions of intra-class scores, intra-family and inter-

class scores (Fig. 4B+C). While distributions of intra- and inter-

class scores strongly overlapped (Fig. 4B), the intra-family

distribution exhibited a smaller overlap with and a different mode

than the inter-class distribution (Fig. 4C). To utilize this

information in a classification framework, we trained a logistic

regression model with positive examples comprising intra-family

alignment scores and with inter-class scores as negative examples.

We considered inter-class instead of inter-family scores as a careful

choice for the negative set. This follows from our results of motif

network analysis where we also used inter-class scores to place or

omit edges between PFMs. Hence, for inter-class alignment scores

we were certain that they belonged to pairs of unrelated motifs.

The resulting classifier estimates the probability that two matrices

belong to the same motif family (F = 1) given the adjusted score of

their alignment:

P F~1jSadj

� �
~ 1zexp { b1

:Sadj x,La
:Lbð Þzb0

� �� �� �{1 ð2Þ

The logistic regression (LR) classifier is both discriminative and

probabilistic. The approach moreover provides for a natural

threshold of P(F = 1|Sadj).50% to decide in favor of the

hypothesis that compared motifs belong to the same family.

Parameter estimates reported by R’s glm function [27] for

adjusted ED.sqr scores were b1 = 5.294,b0 = 23.3296.

A novel method for unsupervised motif clustering
We incorporated the classification function into a novel motif

clustering algorithm as part of m2match. The goal of motif

clustering is to identify a non-redundant set of Familial Binding

Profiles by clustering a given collection of motifs [6,7]. In the

context of our work we can now formulate the more precise

objective that the motif clusters inferred by the algorithm shall

match defined motif families. Hence, the motif clusters and

respective FBPs are predictions about motif family assignments.

Our algorithm accomplished this as follows. For a set of TF

matrices m2match first calculated a distance matrix for subsequent

agglomerative clustering. Off-diagonal entries of the distance

matrix were set to complementary motif family probabilities (1-

P(F = 1|Sadj)). The distance matrix was applied in hierarchical

average-linkage clustering. During the clustering process each

cluster was represented by a Familial Binding Profile, where the

input set of TF matrices was regarded as initial set of FBPs. At

each clustering step, the program examined whether the alignment

score of the FBPs representing two clusters satisfied the motif

family threshold. Furthermore it was tested that a newly formed

FBP detected all original TF matrices above the same cut-off. The

motif family threshold was set to the natural classification

threshold P(F = 1|Sadj).50%. A merging was considered valid if

it satisfied the described criteria and the new FBP subsequently

replaced the two FBPs from which it had been derived. If either of

the two criteria was not satisfied a cluster and its representative

FBP were marked as invalid and could not further contribute to

forming valid clusters. A new FBP was derived from the alignment

of two predecessor FBPs based on a weighted average of aligned

matrix positions. Empty (unaligned), flanking positions of the

alignment were filled with uniform nucleotide distributions and

were assigned a weight of 1. The weight of real matrix positions

was the square root of the number of underlying binding site

sequences. We imposed a maximum of 200 for the number of

binding site sequences to be taken into account in order to

accommodate ChIP-assay derived matrices, whose underlying

binding site alignment may sometimes cover several hundred or

over a thousand genomic sites. This maximum was therefore

adopted to prevent matrices derived from a very large number of

binding sites from overriding the contribution of other matrices to

the FBP.

Figure 5 shows the clustering result for the set of 71 non-zinc

finger Jaspar motifs that was also used in previous studies, see e.g.

[14]. The set was split into 33 FBPs by m2match using the ED.sqr

score. This is higher than reported in other studies, where the

number of 16 FBPs was obtained in [14]. A striking difference

between our method and those of previous studies is that all motif

families returned by m2match were homogeneous with respect to

the TF class. One reason why other methods achieved fewer

clusters is therefore that merges happened between motifs from

different TF classes. To our knowledge no other method has

before produced a clustering of this particular data set with perfect

class homogeneity. Moreover, the FBPs formed from multiple

Jaspar PFMs and several of the matrices that m2match left as

singletons correspond to separate motif families as identified in the

course of our motif network analysis. For instance, MCL extracted

separate clusters comprising PBX-, NKX-, and PAX-type motifs,

which we observe as singletons in the Jaspar clustering result. In

both the Transfac and Jaspar PFM set, MEF2 and SRF motifs

formed separate motif families (Table S3). Interestingly, plant

MADS matrices of the Jaspar set were assigned to one further FBP

(Fig. 5). The Transfac PFMs collection used in this study consisted

exclusively of matrices for vertebrate transcription factors and did

not contain any plant motifs. For comparison, Mosta merged all

Jaspar MADS matrices into a single cluster [13]. The FBP of

SOX/SRY-type motifs (Fig. 5) matches the results of our analysis

of Transfac HMG motifs. We think that it is plausible to assign the

Jaspar HMG-1 matrix to a separate motif family as suggested by

m2match, because, unlike HMG box factors of the SOX/SRY-

type, the sequence specificity of the HMG-1 factor was shown to

be limited to oligomers enriched in certain dinucleotides [28]. The

androgen receptor matrix Ar was not clustered with other nuclear

receptor motifs, since it was the only member of the NR3C family

in this data set. Finally, m2match faithfully grouped all the ETS

and REL motifs of the Jaspar set into one FBP for each class,

which again correlates perfectly with prior results on the Transfac

data set and was not achieved by some other previously published

methods (clustering of REL dl_1 reported in [14]). Note that

Jaspar REL motifs encompassed only the Rel/NF-kappaB subset,

so that allocation of their PFMs into one single FBP agrees with

our earlier results.

We also applied our method to the motif classes of the Transfac

study set. A summary of the results is provided in Table S1. For

comparison, we also included results obtained with ED scores.

Rand indexes for the clusterings by network analysis and by

m2match show that m2match was able to closely reproduce the

network cluster results, achieving a Rand index of about 91% on

average (Table S5). Among the classes with lowest agreement

between the methods, m2match joined IRF or RUNT matrices

into one single FBP for each class, whereas the TBP class was split

into two clusters with the ATATA_B matrix as singleton (see also

Table S3). Conversely, m2match partitioned the group of non-

NR3C motifs within the nuclear receptor class into several smaller

clusters, but otherwise assigned all NR3C motifs to a common
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group with the exception of V$AR_Q6 (Figure S4). Generally, we

observe that the hierarchical clustering approach had a tendency

to produce more motif clusters than MCL applied to motif

networks, especially in the large HOX and ZFC2H2 classes. In the

HOX class, m2match perfectly recovered the IRX motif family.

Other training motif families were partially restored (Table S6).

Furthermore, the method detected FBPs predominated by

matrices for certain protein subfamilies which selected for

HNF1-, PBX-, or SIX-type motifs, respectively. In the ZFC2H2

class, m2match re-identified all eight motif families. The program

assigned one more Helios A matrix (V$HELIOSA_02) to family

#40 (Table S4) and predicted new clusters with high protein

subfamily-homogeneity that comprised EGR motifs or ZIC and

GLI matrices (Table S7), which were part of one large cluster in

Figure 4. ED.sqr scores for inter-class, intra-class, and intra-family alignments. (A) Scatter plot of ED.sqr scores and alignment space values
observed in inter-class alignments. The alignment space was the product of aligned motif lengths, which is proportional to the number of possible
alignments. Curves show conditional mean and variance estimates (2s above and below the mean) obtained with non-parametric regression. (B)
Histograms of adjusted ED.sqr scores for inter-class (light) and intra-class alignments (dark). (C) Histograms of adjusted ED.sqr scores for inter-class
(light) and intra-family alignments (dark).
doi:10.1371/journal.pcbi.1002958.g004
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the MCL/motif network result (Text S3). The ETS and FORK-

HEAD classes show that the algorithm is able to detect that a motif

set consists largely of one single FBP, albeit it did not to join the

FOXO1 matrix with the large FORKHEAD cluster (Figure S4).

FBPs inferred for BHLH and BZIP classes also closely resembled

motif clusters identified during network-based analysis. Matrices

for AHR factors were not allocated with other BHLH-Zip motifs

but formed a separate FBP, separating the CACGCG-consensus of

AHR motifs from the CACGTG-consensus of other E-boxes in

the BHLH-Zip group. In addition, the selectivity for a particular

factor subfamily suggests that this finding is biologically meaning-

ful. In the BZIP class our method produced new clusters of Maf-

type matrices and of VBP/HLF/E4BP4 matrices. Several matrices

previously assigned to larger groups were isolated. These comprise

unclear or false assignments in clusters derived from motif

networks, e.g. V$CEBP_01, V$DBP_Q6, and V$TAXCREB_02,

so that we regard their separation from other motifs as an

improvement of the previous solution.

Discussion

This study developed novel solutions for some important

problems in motif classification and clustering. First, we presented

novel motif similarity scores that make use of the information

coverage criterion and showed improved performance in retriev-

ing related motifs of the same class. Then, two new methods for

clustering of DNA-sequence motifs were developed, one network-

based approach and one based on hierarchical clustering. Both

motif clustering methods demonstrated their ability to propose

motif clusters that were biologically meaningful as validated with

respect to protein domain phylogenies and prior knowledge about

distinct binding specificities.

An important aspect of the IC extension is its evaluation of a

local alignment as a whole. In the presented formulations it is not

restricted to distance metrics used in this work, but can be

combined with other alignment scores as well. This development

therefore motivates exploration of further possibilities to improve

motif alignment scoring apart from improving column-wise

scoring metrics.

It was previously noted that some scoring methods can report

high scores for aligned PFM positions regardless of their

information content [18,19]. This induces a potential source of

false positives, because it is disregarded whether aligned positions

confer specificity. Column-wise scores based on Bayesian and

fuzzy integral approaches have been developed that did not suffer

from that flaw [18,19]. Also the LSO score has the property of

assigning less extreme scores to less informative positions [16]. On

the contrary, ED and SSD metrics do not differentiate between

PFM columns with respect to their information content. Although

the IC criterion was conceived from the perspective of distin-

guishing between intra- and inter-class alignments, it also

addresses the handling of informative and non-informative

columns. In contrast to other solutions our treatment of

information coverage did not directly reduce the contribution of

less or non-informative motif positions to an alignment score, but

was designed to favor alignments extending over as much

information of compared motifs as possible. It is therefore in our

interest to further explore IC as an alternative or additional

strategy to attribute more importance to informative motif

positions.

Motif network analysis enabled us to compile a set of motif

families, which were required as input for subsequent classifier

training. This part of our study highlighted the diversity among

C2H2 zinc finger and homeobox motifs. We think that further study

of the causes of the exceptional positioning of these classes as well as

the relative homogeneity with regard to the number of different

binding specifities in other classes can elucidate new aspects of the

evolution of cellular regulatory systems. Furthermore, inspection of

motif clusters and corresponding protein phylogenies showed that

distinct binding patterns can appear at different levels of primary

sequence divergence. It is of great interest to identify the changes

necessary to generate a new binding specificity within a transcrip-

tion factor class and the results of our study can be explored in that

direction. As a computational tool, the network-based analysis of

motif clusters was not purely unsupervised, because it used

information about class membership. In practice, this is not a

significant burden as the classes of PFMs collected in large databases

are usually known. As a particular advantage, the devised method

did not require any further choice of parameters (MCL was invoked

with default parameters).

Figure 5. Clustering of 71 non-zinc finger motifs from Jaspar.
Gray boxes between dendrogram and matrix names indicate motif
clusters. The dotted line points out the 50% motif family threshold.
Some clusters were merged below that threshold, because FBPs formed
in the course of the clustering process provided for a better
presentation of the motif family than the basic motifs.
doi:10.1371/journal.pcbi.1002958.g005
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The motif families derived by network analysis enabled us to

develop another novel approach for motif clustering on the basis of

the logistic regression model. Important novelties of this method

are its discriminative training with positive and negative examples

of motif alignment scores and its integration of a probabilistic

decision threshold. Specifically, at the natural 50% threshold the

devised algorithm was able to produce meaningful motif clusters.

Therefore, unlike other methods it can rely on an entrained

decision function, e.g. it can be applied to a set consisting of only

two PFMs, where estimation of clustering indexes or empirical

thresholds may be difficult or error prone. The proposed classifier

offers an intuitive, probabilistic quantity to assess the similarity of

two motifs and to decide whether they present common or distinct

binding specificities. Hence, the obtained results motivate explo-

ration of other machine learning methods to the problem of motif

classification and clustering. As another practical advantage, all

the motif clustering methods developed in this work automatically

determined the number of clusters. Nevertheless, we see room for

improvement, particularly with regard to the treatment of spacers

(gaps) or different numbers of half-sites. These issues may be

addressed by corresponding alignment algorithms as well as

alternative IC formulations, possibly in combination with a

hierarchical classification of motifs.

Motif clustering predicted between 125 and 197 motif families

for vertebrate transcription factors from 35 motif classes. The

smaller numbers, 125 or 135, were obtained with motif network

analysis. In comparison to each other, motif network analysis

revealed PFM clusters on a broader scope, whereas m2match

sometimes split these further into narrower subsets. For a manually

revised motif classification our results suggest an arrangement on

three levels. Below the class level, motif families as defined here

represent distinct specificities, e.g. different half-sites. The third

level (motif subfamilies) can group more specific arrangements.

The treatment of heterogeneous complexes remains to be

determined for now. In addition, one could allocate classes into

superclasses following the classification for TF proteins [20]. Our

study has provided a good foundation of data sets and tools to

work towards a honed motif classification. A possible application is

the study of similar specificities across transcription factor classes,

which can lead to further insights regarding interactions or

interference of signaling pathways or other regulatory systems e.g.

in host-pathogen interactions. Combined with a classification of

transcription factor proteins, a motif classification can also support

prioritization of poorly characterized TF subfamilies for experi-

mental investigation of their binding properties. A next goal is to

make the computational methods available as freely accessible web

tools for applications outlined in the beginning.

Materials and Methods

Classification of Transfac PFMs for vertebrate
transcription factors

This study used a set of 1001 PFMs from the Transfac database

[2] version 2011.3, which we classified into 35 classes on the basis

of DNA-binding domain annotations and manual revision. The

classes, their sizes, as well as the assigned matrices are listed in

Table S8. All of the motif classes correspond to distinct types of

protein DNA-binding domains with the exception of the GENINI

class, which contains initiator motifs. For ETS, IRF, and MYB as

well as for FORKHEAD and RFX families (Table S8) we

digressed from the protein classification [20] by focusing on the

narrower family level instead of the transcription factor class level.

We manually assigned matrices of transcription factors having

multiple domains with a DNA-binding property to a single binding

class. All matrices of TFs with both HOX and POU domains were

added to the HOX class. The HOX/ZFC2H2 motifs

V$AREB6_01, V$AREB6_02, V$AREB6_03, V$AREB6_04,

V$DELTAEF1_01 were classified as ZFC2H2 motifs, because

Ikeda and Kawakami have shown in the respective study that

DNA-binding specificities of AREB6 (ZEB1) are mainly deter-

mined by the zinc finger domains [29]. Further, we added all

PFMs corresponding to TFs with a PAX domain or to TFs with

both PAX and HOX domains to the HOX class in order to

investigate the similarity between these motifs and other HOX

PFMs (see Results). Finally, several Transfac motifs were

associated with factors containing both a BZIP and a ZFC2H2

domain, e.g. V$CREBP1CJUN_01, V$CREBP1_Q2,

V$CREBP1_01, V$CREBATF_Q6. Since to our knowledge the

zinc finger domain in these proteins does not contribute directly to

DNA-binding, these matrices were treated together with other

BZIP matrices.

Jaspar CORE database
A second set of PFMs was obtained from the Jaspar CORE

database version 2009. Since the redundant and non-redundant

matrix libraries differed in size by only 17 entries, we used the

redundant set of 476 motifs for the assessment of motif comparison

methods. For motif clustering we compiled the set of 71 non-zinc

finger matrices following previous studies, where the matrix Athb-

1 was replaced by the one named ATHB-5 (MA0110.1). The data

set is listed in Dataset S1. Computational experiments carried out

with Jaspar used the Jaspar families and matrix assignments.

Local ungapped motif alignment
Our program m2match implements a local ungapped alignment

algorithm for DNA sequence motifs. Here we compare motifs

described by the standard Position-specific Frequency Matrix

model, a 46L matrix whose elements are the frequencies or

probabilities of individual nucleotides in each of position (column).

The algorithm searches for the best (highest scoring) alignment

consisting of at least min(5,Lx,Ly) consecutive columns in each of

two motifs x and y with lengths Lx and Ly, respectively. The score of

the alignment of two PFMs is determined by the sum of aligned

column scores. For this study we implemented the column-wise

scoring methods listed in Table 3.

In Table 3, px(b) and py(b) are the nucleotide probability

distributions in aligned columns of matrices x and y. Probabilities

were estimated on the basis of raw PFM entries. We denote as raw

PFM the model which is stored in a database and typically

requires further transformation in order to be used for binding site

prediction or motif comparison. A pseudo-count of 1 was added to

counts of nucleotide occurrences. If a raw PFM did not contain

nucleotide counts we set the normalized frequencies so that a

minimal value .0 and not less than 1023 was guaranteed. Like

Mahony et al. [6] we took care to remove uninformative flanking

positions. Here we trimmed positions for which the highest

difference between any two nucleotide frequencies was less than

.25. The selection of a parameters used by ED and SSD scores is

described below.

The Euclidean distance score was previously applied by Gupta

et al. in the Tomtom tool [12]. Further, the SSD and Pearson

correlation coefficient (PCC) metrics were analyzed in detail by

Mahony et al. [6], whereas the SSD metric for motif comparison

was introduced in [7]. The Log-sum-of-odds (LSO) score has been

successfully applied to comparison of HMMs modeling protein

alignments [16]. Its extension by the Kullback-Leibler (KL)

divergence has been used to characterize conserved non-coding

sequence motifs [17].
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Information coverage
We extended ED and SSD alignment scores (sums of individual

ED or SSD column scores) with the information coverage. The IC

quantifies the proportion of the information contained in both

aligned PFMs which is covered by the alignment. The information

I(px) of a PFM column was defined in terms of the entropy as:

I pxð Þ~2{H pxð Þ

H pxð Þ~
P

b[ A,C,G,Tf g
px bð Þ:log2

1

px bð Þ

� �

We calculated the information coverage as follows:

IC sx,wð Þ~

X
i~sx::sxzw{1

I pi
x

� �
X

k~1::Lx

I pk
x

� �

where sx is the start position of the alignment in matrix x and w is

the width of the ungapped alignment. Here, we added indices i

and k for corresponding columns within the entire motif. To

combine the information coverage with ED and SSD scores we

defined the following extended scores:

ED:sqr sx,sy,w
� �

~ED sx,sy,w
� �

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IC sx,wð Þ:IC sy,w

� �q

ED:ave sx,sy,w
� �

~ED sx,sy,w
� �

: IC sx,wð ÞzIC sy,w
� �� �

: 1

2

SSD:sqr sx,sy,w
� �

~SSD sx,sy,w
� �

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IC sx,wð Þ:IC sy,w

� �q

SSD:ave sx,sy,w
� �

~SSD sx,sy,w
� �

: IC sx,wð ÞzIC sy,w
� �� �

: 1

2

where ED sx,sy,w
� �

and SSD sx,sy,w
� �

denote the sum of ED and

SSD scores for the alignment with start points sx and sy in matrix x

and y as well as width w, respectively. Both sqr and ave extensions

multiply the total alignment by a value in the interval [0,1].

Hence, the IC moves the raw score towards 0 the less information

of the motifs is covered by the alignment.

Evaluation of motif comparison methods by ‘‘best hit’’
and ‘‘class-depth’’ statistics

Motif comparison methods were evaluated on both the set of

classified Transfac PFMs as well as the Jaspar CORE data set (see

above). Following previous studies the best hit statistic provides for a way

to assess the ability of a method to identify members of the same TF

class for an uncharacterized input motif [6]. A leave-one-out test is

performed where each motif is removed and compared to all

remaining motifs in the database. One then records which proportion

of held-out motifs matched a pattern from the same transcription factor

class as best hit. Since our Transfac data set was considerably larger

than the one used in [6] and contained many similar motifs, we in

addition calculated the class-depth statistic. We have developed this

statistic in order to record for each held-out motif which proportion of

PFMs from the same class can be detected before the first false positive.

Since this approach yields several proportion values for each class, we

calculated robust statistics consisting of upper and lower quartiles as

well as the median.

Aside from a list of column-wise score methods the comparison

included Mosta [13] and KFV [14] as third-party tools. Mosta was

invoked with two GC contents of 40% (the program default, here

denoted as Mosta.GC.4) and of 50% (denoted as Mosta.GC.5).

Column-wise scores were implemented in m2match and encom-

passed LSO, LSO.KL, ED, SSD, and PCC scores. Both SSD and

PCC scores are also available in the STAMP tool [9].

Note that matrices from the family named Other in the Jaspar

CORE data set, which gathers potentially unrelated motifs, were

considered in determining false positive matches, but PFMs from

that family were not used as hold-out set.

Optimization of a parameters for ED and SSD scores
We determined a parameters for ED, ED.sqr, ED.ave, as well

as SSD, SSD.sqr, and SSD.ave scores that were optimal with

respect to best hit and class-depth statistics obtained on the

Transfac PFM set. The results are illustrated in Figure 6. The

graph for each method shows best hit (red lines) and class-depth

(blue lines) statistics over a range of a values. We also considered

Table 3. Column-wise scores implemented in m2match.

Column-wise score Formula

Euclidean distance (ED)
a{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
b[ A,C,G,Tf g

px bð Þ{py bð Þ
� �2

s

Sum-of-squared distances (SSD) a{
X

b[ A,C,G,Tf g
px bð Þ{py bð Þ
� �2

Pearson correlation coefficient (PCC)
P

b[ A,C,G,Tf g
px bð Þ{0:25ð Þ: py bð Þ{0:25

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
b[ A,C,G,Tf g

px bð Þ{0:25ð Þ2:
X

b[ A,C,G,Tf g
py bð Þ{0:25
� �2

s

Log-sum-of-odds (LSO)

log2

X
b[ A,C,G,Tf g

px bð Þ:py bð Þ
0:25

0
@

1
A

LSO with Kullback-Leibler divergence (LSO.KL)

LSO{ 1
2
:

X
b[ A,C,G,Tf g

px bð Þ:log2

px bð Þ
py bð Þ

� �
z

X
b[ A,C,G,Tf g

py bð Þ:log2

py bð Þ
px bð Þ

� �0
@

1
A

doi:10.1371/journal.pcbi.1002958.t003
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different subsets of TF classes, which were the 5 largest classes only

(dashed lines), classes with at least 20 motifs (solid lines) and classes

with at least 10 motifs (dotted lines). According to our assessment,

optimal alpha values were 0.5 for ED.ave and ED.sqr scores, 0.55

for the ED score, 0.25 for SSD.ave and SSD.sqr scores, as well as

0.3 for the SSD score (gray dotted lines, Fig. 6). These values were

kept for all subsequent analyses.

Construction of motif networks and extraction of clusters
Motif networks were constructed for each class of the Transfac data

set. Further analysis focused on motif classes with at least 5 PFMs. In

the networks each motif was connected to all other motifs which were

detected with a higher score than the first non-class member. The

Markov Cluster algorithm (MCL) [23] was then applied to extract

clusters from motif networks. The program was used with default

values. All edge weights were equal, so that the algorithm clustered

motifs on the basis of the graph topological properties of the motif

network. Network visualizations were created with the help of yED

[30]. Alignments of transcription factor DNA-binding domains

represented by at least one classified motif were compiled in [22].

Phylogenetic trees were calculated using Tree-Puzzle [31].

Comparison of network and hierarchical cluster results
Network and m2match clusters were compared on the basis of

the Rand index [32]. For two clusterings U and V over a set of N

items the Rand index RI is defined as

RI U ,Vð Þ~ #Cz#S

N

2

� �

where #C is the number of item pairs in a common cluster and

#S is the number of item pairs in different clusters in both

clusterings. RI is a quantity in the [0,1]-interval and equals 1 for

perfect agreement between two clusterings of the same set of items.

Supporting Information

Dataset S1 71 non-zinc finger matrices from the Jaspar CORE

database version 2009.

(TXT)

Figure S1 A–D) DNA-binding domain phylogenies for HMG,

MADS, SMAD and STAT proteins. E) Clustering of STAT motifs

by m2match with subgroups corresponding to matrices with

different half-site numbers.

(PDF)

Figure S2 Network visualization of HOX motif clusters.

(TIF)

Figure 6. Optimization of a-parameters applied in ED and SSD scores. Optimization selected a- parameters for best performance according
to best hit (red) and class-depth statistics (blue) in the range from 0.05 to 0.95. Different subsets of TF classes such as the 5 largest (dashed lines),
classes with at least 20 (solid lines) as well as with at least 10 matrices (dotted lines) were also considered. Optimal alpha values were 0.5 for ED.ave
and ED.sqr scores, 0.55 for the ED score, 0.25 for SSD.ave and SSD.sqr scores, as well as 0.3 for the SSD score and are indicated by gray dotted lines.
doi:10.1371/journal.pcbi.1002958.g006
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Figure S3 Network visualization for ZFC2H2 motif clusters.

(TIF)

Figure S4 Motif clustering results by m2match for the classes

ETS, FORKHEAD, BHLH, BZIP and ZFC4-NR.

(DOC)

Table S1 Summary of motif clustering results using motif

network analysis or the hierarchical clustering approach imple-

mented in m2match with ED.sqr or ED scores.

(XLS)

Table S2 Motif networks constructed using ED.sqr scores and

clusters extracted by MCL for classes with zero or one MCL

cluster.

(DOC)

Table S3 Motif networks constructed using ED.sqr scores and

clusters extracted by MCL for classes with two MCL clusters.

(DOC)

Table S4 Motif families extracted according to motif networks

and MCL clusters.

(XLS)

Table S5 Rand indexes comparing motif network-based and

m2match clusters.

(XLS)

Table S6 Clusters proposed by m2match for HOX motifs.

(XLS)

Table S7 Clusters proposed by m2match for ZFC2H2 motifs.

(XLS)

Table S8 Motif classes assigned to 1001 Transfac motifs.

(XLS)

Text S1 Motif network clusters and DNA-binding domain

phylogenies for the classes BHLH, BZIP, HMG, MADS, REL,

SMAD and STAT as well as of clusters obtained for HOX and

ZFC2H2 motifs.

(DOC)

Text S2 Listing of HOX motif clusters. Each row corresponds to

one cluster. ‘‘V$’’-prefixes were omitted.

(TXT)

Text S3 Listing of ZFC2H2 motif clusters.

(TXT)
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