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Appendix 

Search strategy, selection criteria and data extraction protocol 

We did a systematic review following the PRISMA guidelines [10]. We searched for relevant 

publications pertaining to prevalence of Schistosoma spp infection in sub-Saharan Africa, in 

PubMed, ISI Web of Science, and African Journals Online, from January 1, 2000 to May 29, 

2020. The application that supports the data compilation carries automated routines that flag 

duplicated entries according to survey year and locations within a district for each newly 

acquired reference. 

We applied the search string “schisto* (OR mansoni, OR bilhar*, OR haema*) AND sub-

Saharan Africa (OR Angola, OR Benin, OR Botswana, OR Burkina Faso, OR Burundi, OR 

Cameroon, OR Central African Republic, OR Chad, OR Congo*, OR Cote d’Ivoire, OR Cote 

d’Ivoire, OR Ivory Coast, OR Djibouti, OR Eritrea, OR Ethiopia, OR Gabon, OR Gambia, 

OR Ghana, OR Guinea*, OR Kenya, OR Lesotho, OR Liberia, OR Madagascar, OR Malawi, 

OR Mali, OR Mauritania, OR Mozambique, OR Namibia, OR Niger, OR Nigeria, OR 

Rwanda, OR Senegal, OR Sierra Leone, OR Somalia, OR South Africa, OR Sudan, OR 

Swaziland, OR Tanzania, OR Togo, OR Tunisia, OR Uganda, OR Zambia, OR Zimbabwe)”. 

Government reports and other grey literature (eg, PhD theses, working papers from research 

groups, or unpublished research reports obtained through personal communication) were also 

considered. 

We set no parameters for language or study design. We initially screened titles and abstracts 

to identify potentially relevant articles. We excluded case reports, invitro studies, non-human 

studies, or those that did not report on schistosomiasis. We additionally excluded studies 

without prevalence data, those done in specific groups of patients (eg, hospital patients, those 

infected with HIV) or clearly defined population groups (ie. travelers, military personnel, 

expatriates, nomads, and displaced or migrating populations, pregnant women, neonates) not 

representative of the general population, studies that used either indirect diagnostic techniques 

(because such tests distinguish between active and cleared infection) or direct stool smear 

(because of low diagnostic sensitivity), reports of case-control studies, clinical trials, 

pharmacological studies (except control groups without anthelmintic intervention), 

intervention studies (except for baseline data or control groups), studies that reported on 

species other than S haematobium and S mansoni, and surveys done before 2000, that were not 

community based or school based, or were done in places where population deworming had 

been done within 1 year, or study findings reported aggregated within regions (ie, 

administrative division of level one). 

Full-text reports for potentially relevant papers were obtained and screened. We reviewed the 

reference lists of full-text articles for further possible data sources. Duplicates were removed. 

If important information was missing (eg, survey year, location names or coordinates, numbers 

of individuals assessed and positive, etc) or if surveys were aggregated, we contacted the 

authors for clarification. The survey locations were geographically referenced if this 

information was not provided in the data source or validated. The georeferencing was done using 

online maps and travel guide sources (e.g. Google maps, Wikimapia, iGuide Interactive Travel 

Guide, Humanitarian Data Exchange). We assigned centroids for administrative units on the 

basis of administrative boundaries in the Database of Global Administrative Areas (version 

2). 

Relevant survey data were extracted and entered in the GNTD database with information on 

the source (authors, journal, publication date), survey (date, type of survey), location 

(coordinates, name, administrative unit), and parasitology (species, number of people positive 

or examined, prevalence, age, diagnostic tool). 
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Quality control for each country was done by rechecking 30% of randomly selected papers deemed 

irrelevant. If any misclassifications were identified, the selection for the whole country was 

rechecked. 

We included those surveys in the meta-analysis with sample size greater than ten individuals. 

If the date of the survey was missing, we used date of publication instead. 

 

Figure A.1: Data search and selection criteria during 2000-201.
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Data sources 

Day and night land surface temperature (LSTD, LSTN) were used as proxies of ambient 

temperature. The normalized difference vegetation index (NDVI) was considered as a proxy for 

moisture. Decadal rainfall averages were obtained from the Climate Prediction Center rainfall 

estimates. In order to increase the predictive ability of the model, we also included 19 

bioclimatic variables from the Worldclim database (http://www.worldclim.org/bioclim, accessed 

May 2020) into our analysis. Data on freshwater bodies were obtained from Copernicus Global 

Land Service (https://land.copernicus.eu/global/products/wb, accessed May 2020). The 

geographical distribution of socioeconomic and environmental predictors across SSA is displayed 

in Figure A.5 and A.6 respectively (pages 36, 47). Agro-ecological zones are presented in Figure 

A.7 (page 39) and were obtained from the International Food Policy Research Institute [32]. 

 
Data type 

Data 

period 

Temporal 

resolution 

Spatial 

resolution 
Source 

Bioclimatic variables 
1970-

2000 
Monthly 1 km Worldclim - Global climate data version 2 

Land surface temperature day and 

night 

2000-

2019 
8 days 1 km Moderate resolution imaging spectroradiometer (MODIS)/ Terra 

Normalized difference vegetation 

index 

2000-

2019 
16 days 1 km MODIS/Terra 

Land cover 
2000-

2019 
Yearly 1 km MODIS/Terra 

Rainfall - Daily 15 km Climate Prediction Center (CPC) Rainfall Estimator (RFE) 

Altitude - - 90 m Shuttle Radar Topography Mission (SRTM) 

Rural - Urban 2000 - 1 km Socioeconomic Data and Applications Center (SEDAC) 

Population counts per pixel 
2010-

2020 
- 100 m WorldPop 

Improved water source 
2000-

2017 
- 

Household 

surveys 

Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys - 

UNICEF, World Health Surveys - WHO 

Improved sanitation - -   

Infant mortality rate - -   

Gridded surface of freshwater bodies 2019 - 300 m Copernicus Global Land Service 

Gridded surface of agro-ecological 

zones in Africa 
2011 - 5 km HarvestChoice/IFPRI 2009 

Table A.1: Data sources and properties on socioeconomic and environmental explanatory 

variables.

http://www.worldclim.org/bioclim
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(a) S. haematobium (b) S. mansoni 

 

Table A.2: Overview of survey data in SSA for S. haematobium (left) and S. mansoni (right) during 2000-2019. Prevalence estimated 

from the raw survey data i.e. total positives out of total screened by period and country.
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Bayesian modelling 

Stationary model 

Let 𝑦𝑗 be the number of Schistosoma positive cases out of the 𝑁𝑗 examined individuals at 

location 𝑗 = 1,2, …𝑛 and survey period 𝑡, where 𝑡 is an indicator variable for the time period 

with 2000-2010 as the baseline and dummy variables for 2011-2014 and 2015-2019. We 

assume that 𝑦𝑗 follows a Binomial distribution with prevalence 𝑝𝑗 and use the logit link 

function to relate the disease prevalence with its predictors, that is: 

 

 
𝑦𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑗 , 𝑁𝑗),

𝑙𝑜𝑔𝑖𝑡(𝑝𝑗) 𝛽𝑥𝑗 + 𝑏𝑡 + 𝜉𝑗 + 𝑒𝑗 .
 12 

 

The vector 𝑥𝑗 contains the values of the predictors at location 𝑗 and time 𝑡. The regression 

coefficients 𝛽 and 𝑏 represent the effects of the predictors and the global time trend, 

respectively. Non-spatial variation is captured through the pure noise term 𝑒𝑗 . In order to take 

into account potential spatial correlation, we included in the model a random spatial term 𝜉𝑗 at 

unique location 𝑗 and assumed that 𝜉 = (𝜉1, 𝜉2, … 𝜉𝑛) is a zero mean, and stationary Gaussian 

random process 𝜉 ∨ 𝜎, 𝜌 ∼ 𝑁(0, 𝛴(𝜎, 𝜌)) with a Matérn covariance function 𝐶𝜈(𝑑𝑖𝑗) = 𝜎2
21−𝜈

𝛤(𝜈)
, 

where 𝛤 is the gamma function and 𝛴(𝜎, 𝜌) is the covariance matrix with elements 𝑐𝑖𝑗 =

𝐶𝜈(𝑑𝑖𝑗), and 𝑑𝑖𝑗 is the Euclidian distance between two locations 𝑖 and 𝑗, 𝐾𝜈(𝑥) the modified 

Bessel function of order 𝜈, where 𝜈 determines the smoothness of the process. As 𝜈 increases, 

the function becomes more smooth, i.e 𝜈 = 0.5 represents the exponential covariance function, 

and for 𝜈 → ∞ it approximates the Gaussian covariance function. The hyperparameters 𝜎 and 

𝜌 define the spatial variance and range (i.e. distance where spatial correlation is considered 

non-essential), accordingly. In our analysis we fixed 𝜈 = 1 which leads to stable computations 

with INLA [33], while the spatial parameters 𝜎 and 𝜌 are estimated in the process. 

We assumed non-informative Gaussian prior distributions for the regression coefficients 𝛽 and 

the global time trend 𝑏. Non-informative gamma prior distributions were considered for the 

hyper-parameters 𝜎, 𝜌 of the spatial process and 𝜎𝑒 of the pure noise (transformed on the 

logarithmic scale), that is 𝑙𝑜𝑔 (
1

𝜎2
) ∼ 𝐺𝑎(5 × 10−5, 1), 𝑙𝑜𝑔(𝜌) ∼ 𝐺𝑎(0.01,1), and 𝑙𝑜𝑔 (

1

𝜎𝑒
2) ∼

𝐺𝑎(5 × 10−5, 1). 

Restricted spatial model 

In order to account for spatial confounding due to multicollinearity between the spatial 

covariates 𝑋 = (𝑥𝑗 ) and the spatial stochastic process 𝜉, we update the model in 2 by replacing 

the spatial process 𝜉 with 𝜉 = (𝐼 − 𝑃𝑥)𝜉, where 𝑃𝑥 = 𝑋 is the projection matrix and (𝐼 − 𝑃𝑥)𝜉 

is the orthogonal projection of the spatial process 𝜉 on 𝑋. 

Non-stationary model 

Let 𝜉 = (𝜉1, 𝜉2, … 𝜉𝑛) be a non-stationary Gaussian stochastic process, 𝜏𝑗 the local precision 

where j is a given location in space, and 𝜅 the spatial scale parameter associated empirically 

with the spatial range 𝜌 ≈
√8

𝜅
, such that for 𝜈 = 1 the spatial correlation is 0.1 at 𝜌 distance [33]. 

Then we specify 𝑙𝑜𝑔(𝜅) = 𝜃1, 𝑙𝑜𝑔(𝜏𝑗) = 𝜃𝑧𝑗, where vector 𝑧𝑗 represents the values of the 

covariates for the spatial variance at location 𝑗. Now the spatial variance becomes 𝜎 =

(𝜎1
2, 𝜎2

2, … 𝜎𝑛
2), where 𝜎𝑗

2 ≈
1

4𝜋𝜅2𝜏𝑗
2 , 𝑗 = 1,… , 𝑛 [33]. We conclude the Bayesian specification by 
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assuming non-informative Gaussian prior distributions for the hyper parameters 𝜃1 and 𝜃. 

Spatio-temporal model 

Let 𝜙 = (𝜙𝑗𝑡), 𝑗 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 be a stochastic process accounting for correlation in 

space and time, for 𝑛 unique locations and 𝑇 time-points [18]. The spatio-temporal process 𝜙𝑗𝑡 

changes in time through a first order autoregressive process (AR1): 

 

 𝜙𝑗𝑡 = {
𝜉𝑗1, 𝑡 = 1

𝑎𝜙𝑗,𝑡−1 + 𝜉𝑗𝑡 , 𝑡 = 2,… , 𝑇
 

 

where 𝑎 is the temporal lag with 𝑎 ∨ 1 and 𝜉 a pure spatially structured term with 𝜉 = (𝜉𝑗𝑡), 𝑗 =

1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 which follows a zero-mean multivariate normal distribution as described 

in (1) with Matérn covariance function for 𝑗1 = 𝑗2:  

 𝐶𝑜𝑣(𝜉𝑗1,𝑡1 , 𝜉𝑗2,𝑡2) = {
𝜎2𝐶𝜈(𝑑𝑗1,𝑗2), 𝑡1 = 𝑡2

0, 𝑡1 = 𝑡2
 

Model selection and validation 

Due to the large number of potential predictors, each of them was examined for 

multicollinearity with the remaining, excluding those with variance inflation factor >4. Bayesian 

geostatistical models were fitted with one predictor at a time, to identify the predictors functional 

form to be included in the final geostatistical predictive model. A linear and categorical form 

was considered for each predictor (categories corresponding to the quantiles of the predictor) 

and the form with lowest log CPO score was chosen [20, 23]. We identified a subset of 13 

potential socioeconomic and environmental predictors (Appendix, Table A.4, page 31), which 

gave rise to a sample space of 8,192 possible models for S. haematobium and S. mansoni, 

respectively. We fitted all possible models for both Schistosoma infections. The models with 

highest predictive ability, were used for inference and predictions. Model validation was 

carried out by assessing the model’s predictive performance. The models were fitted on a training 

set, including 90% of our survey locations, and their predictions were validated on a test set of 

the remaining locations. The mean absolute error (MAE), which is the average of the absolute 

differences between observed and predicted values, the % of prevalence correctly estimated 

within a 95% BCI and the % of prevalence underestimation were used to assess the out-of-

sample performance of the models. Smaller values of MAE indicate smaller prediction error, 

the model predicts exactly the true value if MAE is equal to zero [34]. 
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S. haematobiu MAE Within BCI % Underestimation % S. mansnoni MAE Within BCI % Underestimation % 
0.076 79.6 2.0 0.050 86.0 1.9 
0.080 76.5 2.9 0.053 87.1 1.3 
0.074 78.0 2.4 0.053 85.2 2.2 
0.080 79.9 1.8 0.056 85.3 2.4 
0.084 79.0 2.4 0.052 86.3 2.1 
0.082 78.7 2.8 0.053 85.3 1.9 
0.079 75.6 2.6 0.053 86.0 1.7 
0.078 77.9 2.1 0.044 85.6 1.7 
0.084 76.4 2.8 0.056 87.0 2.0 
0.078 76.9 2.3 0.053 83.6 2.3 
0.084 75.6 2.5 0.047 85.7 1.7 
0.078 78.5 1.9 0.051 85.4 1.7 
0.084 77.5 2.3 0.052 84.9 2.1 
0.076 78.9 2.1 0.050 85.1 2.2 
0.076 76.1 1.9 0.053 85.4 1.9 
0.082 78.0 2.2 0.050 86.5 1.7 
0.080 76.3 1.5 0.050 85.9 1.6 
0.081 75.6 2.9 0.056 82.7 2.3 
0.080 78.8 2.8 0.051 85.6 2.1 
0.081 75.6 2.8 0.048 86.3 1.5 
0.080 77.5 2.4 0.052 85.5 1.9 

 

Table A.3: Mean absolute error, percentage of prevalence inside 95% BCI and percentage of 

prevalence underestimation for S. haematobium and S. mansoni, from 20 repeated model 

validations leaving out 10% of data. 
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Number of infected school-aged children and estimated treatment needs 

The models in (1) with the best set of explanatory variables obtained from the model selection 

were used to predict S. haematobium and S. mansoni prevalence across SSA on a 5 x 5 km grid of 

roughly 10 million pixels. A sample of 200 from the posterior predictive distribution was 

utilised to estimate population-adjusted prevalence and treatment needs at country level, 

together with their uncertainty. The predicted prevalence surfaces were overlaid with a 

population grid obtained from WorldPop (http://www.worldpop.org.uk/, accessed May 2020) 

providing population estimates at 100 x 100 m in 2010 and converted to number of infected 

people at pixel level in the WorldPop spatial resolution. Estimates of the number of infected 

people were aggregated at country level and divided by the total country population to obtain 

population-adjusted prevalence estimates. We obtained population estimates for the year 2019, by 

applying population growth rates obtained from the United Nations population prospects 

(https://population.un.org/wpp/, accessed 2020) to the 2010 data and assuming a linear 

population growth. The number of treatment needs for school-aged children (5-14 years) was 

calculated by categorising pixels into low (prevalence <10%), moderate (prevalence 10-50%) and 

high risk (prevalence >50%) categories and aggregating treatments at country level according 

to the number of infected individuals in each risk category, following WHO treatment guidelines 

[21].  

Analyses were carried out using integrated nested Laplace approximations (INLA) [35] and the 

stochastic partial differential equations method (SPDE), [33] which were implemented in R 

software version 3.3.3 and the INLA package. The number of infected children was calculated 

at 100x100 m spatial resolution available for the population data, to reduce misclassification of 

population counts at the borders. These calculations were performed in Google Earth Engine. 

[36] 

 

  

http://www.worldpop.org.uk/
http://www.worldpop.org.uk/
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Variables S. haematobium S. mansoni 

Annual mean temperature - - 

Annual precipitation  Selected 

Elevation Selected Selected 

Infant mortality rate (IMR) Selected Selected 

Isothermality  Selected 

Land cover   

LST at day Selected - 

LST at night Selected Selected 

Max temperature of warmest month - - 

Mean diurnal temperature range Selected  

Mean temperature of coldest quarter - - 

Mean temperature of driest quarter Selected Selected 

Mean temperature of warmest quarter - - 

Mean temperature of wettest quarter  Selected 

Min temperature of coldest month - - 

NDVI Selected Selected 

Precipitation of coldest quarter - - 

Precipitation of driest month - - 

Precipitation of driest quarter - - 

Precipitation of warmest quarter - - 

Precipitation of wettest month Selected - 

Precipitation of wettest quarter - - 

Precipitation seasonality - - 

Proportion of improved drinking water sources Selected Selected 

Proportion of improved sanitation Selected Selected 

Proportion of open defecation Selected Selected 

Temperature annual range - - 

Temperature seasonality - - 

Agro-ecological zone Selected Selected 

Urban extents Selected Selected 

Table A.4: Predictors identified as important by variable selection and included in the 

final geostatistical models of S. haematobium and S. mansoni.
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Country 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Angola 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.4 9.1 32.8 25.9 29.4 

Benin 0.0 0.0 0.7 0.0 16.1 0.0 0.1 5.1 47.2 45.7 35.0 45 46.5 

Botswana 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Burkina Faso 24.5 6.4 28.4 23.2 100.0 82.4 79.6 96.4 62.4 94.5 70.6 92.6 100.0 

Burundi 0.0 0.0 0.0 0.0 63.4 43.6 43.6 0.0 46.0 24.8 30.9 62.6 94.7 

Cameroon 1.1 3.8 0.0 5.3 11.1 17.2 21.7 10 56.8 56.8 43.7 63.3 19.4 

Central African Republic 0.0 0.0 0.0 4.5 26.4 0.0 30.1 7.8 9.4 0.0 39.4 0.0 15.9 

Chad 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.7 45.3 

Congo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 54.9 18.2 40.8 37.4 

Congo DR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 12 42.1 57.8 49.2 

Cote d’Ivoire 0.0 0.0 0.0 0.1 0.0 0.0 16.9 21.5 36.1 10.8 48.3 62.9 62.7 

Equatorial Guinea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Eritrea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.7 15.3 59.7 61.2 67.9 

Eswatini 0.0 13.2 11.4 6.4 0.0 0.0 0.0 0.0 0.0 0.0 51.6 0.0 0.0 

Ethiopia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 7.6 28.8 29.2 47.3 48.0 

Gabon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.7 0.0 90.7 

Gambia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.3 0.0 

Ghana 0.0 0.0 2.6 1.3 27.4 21.4 29.8 0.0 19.7 26.5 37.9 21.4 0.0 

Guinea 0.0 0.0 0.0 0.0 0.0 0.0 33.5 0.0 0.0 0.0 31.2 42.7 47.1 

Guinea-Bissau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.5 0.0 0.0 97.9 

Kenya 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 23.5 20.7 24.4 23.6 0.0 

Liberia 0.0 0.0 0.0 0.0 0.0 0.0 30.9 29.0 0.0 0.0 12.8 15.5 79.2 

Madagascar 0.0 0.0 6.8 5.3 13.7 6.7 2.9 15.4 26.5 17.9 19.1 46.9 0.0 

Malawi 0.0 0.0 0.1 6.1 26.4 31.5 43.1 0.0 56.9 80.1 64.5 44.5 79.2 

Mali 11.1 4.8 25.1 15.0 73.5 42.9 42.0 70.4 9.2 65.7 58.8 56.0 54.9 

Mauritania 0.0 0.6 0.0 0.0 27.2 0.0 22.9 9.6 0.0 21.2 0.0 32.0 31.1 

Mozambique 0.0 2.9 0.0 0.0 3.8 13.6 9.8 28.1 42.9 0.0 43.3 18.4 22.7 

Namibia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Niger 15.3 12.3 11.4 12.4 51.1 23.1 78.5 42.4 92.4 54.7 0.0 97.7 100.0 

Nigeria 0.1 0.1 0.8 0.8 4.0 2.7 5.4 5.9 11.0 31.3 39.9 55.3 45.3 

Rwanda 0.0 0.0 20.1 27.6 0.0 0.0 15.8 24.7 7.6 12.7 0.0 40.3 50.4 

Sao Tome and Principe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 72.0 60.6 0.0 59.8 

Senegal 0.1 0.0 0.0 3.3 14.2 0.0 29.0 42.3 51.2 55.7 19.3 49.5 32.1 

Sierra Leone 0.0 0.0 0.0 11.2 99 100.0 98.9 93.2 0.0 100 81.8 99.8 0.0 

Somalia 0.0 0.1 0.3 0.3 1.7 2 0.0 0.0 0.0 0.0 0.0 35.6 99.2 

South Africa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

South Sudan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 

Sudan 6.0 4.4 2.0 3.0 0.1 30.8 1.1 24.8 4.1 38.1 37.9 32.4 72.5 

Tanzania 0.0 7.8 0.0 0.6 16.0 13.8 30.9 27.6 27.3 36.3 42.2 43.3 40.2 

Togo 0.0 0.0 0.0 0.0 44.8 78.2 93.4 94.8 54 76.1 38.7 60.2 100 

Uganda 1.9 0.0 5.9 12.7 32.9 17.6 18.6 0.0 26 36.2 36.7 51.9 55.5 

Zambia 3.6 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 19.8 20.2 29.8 13.8 

Zimbabwe 0.0 0.0 0.0 0.0 0.0 0.0 33.0 48.9 48.9 63.6 51.5 64.5 0.0 

Table A.5: Schistosomiasis PC national treatment coverage for each sub-Saharan African 

country. 
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Figure A.2: Estimates of predictive uncertainty (posterior predictive standard deviation (SD)) for S. haematobium (top) and S. mansoni 

(bottom) across sub-Saharan Africa. Higher values of SD indicate larger prediction uncertainty for the prevalence at a given pixel. 

Practically, the prevalence at a given pixel varies between the predicted value plus or minus two units of SD. 
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Figure A.3: Spatio-temporal model prevalence estimates (posterior predictive median) for S. haematobium (top) and S. mansoni (bottom) across sub-Saharan 

Africa.
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Figure A.4: Spatio-temproal model estimates of predictive uncertainty (posterior predictive standard deviation (SD)) for S. haematobium (top) and S. 

mansoni (bottom) across sub-Saharan Africa. Higher values of SD indicate larger prediction uncertainty for the prevalence at a given pixel. Practically, 

the prevalence at a given pixel varies between the predicted value plus or minus two units of SD.
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Figure A.5: Socioeconomic summaries across sub-Saharan Africa.
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Figure A.6: Geographical distribution of environmental covariates across sub-Sahran Africa.
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Figure A.7: Agro-ecological zones in sub-Saharan Africa. 
 


