THE LANCET
Infectious Diseases

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed.
We post it as supplied by the authors.

Supplement to: Kokaliaris C, Garba A, Matuska M, et al. Effect of preventive
chemotherapy with praziquantel on schistosomiasis among school-aged children in
sub-Saharan Africa: a spatiotemporal modelling study. Lancet Infect Dis 2021; published
online Dec 2. https://doi.org/10.1016/51473-3099(21)00090-6.



Appendix
Search strategy, selection criteria and data extraction protocol

We did a systematic review following the PRISMA guidelines [10]. We searched for relevant
publications pertaining to prevalence of Schistosoma spp infection in sub-Saharan Africa, in
PubMed, ISI Web of Science, and African Journals Online, from January 1, 2000 to May 29,
2020. The application that supports the data compilation carries automated routines that flag
duplicated entries according to survey year and locations within a district for each newly
acquiredreference.

We applied the search string “schisto* (OR mansoni, OR bilhar*, OR haema*) AND sub-
Saharan Africa (OR Angola, OR Benin, OR Botswana, OR Burkina Faso, OR Burundi, OR
Cameroon, OR Central African Republic, OR Chad, OR Congo*, OR Cote d’Ivoire, OR Cote
d’Ivoire, OR Ivory Coast, OR Djibouti, OR Eritrea, OR Ethiopia, OR Gabon, OR Gambia,
OR Ghana, OR Guinea*, OR Kenya, OR Lesotho, OR Liberia, OR Madagascar, OR Malawi,
OR Mali, OR Mauritania, OR Mozambique, OR Namibia, OR Niger, OR Nigeria, OR
Rwanda, OR Senegal, OR Sierra Leone, OR Somalia, OR South Africa, OR Sudan, OR
Swaziland, OR Tanzania, OR Togo, OR Tunisia, OR Uganda, OR Zambia, OR Zimbabwe)”.
Government reports and other grey literature (eg, PhD theses, working papers from research
groups, or unpublished research reports obtained through personal communication) were also
considered.

We set no parameters for language or study design. We initially screened titles and abstracts
to identify potentially relevant articles. We excluded case reports, invitro studies, non-human
studies, or those that did not report on schistosomiasis. We additionally excluded studies
without prevalence data, those done in specific groups of patients (eg, hospital patients, those
infected with HIV) or clearly defined population groups (ie. travelers, military personnel,
expatriates, nomads, and displaced or migrating populations, pregnant women, neonates) not
representative of the general population, studies that used either indirect diagnostic techniques
(because such tests distinguish between active and cleared infection) or direct stool smear
(because of low diagnostic sensitivity), reports of case-control studies, clinical trials,
pharmacological studies (except control groups without anthelmintic intervention),
intervention studies (except for baseline data or control groups), studies that reported on
species other than S haematobium and S mansoni, and surveys done before 2000, that were not
community based or school based, or were done in places where population deworming had
been done within 1 year, or study findings reported aggregated within regions (ie,
administrative division of levelone).

Full-text reports for potentially relevant papers were obtained and screened. We reviewed the
reference lists of full-text articles for further possible data sources. Duplicates were removed.
If important information was missing (eg, survey year, location namesor coordinates, numbers
of individuals assessed and positive, etc) or if surveys were aggregated, we contacted the
authors for clarification. The survey locations were geographically referenced if this
informationwas not provided inthe datasource or validated. The georeferencingwasdone using
online mapsandtravel guide sources (e.g. Google maps, Wikimapia, iGuide Interactive Travel
Guide, Humanitarian Data Exchange). We assigned centroids for administrative units on the
basis of administrative boundaries in the Database of Global Administrative Areas (version
2).

Relevant survey data were extracted and entered in the GNTD database with information on
the source (authors, journal, publication date), survey (date, type of survey), location
(coordinates, name, administrative unit), and parasitology (species, number of people positive
or examined, prevalence, age, diagnostic tool).



Quality control for each country was done by rechecking 30% of randomly selected papers deemed
irrelevant. If any misclassifications were identified, the selection for the whole country was
rechecked.

We included those surveys in the meta-analysis with sample size greater than ten individuals.
If the date of the survey was missing, we used date of publication instead.

9415 total references

—p| 7498 excluded as irrelevant

v

1917 included as relevant

1136 didn’t meet inclusion criteria
99 small sample size (<5)
37 hospital sources
137 unknown geolocation

> 6 unknown species

77 irrelevant age group

780 irrelevant time period

v

781 georeferenced sources with survey data during 2000-2019

Figure A.1: Data search and selection criteria during 2000-201.



Data sources

Day and night land surface temperature (LSTD, LSTN) were used as proxies of ambient
temperature. The normalized difference vegetation index (NDV1) was considered as a proxy for
moisture. Decadal rainfall averages were obtained from the Climate Prediction Center rainfall
estimates. In order to increase the predictive ability of the model, we also included 19
bioclimatic variables from the Worldclim database (http://www.worldclim.org/bioclim, accessed
May 2020) into our analysis. Data on freshwater bodies were obtained from Copernicus Global
Land Service (https://land.copernicus.eu/global/products/wb, accessed May 2020). The
geographical distribution of socioeconomic and environmental predictors across SSAis displayed
inFigure A.5and A.6respectively (pages 36, 47). Agro-ecological zonesare presentedin Figure
A.7 (page 39) and were obtained fromthe International Food Policy Research Institute [32].

Data Temporal Spatial
Datatype period resolution resolution Source
Bioclimatic variables %ggg Monthly 1km Worldclim - Global climate data version 2
In_ii} nh[: surface temperature day and gggg 8 days 1km Moderate resolution imaging spectroradiometer (MODIS)/ Terra
Normalized difference vegetation 2000-
index 2019 16 days 1km MODIS/Terra
2000-
Land cover 2019 Yearly 1km MODIS/Terra
Rainfall - Daily 15 km Climate Prediction Center (CPC) Rainfall Estimator (RFE)
Altitude - - 90m Shuttle Radar Topography Mission (SRTM)
Rural - Urban 2000 - 1km Socioeconomic Data and Applications Center (SEDAC)
Population counts per pixel gg%g - 100 m WorldPop
Improved water source 2000- R Household Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys -
P 2017 surveys UNICEF, World Health Surveys - WHO
Improved sanitation - -
Infant mortality rate -
Gridded surface of freshwater bodies 2019 - 300 m Copernicus Global Land Service
Gridded surface of agro-ecological .
z0nes in Africa 2011 - 5km HarvestChoice/IFPRI 2009

Table A.1: Data sources and properties on socioeconomic and environmental explanatory
variables.


http://www.worldclim.org/bioclim

Locations Positive diagnose (%)
Country Total ~ School ~Community 2000-2010 2011-2014  2015-2019  2000-2010  2011-2014  2015-2019
Angola 431 41 390 41 182 206 76.6 17.9 7.5
Benin 384 1 383 6 184 194 434 20.9 154
Botswana 45 0 45 0 0 45 4.2
Burkina Faso 205 1 204 123 24 95 17.6 79 1.8
Burundi 22 0 22 22 0 0 0
Cameroon 937 2 935 264 343 333 14.8 11.6 4.1
Central Africa 2 0 2 0 0 2 54
Chad 265 0 265 19 0 246 21.6 23.8
Ivory Coast 1192 15 177 34 1133 26 24 4.5 36
Congo DR 2129 0 2129 9 304 1816 0 31 5.8
Equatorial Guinea 88 0 88 88 0 0 0.4
Eritrea 40 0 40 40 0 0 0
Ethiopia 10 1 9 2 8 0 25 219
Gabon 220 o 220 2 218 0 474 5.8
Gambia 209 0 209 0 0 209 5.1
Ghana 250 1 249 174 2 154 228 23.9 74
Guinea nu7 10 107 37 8 80 22.6 0.7 14.1
Guinea-Bissau 17 0 17 0 1 116 20 2.6
Kenya 442 28 414 229 194 12 271 10.8 5.4
Liberia 604 0 604 0 503 101 14 27.8
Madagascar 178 2 176 2 0 176 332
Malawi 802 3 799 46 362 550 25.9 12.5 6
Mali 334 ) 325 225 24 84 377 24.1 20.7
Mauritania 92 3 89 21 1 70 271 4 16.2
Mozambique 315 150 165 6 158 150 53.8 52.6 40.4
Namibia 380 0 380 0 296 84 5 9.5
Niger 1333 235 1098 462 709 265 302 13.1 10.4
Nigeria 2676 63 2613 235 2348 82 17.7 1.7 11.6
Rwanda 140 0 140 140 0 0 0
Senegal 554 23 531 334 115 9 315 104 10.7
Sierra Leone 22 0 22 8 0 14 0 15
Somalia 28 4 24 0 25 0 10.4
South Africa 309 0 309 3 1 306 33 26 21
South Sudan 224 0 224 7% 0 148 4.3 0.7
Sudan 126 2 124 99 58 2 13 74 5
Swaziland 253 1 252 5 0 247 6.3 01
Tanzania 662 64 598 196 61 368 28.3 8.4 15
Togo 2185 0 2185 1090 1 1094 20.2 20.7 42
Uganda 75 1 64 72 0 0 0.6
Zambia 672 7 665 103 555 14 239 124 174
Zimbabwe 416 10 406 287 1 0 243 25.3
Total 19485 687 18798 4500 7819 7726 21.85 12.8 9.94

(a) S. haematobium

Locations Positive diagnose (%)
Country Total School Community 2000-2010 2011-2014  2015-2019  2000-2010  2011-2014  2015-2019
Angola 384 0 384 0 179 205 8.6 0.4
Benin 387 7 380 8 185 194 0 2.8 1
Botswana 125 0 125 1 0 124 0 0.5
Burkina Faso 202 0 202 102 21 95 3.6 1.3 0.2
Burundi 211 0 211 22 189 0 4.1 1.9
Cameroon 918 3 915 251 342 327 10.6 6.2 24
Central Africa 30 0 30 0 0 30 52.6
Chad 247 1 246 1 0 246 1
Ivory Coast 1536 19 1517 115 1396 26 31.7 124 8.9
Congo DR 2147 0 2147 9 314 1824 57.6 3.8 6.6
Equatorial Guinea 88 0 88 88 0 0 0.2
Eritrea 335 0 335 40 151 146 24 3.1 1
Ethiopia 2326 19 2307 174 2133 13 18.6 6.9 25.8
Gabon 22 ] 22 0 22 0 0.1
Gambia 209 0 209 0 0 209 0.1
Ghana 127 0 127 78 2 82 34 27.9 3.7
Guinea 17 10 107 37 8 80 66.2 2.4 28
Kenya 1812 159 1653 681 881 118 15.4 247 15.8
Liberia 1128 0 1128 0 1042 86 116 19.3
Madagascar 242 0 242 0 1 241 15.2 17.1
Malawi 754 3 751 30 328 537 0.5 5 1.3
Mali 324 6 318 216 24 84 72 4.5 3
Mauritania 66 4 62 11 0 55 4.7 0
Namibia 295 0 205 0 295 0 4.1
Niger 150 14 136 136 0 13 1.3
Nigeria 2347 21 2326 44 2227 75 9.6 14 4.1
Rwanda 326 0 326 142 183 1 3 2 8.3
Senegal 257 14 243 51 105 100 44.7 0.5 0.6
Sierra Leone 103 0 103 79 10 14 25 43 11.9
South Africa 298 0 298 1 0 297 16.6 0.2
South Sudan 425 0 425 206 0 219 9.2 3.7
Sudan 43 2 41 40 1 1 13.1 22.5 11.6
Swaziland 247 0 247 0 0 247 0.3
Tanzania 919 213 706 143 223 372 12.7 425 9.8
Togo 2190 0 2190 1090 1 1099 3.4 16.1 0.8
Uganda 1720 83 1637 606 292 803 20.7 26.4 12.5
Zambia 661 13 648 86 558 14 8.5 12 59
Zimbabwe 404 6 398 279 1 0 8.6 0
Total 24122 597 23525 4767 11114 8315 13.5 13.02 6.11

(b) S. mansoni

Table A.2: Overview of survey data in SSA for S. haematobium (left) and S. mansoni (right) during 2000-2019. Prevalence estimated
from the raw survey data i.e. total positives out of total screened by period and country.



Bayesian modelling
Stationary model

Let y; be the number of Schistosoma positive cases out of the N; examined individuals at
location j = 1,2, ...n and survey period t, where t is an indicator variable for the time period
with 2000-2010 as the baseline and dummy variables for 2011-2014 and 2015-2019. We
assume that y; follows a Binomial distribution with prevalence p; and use the logit link
function to relate the disease prevalence with its predictors, that is:

Vi ~ Binomial(pj, N]-),

12
logit(pj) Bxj+ bt +¢&; +e;.

The vector x; contains the values of the predictors at location j and time t. The regression
coefficients p and b represent the effects of the predictors and the global time trend,
respectively. Non-spatial variation is captured through the pure noise term e;. In order to take
into account potential spatial correlation, we included in the model a random spatial term ¢; at
unique location j and assumed that ¢ = (¢;,¢,, ...&,) IS a zero mean, and stationary Gaussian

1-v
random process ¢ v g, p ~ N(0, (0, p)) with a Matérn covariance function C,(d;;) = o* i(v),

where I' is the gamma function and X (o, p) is the covariance matrix with elements ¢;; =
C,(d;;), and d;; is the Euclidian distance between two locations i and j, K, (x) the modified
Bessel function of order v, where v determines the smoothness of the process. As v increases,
the function becomes more smooth, i.e v = 0.5 represents the exponential covariance function,
and for v - oo it approximates the Gaussian covariance function. The hyperparameters ¢ and
p define the spatial variance and range (i.e. distance where spatial correlation is considered
non-essential), accordingly. In our analysis we fixed v = 1 which leads to stable computations
with INLA [33], while the spatial parameters o and p are estimated in the process.

We assumed non-informative Gaussian prior distributions for the regression coefficients g and
the global time trend b. Non-informative gamma prior distributions were considered for the
hyper-parameters o, p of the spatial process and o, of the pure noise (transformed on the
logarithmic scale), that is log (ﬁ) ~ Ga(5 x 1075,1), log(p) ~ Ga(0.01,1), and log (aig) ~
Ga(5%x1073,1).

Restricted spatial model

In order to account for spatial confounding due to multicollinearity between the spatial
covariates X = (x; ) and the spatial stochastic process ¢, we update the model in 2 by replacing
the spatial process ¢ with ¢ = (I — P,)¢, where P, = X is the projection matrix and (I — P,)¢
is the orthogonal projection of the spatial process ¢ on X.

Non-stationary model

Let & = (§1,&,, ...&,) be a non-stationary Gaussian stochastic process, ; the local precision

where j is a given location in space, and « the spatial scale parameter associated empirically

with the spatial range p = % such that for v = 1 the spatial correlation is 0.1 at p distance [33].

Then we specify log(x) = 6,,log(7;) = 0z;, where vector z; represents the values of the

covariates for the spatial variance at location j. Now the spatial variance becomes o =

(07,03, ...0%), Where o7 ~ 1212 ,j = 1,..,n[33]. We conclude the Bayesian specification by
j

4TTK




assuming non-informative Gaussian prior distributions for the hyper parameters 6, and 6.
Spatio-temporal model

Let ¢ = (¢;c).j =12,..,n,t = 1,2,..., T be a stochastic process accounting for correlation in
space and time, for n unique locations and T time-points [18]. The spatio-temporal process ¢
changes in time through a first order autoregressive process (AR1):

¢' _ { fjll t= 1
st a¢j,t—1 + fjt, t=2,..,T

where a is the temporal lag with a v 1 and ¢ a pure spatially structured term with & = (¢;,),j =
1,2,..,n,t = 1,2,..., T which follows a zero-mean multivariate normal distribution as described
in (1) with Matérn covariance function for j; = j,:

o?C,(d;, 1), t1 =t
Cov(fh,h'sz'tz) = { V(O 11']2) ti = tz

Model selection and validation

Due to the large number of potential predictors, each of them was examined for
multicollinearity with the remaining, excluding those with variance inflation factor >4. Bayesian
geostatistical models were fitted with one predictor atatime, to identify the predictors functional
form to be included in the final geostatistical predictive model. A linear and categorical form
was considered for each predictor (categories corresponding to the quantiles of the predictor)
and the form with lowest log CPO score was chosen [20, 23]. We identified a subset of 13
potential socioeconomic and environmental predictors (Appendix, Table A.4, page 31), which
gave rise to a sample space of 8,192 possible models for S. haematobium and S. mansoni,
respectively. We fitted all possible models for both Schistosoma infections. The models with
highest predictive ability, were used for inference and predictions. Model validation was
carried outbyassessing the model’s predictive performance. The modelswere fitted on a training
set, including 90% of our survey locations, and their predictions were validated on a test set of
the remaining locations. The mean absolute error (MAE), which is the average of the absolute
differences between observed and predicted values, the % of prevalence correctly estimated
within a 95% BCI and the % of prevalence underestimation were used to assess the out-of-
sample performance of the models. Smaller values of MAE indicate smaller prediction error,
the model predicts exactly the true value if MAE is equal to zero [34].



S. haematobiu MAE |within BCI % |Underestimation % [5- mansnoni MAE \ithin BCI % [Underestimation %
0.076 79.6 2.0 0.050 86.0 1.9
0.080 76.5 2.9 0.053 87.1 1.3
0.074 78.0 2.4 0.053 85.2 2.2
0.080 79.9 1.8 0.056 85.3 2.4
0.084 79.0 2.4 0.052 86.3 2.1
0.082 78.7 2.8 0.053 85.3 1.9
0.079 75.6 2.6 0.053 86.0 1.7
0.078 77.9 2.1 0.044 85.6 1.7
0.084 76.4 2.8 0.056 87.0 2.0
0.078 76.9 2.3 0.053 83.6 2.3
0.084 75.6 2.5 0.047 85.7 1.7
0.078 78.5 1.9 0.051 85.4 1.7
0.084 77.5 2.3 0.052 84.9 2.1
0.076 78.9 2.1 0.050 85.1 2.2
0.076 76.1 1.9 0.053 85.4 1.9
0.082 78.0 2.2 0.050 86.5 1.7
0.080 76.3 1.5 0.050 85.9 1.6
0.081 75.6 2.9 0.056 82.7 2.3
0.080 78.8 2.8 0.051 85.6 2.1
0.081 75.6 2.8 0.048 86.3 1.5
0.080 /7.5 2.4 0.052 85.5 1.9

Table A.3: Mean absolute error, percentage of prevalence inside 95% BCI and percentage of
prevalence underestimation for S. haematobium and S. mansoni, from 20 repeated model
validations leaving out 10% of data.



Number of infected school-aged children and estimated treatment needs

The models in (1) with the best set of explanatory variables obtained from the model selection
were used to predict S. haematobium and S. mansoni prevalence across SSA on a5 x 5 km grid of
roughly 10 million pixels. A sample of 200 from the posterior predictive distribution was
utilised to estimate population-adjusted prevalence and treatment needs at country level,
together with their uncertainty. The predicted prevalence surfaces were overlaid with a
population grid obtained from WorldPop (http://www.worldpop.org.uk/, accessed May 2020)
providing population estimates at 100 x 100 m in 2010 and converted to number of infected
people at pixel level in the WorldPop spatial resolution. Estimates of the number of infected
people were aggregated at country level and divided by the total country population to obtain
population-adjusted prevalence estimates. We obtained population estimates for the year 2019, by
applying population growth rates obtained from the United Nations population prospects
(https://population.un.org/wpp/, accessed 2020) to the 2010 data and assuming a linear
population growth. The number of treatment needs for school-aged children (5-14 years) was
calculated by categorising pixels into low (prevalence <10%), moderate (prevalence 10-50%) and
high risk (prevalence >50%) categories and aggregating treatments at country level according
to the number of infected individuals ineach risk category, following WHO treatment guidelines
[21].

Analyseswere carried out using integrated nested Laplace approximations (INLA) [35] and the
stochastic partial differential equations method (SPDE), [33] which were implemented in R
software version 3.3.3 and the INLA package. The number of infected children was calculated
at 100x100 m spatial resolution available for the population data, to reduce misclassification of
population counts at the borders. These calculations were performed in Google Earth Engine.
[36]


http://www.worldpop.org.uk/
http://www.worldpop.org.uk/

Variables S. haematobium S. mansoni
Annual mean temperature - -
Annual precipitation Selected
Elevation Selected Selected
Infant mortality rate (IMR) Selected Selected
Isothermality Selected
Land cover

LST at day Selected -

LST at night Selected Selected
Max temperature of warmest month - -

Mean diurnal temperature range Selected

Mean temperature of coldest quarter - -

Mean temperature of driest quarter Selected Selected
Mean temperature of warmest quarter - -

Mean temperature of wettest quarter Selected
Min temperature of coldest month - -

NDVI Selected Selected
Precipitation of coldest quarter - -
Precipitation of driest month - -
Precipitation of driest quarter - -
Precipitation of warmest quarter - -
Precipitation of wettest month Selected -
Precipitation of wettest quarter - -
Precipitation seasonality - -
Proportion of improved drinking water sources Selected Selected
Proportion of improved sanitation Selected Selected
Proportion of open defecation Selected Selected
Temperature annual range - -
Temperature seasonality - -
Agro-ecological zone Selected Selected
Urban extents Selected Selected

Table A.4: Predictors identified as important by variable selection and included in the
final geostatistical models of S. haematobium and S. mansoni.
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ICountry 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
lAngola 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.4 9.1 32.8 25.9 29.4
Benin 0.0 0.0 0.7 0.0 16.1 0.0 0.1 5.1 h7.2 457 35.0 45 46.5
Botswana 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Burkina Faso 24.5 6.4 28.4 23.2 100.0 82.4 79.6 96.4 62.4 94.5 70.6 92.6 100.0
Burundi 0.0 0.0 0.0 0.0 63.4 43.6 436 0.0 46.0 24.8 30.9 62.6 94.7
[Cameroon 1.1 3.8 0.0 53 11.1 17.2 217 10 56.8 56.8 437 63.3 19.4
(Central African Republic 0.0 0.0 0.0 45 26.4 0.0 30.1 7.8 9.4 0.0 39.4 0.0 15.9
IChad 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.7 45.3
ICongo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 54.9 18.2 40.8 37.4
ICongo DR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 12 42.1 57.8 49.2
ote d’Ivoire 0.0 0.0 0.0 0.1 0.0 0.0 16.9 21.5 36.1 10.8 48.3 62.9 62.7
Equatorial Guinea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Eritrea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.7 15.3 59.7 61.2 67.9
Eswatini 0.0 13.2 114 6.4 0.0 0.0 0.0 0.0 0.0 0.0 51.6 0.0 0.0
Ethiopia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 7.6 28.8 29.2 47.3 48.0
IGabon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.7 0.0 90.7
Gambia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.3 0.0
IGhana 0.0 0.0 26 13 27.4 21.4 29.8 0.0 19.7 26.5 37.9 21.4 0.0
Guinea 0.0 0.0 0.0 0.0 0.0 0.0 335 0.0 0.0 0.0 312 427 47.1
IGuinea-Bissau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 385 0.0 0.0 97.9
Kenya 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 23.5 20.7 244 23.6 0.0
Liberia 0.0 0.0 0.0 0.0 0.0 0.0 30.9 29.0 0.0 0.0 12.8 155 79.2
Madagascar 0.0 0.0 6.8 53 13.7 6.7 29 15.4 26.5 17.9 19.1 46.9 0.0
Malawi 0.0 0.0 0.1 6.1 26.4 31.5 43.1 0.0 56.9 80.1 64.5 445 79.2
Mali 11.1 4.8 25.1 15.0 73.5 142.9 42.0 70.4 9.2 65.7 58.8 56.0 54.9
Mauritania 0.0 0.6 0.0 0.0 27.2 0.0 22.9 9.6 0.0 21.2 0.0 32.0 B1.1
Mozambique 0.0 2.9 0.0 0.0 3.8 13.6 9.8 28.1 142.9 0.0 43.3 18.4 22.7
Namibia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Niger 15.3 12.3 114 124 51.1 23.1 785 2.4 92.4 54.7 0.0 97.7 100.0
Nigeria 0.1 0.1 0.8 0.8 1.0 2.7 5.4 5.9 11.0 313 39.9 55.3 45.3
Rwanda 0.0 0.0 20.1 27.6 0.0 0.0 15.8 24.7 7.6 12.7 0.0 40.3 50.4
ISao Tome and Principe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 72.0 60.6 0.0 59.8
Senegal 0.1 0.0 0.0 33 14.2 0.0 29.0 “2.3 51.2 55.7 19.3 49.5 B32.1
[Sierra Leone 0.0 0.0 0.0 11.2 99 100.0 98.9 93.2 0.0 100 81.8 99.8 0.0
ISomalia 0.0 0.1 0.3 0.3 1.7 2 0.0 0.0 0.0 0.0 0.0 35.6 99.2
ISouth Africa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[South Sudan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0
ISudan 6.0 4.4 2.0 3.0 0.1 30.8 11 24.8 4.1 38.1 37.9 324 72.5
[Tanzania 0.0 7.8 0.0 0.6 16.0 13.8 30.9 27.6 27.3 36.3 422 433 40.2
ITogo 0.0 0.0 0.0 0.0 4.8 78.2 93.4 94.8 54 76.1 38.7 60.2 100
Uganda 1.9 0.0 5.9 12.7 32.9 17.6 18.6 0.0 26 36.2 36.7 51.9 55.5
Zambia 3.6 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 19.8 20.2 29.8 13.8
Zimbabwe 0.0 0.0 0.0 0.0 0.0 0.0 33.0 148.9 148.9 63.6 515 64.5 0.0

Table A.5: Schistosomiasis PC national treatment coverage for each sub-Saharan African

country.
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Figure A.2: Estimates of predictive uncertainty (posterior predictive standard deviation (SD)) for S. haematobium (top) and S. mansoni
(bottom) across sub-Saharan Africa. Higher values of SD indicate larger prediction uncertainty for the prevalence at a given pixel.
Practically, the prevalence at a given pixel varies between the predicted value plus or minus two units of SD.
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Figure A.3: Spatio-temporal model prevalence estimates (posterior predictive median) for S. haematobium (top) and S. mansoni (bottom) across sub-Saharan

Africa.
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Figure A.4: Spatio-temproal model estimates of predictive uncertainty (posterior predictive standard deviation (SD)) for S. haematobium (top) and S.
mansoni (bottom) across sub-Saharan Africa. Higher values of SD indicate larger prediction uncertainty for the prevalence at a given pixel. Practically,
the prevalence at a given pixel varies between the predicted value plus or minus two units of SD.
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Figure A.5: Socioeconomic summaries across sub-Saharan Africa.
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Figure A.6: Geographical distribution of environmental covariates across sub-Sahran Africa.
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Figure A.7: Agro-ecological zones in sub-Saharan Africa.
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