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Abstract G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription,

translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability

and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To

discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we

present the first unbiased genome-wide study to systematically identify human genes that promote

cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel

genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we

exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene

silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination

with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating

or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered

G4-binding protein.

DOI: https://doi.org/10.7554/eLife.46793.001

Introduction
G-quadruplex secondary structures (G4s) form in nucleic acids through the self-association of gua-

nines (G) in G-rich sequences to form stacked tetrad structures (reviewed in Bochman et al., 2012;

Rhodes and Lipps, 2015). In the human genome, over 700,000 G4s have been detected in vitro

(Chambers et al., 2015). Sequences encoding G4s are enriched in regulatory regions consistent

with roles in transcription and RNA regulation (Huppert and Balasubramanian, 2007; Hup-

pert, 2008), and their over-representation in oncogene promoters, such as MYC, KRAS and KIT,

suggests that they are important in cancer and are potential therapeutic targets (reviewed in

Balasubramanian et al., 2011). Computationally predicted G4s have also been linked to replication

origins (Besnard et al., 2012) and telomere homeostasis (reviewed in Neidle, 2010). In the tran-

scriptome, more than 3000 mRNAs have been shown to contain G4 structures in vitro, particularly at

5’ and 3’ UTRs, suggestive of roles in posttranscriptional regulation (Bugaut and Balasubramanian,

2012; Kwok et al., 2016).

G4-specific antibodies have been used to visualise G4s in protozoa (Schaffitzel et al., 2001) and

mammalian cells (Biffi et al., 2013; Henderson et al., 2014; Liu et al., 2016). More G4s are

detected in transformed versus primary cells, and in human stomach and liver cancers compared to

non-neoplastic tissues, supporting an association between G4 structures and cancer (Biffi et al.,

2014; Hänsel-Hertsch et al., 2016). More recently, ChIP-seq was used to map endogenous G4

structure formation in chromatin revealing a link between G4s, promoters and transcription (Hänsel-

Hertsch et al., 2016). G4s are found predominately in nucleosome-depleted chromatin within
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promoters and 5’ UTRs of highly transcribed genes, including cancer-related genes and regions of

somatic copy number alteration. G4s may therefore be part of a regulatory mechanism to switch

between different transcriptional states. At telomeres, tandem G4-repeat structures also may help

protect chromosome ends by providing binding sites for shelterin complex components (reviewed in

Brázda et al., 2014). As G4 structures can pause or stall polymerases, they must be resolved by heli-

cases to allow replication and transcription to proceed. Several helicases, including WRN, BLM, PIF1,

DHX36 and RTEL1, have been shown to unwind G4-structures in vitro (Brosh, 2013;

Mendoza et al., 2016), and it is notable that fibroblasts from Werner (WRN) and Bloom (BLM) syn-

drome patients, who are predisposed to cancer, show altered gene expression that correlates with

sites with potential to form G4s (Damerla et al., 2012).

Small molecules that selectively bind and stabilise G4 formation in vitro have been used to probe

G4 biological function. G4 ligands, such as pyridostatin (PDS), PhenDC3 and TMPyP4, can reduce

transcription of many genes harbouring a promoter G4, including oncogenes such as MYC, in multi-

ple cancer cell lines (Halder et al., 2012; McLuckie et al., 2013; Neidle, 2017). G4-stabilising

ligands also interfere with telomere homeostasis by inducing telomere uncapping/DNA damage

through the inhibition of telomere extension by telomerase leading to senescence or apoptosis

(reviewed in Neidle, 2010). 5’ UTR RNA G4 structures may also be involved in eIF4A-dependent

oncogene translation (Wolfe et al., 2014) and their stabilisation by G4-ligands can inhibit translation

in vitro (Bugaut and Balasubramanian, 2012). Identification of several RNA G4-interacting proteins

(reviewed in Cammas and Millevoi, 2016), including DEAD/DEAH helicases such as DDX3X, and

DHX36 (Chen et al., 2018; Herdy et al., 2018) additionally suggests specific roles for G4 structures

in RNA.

Some G4-stabilising ligands cause a DNA damage-response (DDR); for example, DNA damage

sites induced by PDS in human lung fibroblasts mapped to genomic regions at G4s within several

oncogenes including SRC (Rodriguez et al., 2012). Subsequent studies demonstrated that homolo-

gous recombination (HR) repair deficiencies can be exploited to selectively kill BRCA1/2-deficient

cancer cells with G4 ligands (McLuckie et al., 2013; Zimmer et al., 2016). Recently, this concept

has been applied to BRCA1/2-deficient breast cancers using CX-5461, a G4 ligand currently in clini-

cal trials (Xu et al., 2017) (NCT02719977 ClinicalTrials.gov). Overall, these initial studies demon-

strate that specific genotypes can be selectively vulnerable to G4-stabilisation and raises the

question as to what other genotypes might provide further such opportunities.

We set out to address two main questions (Figure 1): 1) which human genes and cellular path-

ways interact with G4s and 2) what genetic backgrounds selectively lead to enhanced cell killing in

the presence of G4 stabilising ligands? We employed PDS and PhenDC3 as representative G4

ligands as these are chemically and structurally dissimilar, but each shows a broad specificity for dif-

ferent G4 structural variants. Both ligands have been widely used as G4-targeting probes in biophys-

ical (De Cian et al., 2007b; Rodriguez et al., 2008) and biological studies in which they have been

shown to impart transcriptional inhibition, telomere dysfunction and replication stalling (De Cian

et al., 2007a; Halder et al., 2012; Mendoza et al., 2016).

Results

Identification of genetic vulnerabilities to G4-ligands via genome-wide
screening
An unbiased genome-wide shRNA screen was performed in A375 human melanoma cells to globally

evaluate genetic vulnerabilities to G4-ligands and to identify genes and pathways involved with G4-

structures (Figure 2A). For this, the pyridine-2,6-bis-quinolino-dicarboxamide derivative, PDS

(Rodriguez et al., 2012), and bisquinolinium compound, PhenDC3 (De Cian et al., 2007b) were

chosen (Figure 2B). We used the latest generation shERWOOD-Ultramir shRNA pLMN retroviral

library, comprising 132,000 shRNAs across 12 randomised pools targeting the protein coding

genome, with an average of five optimised hairpins per gene (Figure 2C) (Knott et al., 2014). A375

melanoma cells were used due to their rapid doubling, stable ploidy and success in other shRNA-

dropout screens (Sims et al., 2011); they are TP53 wild-type and driven by oncogenic BRAF (V600E)

and CDKN2A loss (Forbes et al., 2015). Figure 2D outlines our shRNA screening strategy. To iden-

tify shRNAs that are lost between the initial (t0) and final (fF) timepoints, unique 3’-antisense
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sequences were recovered by PCR and quantified by sequencing. If a gene knockdown compromises

cell viability then the associated shRNA will be depleted compared to those targeting non-essential

genes: the tF sequence count will be less than t0 thus log2 fold change (FC, tF/t0) is negative. A pilot

using one shRNA pool established that a tF of 15 population doublings can be used to reveal signifi-

cant G4-ligand-mediated changes [false discovery rate (FDR) � 0.05] in shRNA levels using a ligand

concentration resulting in 20% cell death (GI20, see Materials and methods and Figure 2—figure

supplement 1 for details).

To understand the complete spectrum of G4 vulnerabilities, we first considered the combined set

of sensitivities to PDS and PhenDC3 together. For the whole library, when individual shRNAs are

considered 9509 (~7%) G4-ligand-specific hairpins (i.e. those not in DMSO) were found to be

depleted (FDR � 0.05; log2 FC <0, Figure 3A, Supplementary file 1). We then reasoned, for a gene

knockdown to have compromised cell growth, that a minimum of either 50% or three shRNA hair-

pins should be significantly depleted for that gene (median log2 FC <0). This resulted in the identifi-

cation of 843 G4 ligand-specific gene knockdowns not present in DMSO (Figure 3B). We then

denoted a more stringent preliminary list of 758 G4 sensitisers as those having a median log2 FC �

Gene A

Protein A

shRNA ‘A’ 

N N
O

HN
O

NH

N N

Gene B

Protein B

indirect e. g.

-regulation

-response 

direct e. g.

- G4 binding

- G4 unwinding

Viable

+

G4 Ligand

DNA G4 

LethalViable
shRNA ‘B’ 

-                 +

N N
O

HN
O

NH

N N

+

not in G4 pathway

DNA G4 

G4 Ligand

shRNA ‘B’ 

Figure 1. Strategy identifying genetic vulnerabilities involved with G4 biology. Genome-wide shRNA silencing combined with G4 structure stabilisation

by small molecules identifies genes that when depleted compromise cell viability. Cells are infected with a genome-wide pool of shRNA lentiviruses

targeting the protein coding genome followed by G4 ligand treatment to stabilise genomic and/or RNA G4 structures. Two general outcomes are

possible: a gene is not required in a G4-dependent process so there is no effect on cell viability (left); or gene silencing results in cell death either due

to loss of a direct G4 interaction (e.g. binding/unwinding) or indirectly through gene loss in a G4-dependent pathway (right). In absence of ligand, cells

are viable in presence of the shRNA. Dotted boxes highlight genotypes of disease significance for possible G4-based therapies (blue) and genes and

biological pathways that involve and/or interact with G4 structures (orange).

DOI: https://doi.org/10.7554/eLife.46793.002
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Figure 2. shRNA screening pipeline to uncover genetic vulnerabilities to G4 stabilisation. (A) A G-tetrad with four interacting guanines (left), which stack

to form G4 structures (right). (B) Structures of the G4-stabilising small molecule ligands PDS and PhenDC3. (C) Distribution of the numbers of shRNAs

targeting each gene, with the average indicated by a red dotted line. (D) Overall screening approach illustrated for one library pool. Plasmids are

retrovirally packaged and A375 cells are infected at multiplicity of infection (MOI) of 0.3 (30%). Following antibiotic selection, an initial time point (t0) is

harvested and then cells are cultured for ‘n’ population doublings in DMSO, PDS or PhenDC3 before the final time point was harvested (tF).

DOI: https://doi.org/10.7554/eLife.46793.003

The following figure supplement is available for figure 2:

Figure supplement 1. Genome-wide shRNA screen parameter optimisation.

DOI: https://doi.org/10.7554/eLife.46793.004
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Figure 3. Genome-wide screening in A375 cells reveals deficiencies in known G4-associated genes as sensitive to G4-stabilising small molecules. (A–C)

Venn diagrams for: (A) significantly differentially expressed individual shRNAs (FDR � 0.05); (B) significantly depleted genes (50% or three hairpins,

FDR � 0.05, median log2FC < 0) following DMSO, PDS and PhenDC3 treatment and (C) Significant PDS and PhenDC3 sensitiser genes not in DMSO

and after applying a median log2FC � �1 cut off. (D–F) Tables showing the number of depleted hairpins and median log2FC values for: (D) known G4

Figure 3 continued on next page
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�1 (Figure 3C). It is reassuring that in this list we independently validated the known G4 sensitisers

BRCA1/2, ATRX and HERC2 (McLuckie et al., 2013; Wang et al., 2019; Watson et al., 2013;

Wu et al., 2018; Xu et al., 2017; Zimmer et al., 2016; Figure 3D).

We next explored further genes already implicated in G4 biology, but whose deficiency has not

yet been linked with any enhanced sensitivity to G4 ligands. For genes annotated with G4-related

terms in the UniprotKB, Gene Ontology (GO) and G4IPDB databases (Mishra et al., 2016), an addi-

tional eight sensitisers (ADAR, DHX36, DNA2, FUS, MCRS1, RECQL4, SF3B3 and XRN1) were uncov-

ered (Figure 3E). Text-mining with G4 search terms using PolySearch2 on PubMed abstracts and

open access full texts (see Materials and methods; Liu et al., 2015b) revealed a further 12 sensitisers

arising from our screen including helicases (RTEL1), DDR components (CHEK1, RAD17), transcrip-

tional proteins (POLR1A, CNBP) and replication factors (ORC1, RPA3, TOP1) (Figure 3F).

Within the total 758 G4-sensitiser gene list, we uncovered five significant enriched KEGG pathway

clusters (p<0.05): ‘cell cycle’, ‘ribosome’, ‘spliceosome’, ‘ubiquitin-mediated proteolysis’ and ‘DNA

replication’ (Figure 4A, Supplementary file 1). Within each cluster are gene targets common to

both G4 ligands, as well as genes unique to each ligand. To gain functional insights, enriched GO

‘Biological Process’ and ‘Molecular Function’ terms were determined (Figure 4B;

Supplementary file 1) which showed 20 out of 45 of the former and all the latter terms into DNA or

RNA classifications, consistent with PDS/PhenDC3 directly binding nucleic acid G4 targets. Further-

more, when protein domains were considered using GENE3D and PFAM databases (Figure 4C), we

discovered enrichments in helicase C-terminal domains, RNA recognition motifs including RRM, RBD

and RNP domains, and DNA-binding domains including zinc fingers, bZIP motifs and HMG boxes.

Consistent with the ubiquitin-mediated proteolysis KEGG cluster, enrichments in multifunctional

ATPase domains and in ubiquitin hydrolase domains, were also found. These latter findings suggest

important areas of biology not previously known to be affected by G4 intervention in mammalian

cells.

Cancer-associated gene depletion enhances sensitivity to G4-ligands
We next used the complete list of 758 genes, identified as stringent G4 ligand sensitisers above, to

discover new cancer-associated gene vulnerabilities to G4-stabilising ligands. For this, we searched

this list for any significant enrichment in the COSMIC database (v83) of genes causally implicated in

cancer (Forbes et al., 2015). Of the 758 sensitisers, there was a two-fold enrichment (p=9.1�10�6)

for 50 cancer-associated genes, which increases to three-fold (p=2.5�10�3) when considering only

sensitisers common to both G4 ligands (Figure 5A,B, Supplementary file 1). Notably, when STRING

network analysis (Szklarczyk et al., 2017) was used to investigate functional interactions, this

revealed a DDR cluster that included BRCA1 and BRCA2, as well as their interacting tumour suppres-

sor partners PALB2 and BAP1, two cancer-associated DDR genes not previously indicated as G4

ligand sensitisers. (Figure 5C). This analysis also identified as sensitisers a cluster consisting of sev-

eral chromatin modifiers including SMARCA4, SMARCB1 and SMARCE1.

Focused G4-sensitiser shRNA screening reveals robust G4-ligand
genetic vulnerabilities and potential therapeutic targets
To enable more rigorous and further comparative analyses that focus solely on G4 sensitisers, we

developed a custom shRNA screening panel encompassing the gene sensitisers identified above

plus additional G4-associated genes noted from the literature (Figure 6A, Figure 6—figure supple-

ment 1, see Materials and methods). This panel consisted of a single retroviral shRNA pool to allow

all shRNAs to be screened simultaneously under standardised conditions and to minimise technical

fluctuations. We first used this panel to recapitulate the findings of the genome-wide screen above

Figure 3 continued

ligand sensitisers, ATRX, HERC2, BRCA1 and BRCA2, that are independently validated in our screen; (E) sensitisers annotated with a G4-associated

term in GO, UniprotKB or G4IPBD databases and (F) sensitisers identified as G4-related by text-mining showing the associated PolySearch2 algorithm

score and summary of the G4 association. Sensitisers are defined as a gene where 50% or three hairpins were significantly differentially expressed

(FDR � 0.05) with median log2FC � �1. See also Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.46793.005
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and compare responses with different G4 ligands. Using A375 melanoma cells with PDS and

PhenDC3, the custom panel recovered a total of 342 G4 sensitisers corresponding to 40.6% overlap

(308 genes) with the complete genome-wide screen (Figure 6B,C). From this, we identified 290 G4
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Figure 4. Pathways and processes showing sensitivity to G4-stabilising ligands. (A) Enriched KEGG pathways and (B) Gene Ontology terms, GO

Biological Processes (BP) and Molecular Functions (MF), for the 758 genome-wide G4-sensitiser genes. Blue- genes common to both ligands; black-

genes unique to either PDS or PhenDC3. A right-sided enrichment test with Bonferroni correction used (see Materials and methods). (C) Enriched

protein domains (p�0.05) within GENE3D (black) and PFAM databases (grey) ordered by -Log10 (EASE p-value). See also Supplementary file 1.
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sensitisers with 89 and 161 unique for PDS and PhenDC3, respectively, and 40 genes common for

both ligands (Figure 6—figure supplement 1E). Comparing PDS and PhenDC3 sensitisers by KEGG

analysis shows that each ligand mostly interacts with different but related pathways (Figure 6D,E).

Consistent with direct G4-targeting, nucleic-acid-related GO terms were enriched (Figure 6—figure

supplement 1F & G, Supplementary file 2). We next considered that the 40 sensitiser genes com-

mon between PDS and PhenDC3 reflected the most robust sensitisers for G4 ligands in general and

it is notable that 27 out of 40 associated with DNA or RNA binding processes, such as chromatin

modification, replication transcription, and translation (Figure 6F). Again, the ubiquitin processes,

which previously were not linked with G4 biology, were also uncovered as a significant sensitiser

pathway. Overall, these results clearly show the spectrum of biological vulnerabilities that underpin

the observed enhanced sensitivities for each G4-targeting ligand.

We next reasoned that the robust set of 290 G4 ligand sensitiser genes above provides a suitable

test bed for exploring the arising therapeutic potential for combinatorial pharmacological inhibition

and G4-ligands. We therefore looked for the presence of these sensitisers genes within the drug-

gable genome interaction database (DGIdb) (Griffith et al., 2013). A total of 74 G4-sensitisers were

found in the classifications ‘Druggable Genome’ (genes with known or predicted drug interactions)

and ‘Clinically Actionable’ (genes used in targeted clinical cancer sequencing for precision medicine)

with 13 being common to both classifications (Figure 6G, Supplementary file 1). Notably, this

included KEAP1, an E3 ubiquitin ligase adapter protein and highlights a new therapeutic domain for

the application of G4-based drugs. Performing a similar analysis on the 40 most robust sensitisers

common to both G4 ligands gave 12 genes within DGIdb (Figure 6H, Supplementary file 1), includ-

ing 5 (BRCA1, CHEK1, CDK12, TOP1, PDKP1) common to both druggable and clinically actionable

classifications. These results therefore open up new possibilities for cancer therapies based on vul-

nerabilities to G4 ligands.

G4 sensitisers common to two independent cell lines
We next sought to extend the use of the custom shRNA lentiviral library to gain initial insights into

possible commonalities and differences in the response to G4 ligands in cells from different lineages.

We therefore applied the custom library to mesenchymal-derived HT1080 fibrosarcoma cells (wild-

type TP53, driven by activated NRAS (Q61K) and IDH1 mutation (R132C)) and compared the results

to those from ectodermal A375 melanoma cells above (Figure 7, Figure 7—figure supplement 1F

& G, Supplementary files 1 & 2). The custom HT1080 screen recovered a total of 121 G4 ligand

sensitisers, with the majority (73 genes, 58%) shared with those seen for each ligand in the A375

genome-wide screen. Cytoscape network analysis (Figure 7A) revealed a core set of G4-associated

genes/pathways for these genes in spliceosome, HR and ubiquitin-mediated proteolysis processes

(p<0.0005). Overall, 29 PDS and 22 PhenDC3 gene sensitivities were found to be shared across all

three screens (Figure 7B,C), and it is noteworthy that both G4 ligands targeted similar processes

including transcription, splicing and ubiquitin-mediated proteolysis (Figure 7D,E).

BRCA1, TOP1, DDX42 and GAR1 are key G4 ligand sensitiser genes
When we evaluated the data collectively from all screens, it was apparent that four genes were

repeatedly found as G4 ligand sensitisers- BRCA1, TOP1, DDX42 and GAR1, as they consistently

appeared in both cell types and with both G4-ligands in all screens (Figure 7F, Figure 7—figure

supplement 1F). To corroborate these genes as genuine G4 sensitisers, we developed an indepen-

dent siRNA knockdown approach using a shorter timeframe (~6 days) to recapitulate ligand-induced

growth inhibition (Figure 8). Both A375 and HT1080 cells were transfected with siRNAs targeting

BRCA1, TOP1, DDX42 or GAR1 alongside non-targeting siRNA and non-transfected controls. Fol-

lowing 24 hr, cells were treated with two concentrations of PDS and PhenDC3 or vehicle control

DMSO for 144 hr. Growth curves for non-transfected and non-targeting siRNA controls were similar

across ligand treatments in both cell lines (Figure 8—figure supplements 1 and 2). For both

HT1080 (Figure 8A & B) and A375 cells (Figure 8—figure supplement 3A & B), protein depletion

following siRNA transfection was confirmed after 48 hr by immunoblotting cell lysates with the

appropriate antibodies (average 76–92% knockdown for HT1080; 41–69% knockdown for A375 after

48 hr). The percentage difference in confluency compared to non-targeting siRNA control cells was
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Figure 5. Identification of cancer-associated genes whose loss promotes sensitivity to G4 ligands. (A, B) Median log2FC and number of significantly

depleted hairpins for G4 sensitisers overlapping the COSMIC database for PDS (A) and PhenDC3 (B). Genes common to both are indicated in blue.

See also Supplementary file 1. (C) Functional interaction network analysis using STRING for the 50 COSMIC proteins indicated in A and B. Clusters are

shown using confidence interactions > 0.4 from co-expression and experimental data. Box indicates the DDR cluster.
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plotted (Figure 8—figure supplement 1B–E and Figure 8—figure supplement 3C–F) and com-

pared to DMSO treatment at 72, 96 and 120 hr (Figure 8C–F, Figure 8—figure supplement 3G–J).

Mirroring the shRNA screen findings, siRNA knockdown of all four genes in HT1080 cells

imparted significant increases in sensitivity with PDS or PhenDC3 compared to DMSO. Some differ-

ences between the ligands and individual gene knockdowns were noted. For BRCA1 and TOP1 the

lowest concentration of PDS resulted in the most sensitisation and this was evident early at 72 hr,

whereas both PhenDC3 concentrations resulted in similar growth inhibition and was apparent later

(Figure 8C & D, Figure 8—figure supplement 1). For DDX42 and GAR1, growth inhibition was

mostly manifest from 96 hr, with both ligands and concentrations being broadly similar (Figure 8E &

F, Figure 8—figure supplement 1). Results with the A375 cells also lend support to our observa-

tions, although there were some differences compared to HT1080 cells (Figure 8—figure supple-

ments 2 and 3). While GAR1 knockdown showed a similar sensitivity profile, BRCA1 and TOP1

deficiencies were sensitive to PDS but not PhenDC3. DDX42 knockdown in A375 cells did not reflect

the screens ligand sensitivities and this may in part be due to lower knockdown efficiency compared

(~40%). Nonetheless, these independent siRNA short-term assays substantiate that BRCA1, TOP1,

DDX42 and GAR1 are genetic vulnerabilities to G4 ligands and these may open up future possibili-

ties for therapeutic development.

G4-targeting ligands plus pharmacological inhibitors of G4 sensitiser
genes demonstrate synergistic cell killing
One of our aims was to identify potential cancer genotypes where G4-ligands could be therapeuti-

cally exploited. Cancers deficient in our newly discovered G4 sensitisers may be preferentially sensi-

tive to G4-ligands as single agents. Alternatively, rather than exploiting a genetic deficiency per se,

it may be possible to use pharmacological inhibition of a critical cancer gene product that pheno-

copies the deficiency in combination with G4 ligands as an orthogonal approach (Figure 9A). As

proof-of-principle, we systematically evaluated cell death potentiation with the G4 ligand PDS in

combination with pharmacological inhibitors for two new G4 sensitisers gene products, the WEE1

kinase or the deubiquitinase USP1 (Figure 9B). WEE1 is a crucial G2/M regulator overexpressed in

several cancers (Matheson et al., 2016), and USP1 is involved in DDR regulation and is overex-

pressed in non-small cell lung and other cancers (reviewed in Garcı́a-Santisteban et al., 2013). For

our studies, we used MK1775 (AZD1775), a WEE1 kinase inhibitor that is being clinically evaluated in

several cancers (Richer et al., 2017), and pimozide a potent USP1-targeting drug (Chen et al.,

2011a). HT1080 and A375 cells were cultured in matrix combinations of PDS with MK1775 or pimo-

zide at concentrations surrounding the GI50 values and cell viability measured after 96 hr using an

end-point ATP luminescence-based assay (CellTiter-Glo, Promega). Combenefit software (Di Veroli

et al., 2016) was then used to calculate synergy for different treatment combinations in which the

percentage growth inhibition compared to single agent controls is used to plot a 3D-dose-response

surface of synergy distribution in concentration space (Figure 9C–F). In HT1080 cells, synergy was

found for both PDS and MK1775 or pimozide combinations (Figure 9C,D, Figure 9—figure supple-

ment 1) with peak synergies of 21% and 24% at 156 nM PDS with 21 nM MK1775 or 6.25 mM pimo-

zide, respectively (GI50 for PDS, MK1775 and pimozide alone = 322 nM, 59 nM and 8.4 mM,

respectively). A375 cells showed lower synergy with PDS and MK1775 combination (Figure 9E, Fig-

ure 9—figure supplement 1), with peak synergy of 15% at 8 mM PDS, 444 nM MK1775 (GI50 for

PDS, MK1775 and pimozide alone = 8.5 mM, 625 nM and 12.2 mM, respectively). The greatest syn-

ergy was seen in combinations of PDS and pimozide in A375 cells (Figure 9F, Figure 9—figure sup-

plement 1) with a peak synergy of 61% at 5.33 mM PDS, 6.25 mM pimozide. Furthermore, long-term

clonogenic survival assays revealed a similar potentiation of growth inhibition, albeit at lower com-

pound concentrations, for PDS/MK1775 and PDS/pimozide drug combinations for both cell lines

tested (Figure 9—figure supplement 2). Altogether, these results validate that appropriate drug

combinations can synergistical act as a surrogate for gene deficiencies in the presence of G4 ligands

and thus complements the findings uncovered by our genetic screening approach.

Figure 5 continued
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Figure 6. A custom G4 sensitiser shRNA panel reveals unique and common G4 ligand sensitivities. (A) A shRNAs custom retroviral pool (~8000 hairpins)

was used to infect A375 cells. Following antibiotic selection, the reference time point (t0) was taken and then cells were cultured for 15 population

doublings in DMSO, PDS or PhenDC3 before (tF). Three biological replicates were performed. (B) Significant sensitiser genes for the A375 focused

screen (50% or three significantly depleted with median log2 FC� �1). (C) Overlap of the genome-wide (GW) with A375 focused screen for PDS and

PhenDC3 G4-sensitisers combined (see also Figure 6—figure supplement 1). (D–E) Enriched KEGG pathways for (D) PhenDC3 and (E) PDS sensitiser

Figure 6 continued on next page
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Identification of DDX42 as a new G4-binding protein
Another of our aims was to use the findings of our shRNA screen to identify proteins that may bind

and/or regulate G4 structures in cells, such as G4 helicases. Indeed, DHX36 and DHX9, known G4

helicases (Giri et al., 2011; Chen et al., 2018; Chakraborty and Grosse, 2011; Creacy et al.,

2008 ; Vaughn et al., 2005) and the DEAD box protein DDX3X, that was recently shown to bind

RNA G4s (Herdy et al., 2018), were identified as G4 sensitisers in our screen. Further members of

the DDX/DHX helicase family also appeared as G4 sensitisers (Figure 10A), raising the question of

whether these represent previously uncharacterized G4-binding proteins. To address this directly,

we chose to investigate DDX42 as this was one of the four key G4 sensitisers identified above.

DDX42 is a non-processive RNA helicase (Uhlmann-Schiffler et al., 2006) and has been associated

with splicing (Will et al., 2002); however, this protein remains largely uncharacterised. By immuno-

blotting of nuclear and cytoplasmic sub-cellular fractions (Figure 10B–E), we first established that

DDX42 predominantly localises to the nucleus (~4 to 9-fold greater than cytoplasmic levels) in three

independent cell lines, (HT1080, HEK293 and HeLa). As controls for fractionation, LaminB1 and

GAPDH were found to partition as expected into nuclear and cytoplasmic fractions, respectively

(Figure 10C,D).

As DDX42 is known to bind RNA, we next set out to demonstrate DDX42 affinity for a RNA-G4

structure as this has not previously been documented. For this, a G4 RNA oligonucleotide from the

NRAS 5’UTR sequence, which forms a stable parallel G4 (Kumari et al., 2007), was used together

with a mutated oligonucleotide unable to form a G4 structure and also a RNA hairpin as negative

controls (Herdy et al., 2018). Oligonucleotides were folded in 100 mM KCl to promote G4 structure

formation and the resultant structures confirmed by circular dichroism (CD) spectroscopy (Fig-

ure 10—figure supplement 1). The affinity of recombinant DDX42 was then investigated by Enzyme

Linked Immunosorbent Assay (ELISA, Figure 10F) and binding parameters calculated using a non-

linear regression model, assuming one-site-specific binding and saturation kinetics using Prism soft-

ware. DDX42 bound the NRAS G4 folded in KCl with an apparent Kd of 71.1 ± 3.5 nM and did not

bind detectably to the mutant oligonucleotide or RNA hairpin controls.

Given the nuclear localisation of DDX42 and as some DDX proteins also have DNA helicase activ-

ity (Kikuma et al., 2004), the DDX42 affinity for a DNA G4 structure was investigated. For this, an

oligonucleotide corresponding to the stable parallel G4 structure in the promoter of MYC

(González and Hurley, 2010; Yang and Hurley, 2006), and a non-G4 forming control, were used.

The oligonucleotides were folded in 100 mM KCl and structures verified by CD spectroscopic analy-

sis (Figure 10—figure supplement 1B). DDX42 affinity by ELISA (Figure 10G) showed that DDX42

binds to the MYC DNA G4 with an apparent Kd of 232.9 ± 23.5 nM with little binding to the mutant

control. Thus, the G4 sensitiser screen has enabled us to identify and classify DDX42 as a G4-inter-

acting protein as a new finding.

Discussion
G4 structures are emerging as promising clinical targets in cancer (Xu et al., 2017) but the range of

disease-associated genetic backgrounds that potentiate G4 ligand effects has yet to be defined.

Here, we have discovered many genes that when depleted enhance cell killing with the G4 ligands

Figure 6 continued

genes common to the genome-wide and A375 focused screens. A right-sided enrichment test with Bonferroni correction used (see

Materials and methods). (F) DAVID, STRING (experimental data, co-expression, medium confidence �0.4) interaction and UniprotKB data were used to

categorise biochemical roles for the 40 high-confidence G4 sensitisers common to both ligands. Genes in red indicate those found in the (DGIdb 2.0).

*=genes in multiple categories. (G, H) Overlap of the all 290 robust G4 sensitisers (G) and the 40 G4 sensitisers common to both ligands (H) with the

Drug Genome Interaction database. The druggable genome denotes genes with known or predicted drug interactions. Clinically actionable denotes

genes used in targeted cancer clinical sequencing panels. See also Figure 6—figure supplement 1, Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.46793.008

The following figure supplement is available for figure 6:

Figure supplement 1. Focused A375 cell screening parallels findings from the genome-wide screen and highlights differences in individual G4 ligand

sensitivities.
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Figure 7. G4 sensitivities in two different cell lines. (A) Enriched KEGG and GO pathways for all G4 ligand-specific sensitisers (73 genes) shared

between the genome-wide A375 and HT1080 screens. A right-sided enrichment test with Bonferroni correction used (see Materials and methods). (B–C)

Comparison of G4 sensitisers across A375 focused, A375 genome-wide and HT1080 focused screens for (B) PhenDC3 and (C) PDS. (D–E) DAVID,

STRING (experimental data, co-expression, medium confidence (�0.4) interaction) and UniProtKB data analysis showing biochemical functions for

Figure 7 continued on next page
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PDS and/or PhenDC3. The majority of these have no documented link to G4 biology and the use of

low ligand concentrations is likely to favour discovery of gene losses that are the most sensitive in

imparting selective cell killing. Validating the success of our approach, we independently identified

G4-associated protein coding genes known to be genetic vulnerabilities to G4 ligands including

BRCA1/2, HERC2 and ATRX (McLuckie et al., 2013; Wang et al., 2019; Watson et al., 2013;

Wu et al., 2018; Xu et al., 2017; Zimmer et al., 2016). We now report for the first time genetic vul-

nerabilities in 20 other known G4-associated genes that promote sensitivity to G4-stabilising ligands.

These include direct nucleic acid binders and/or unwinders, such as ADAR, DHX36, DNA2, FUS,

MCRS1, RECQL4, SF3B3 and XRN1.

The clinical PARP inhibitor, olaparib has exemplified the concept of synthetic lethality in BRCA-

deficient cells (Bryant et al., 2005; Farmer et al., 2005), and it is notable that BRCA deficiencies

were isolated as one of the top genetic vulnerabilities for both G4 ligands in both A375 and HT1080

cells. While PDS and PhenDC3 have not been optimised by medicinal chemistry, the findings of

Zimmer et al showing similar efficacy of PDS and olaparib in several BRCA-deficient models

(Zimmer et al., 2016) lends further support that our screen detects robust, biologically relevant

effects.

In dropout screens, dissociating minor from robust growth effects is important and is highly

dependent on parameters such as compound dose, genotype and cell line selected. Our screen was

designed with stringent parameters to detect genes deficiencies worthy of further exploration.

Indeed, we demonstrate potent growth inhibition of up to 80% of the four top G4 sensitisers genes

in a parallel siRNA approach.

The gene sensitivities uncovered here have potential to be exploited chemotherapeutically in can-

cer by deploying a G4-stabilising drug as a single-agent therapy. Alternatively, in the absence of a

particular gene deficiency, pharmacological inhibition of a critical oncogene could phenocopy the

genetic sensitivities described here and be used in combinatorial treatments with G4-stabilising

drugs. This may be attractive as cells are less likely to simultaneously develop resistance against two

drugs (reviewed in Chan and Giaccia, 2011). Furthermore, as lower drug doses are used, this

increases the therapeutic window and has less adverse side effects. As proof-as-principle for this, we

selected the WEE1 cell cycle kinase and the deubiquitinase USP1, and demonstrated that their phar-

macological inhibition, with MK1775 and pimozide, respectively, leads to the potentiation of cell

death in conjunction with the G4 ligand PDS. For example, 5.3 mM PDS or 6.25 mM pimozide alone

impart little growth inhibition (14% and 6% respectively), but together they lead to strong growth

inhibition (79%). Table 1 highlights further potential combinatorial opportunities for cancer-associ-

ated genes with clinical and/or experimental drugs. Additional therapeutic possibilities for other

gene sensitivities that are largely still to be explored from a pharmacological perspective are illus-

trated in Table 2.

While the custom HT1080 screen recovered 58% of sensitisers seen for each ligand in the A375

genome-wide screen, it is striking that this increases to 93% (i.e. 112 out of 121) when considering

all screens irrespective of G4 ligand, suggesting remarkable consistency when comparing G4 ligand

effects globally. Differences in individual ligand sensitives may arise from variances in cellular uptake

and dose, for example, the GI20 dose of PhenDC3 is ten-fold higher for A375 compared to HT1080;

G4 ligand-dependent molecular preference for G-tetrad end binding (Le et al., 2015) and/or the

accessibility of G4s in the chromatin of individual cell lines (Hänsel-Hertsch et al., 2016). These

points plus differences in protein knockdown efficiency, especially in A375 cells, may contribute to

the differences in G4 ligand growth inhibition in our siRNA experiments. In the siRNA experiments,

the G4 ligand-induced growth inhibition of both A375 and HT1080 appear not to follow a ‘typical’

Figure 7 continued

common PhenDC3 (D) and PDS (E) sensitisers across all three screens. *=genes in multiple categories. Blue, four sensitisers common to both ligands.

(F) Left, common sensitiser genes across all three screens. Right, number of depleted hairpins and median log2FC values for four key genes found as

both PDS and PhenDC3 sensitisers across all the three screens. See also Figure 7—figure supplement 1, Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.46793.010

The following figure supplement is available for figure 7:

Figure supplement 1. Focused HT1080 and A375 cell screening reveals shared PDS and PhenDC3 sensitivities.

DOI: https://doi.org/10.7554/eLife.46793.011
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Figure 8. siRNA knockdowns validate BRCA1, TOP1, DDX42 and GAR1 as key G4 ligand sensitiser genes. (A)

HT1080 cells were treated with non-targeting (NT) or targeting (T) siRNAs for BRCA1, TOP1, DDX42 and GAR1. 48

hr and 144 hr after transfection, cell lysates and a non-transfected cell lysate (U) were probed with appropriate

antibodies and actin control by western blotting. (B) Protein levels for targeting (T) and non-targeting (NT) 48 hr

lysates were normalised to the internal actin control and then normalised to NT levels for three biological

replicates (mean ± standard deviation). (C–F) HT1080 cells were transfected with targeting siRNAs for 24 hr before

PDS, PhenDC3 or DMSO treatment. Comparative box plots of confluency differences and significance (unpaired

parametric t-test) at selected timepoints for (C) BRCA1, (D) TOP1, (E) DDX42, (F) GAR (ns = not significant) for

three separate siRNA transfections. See also Figure 8—figure supplements 1, 2 and 3.

DOI: https://doi.org/10.7554/eLife.46793.012

The following source data and figure supplements are available for figure 8:

Source data 1. Source files for western blots.

DOI: https://doi.org/10.7554/eLife.46793.017

Figure supplement 1. Short-term siRNA knockdowns of four key sensitisers in HT1080 cells show dose-dependent

growth inhibition with G4-ligands.

DOI: https://doi.org/10.7554/eLife.46793.013

Figure supplement 2. Short-term siRNA knockdowns of four key G4-sensitisers in A375 cells show dose-

dependent growth inhibition with G4-ligands.

Figure 8 continued on next page
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dose response where higher concentrations lead to greater effects. This may in part be due to there

being an optimum G4 ligand dose for a particular gene loss leading to enhanced cell death. Indeed,

it is thought that lower drug concentrations better fall within a ‘synthetic lethality window’ (Nij-

man, 2011). Higher doses may mask these effects, by targeting more G4s that are not dependent

on the particular gene lost and/or be due to other off-target effects. This is also supported by the

experiments in Figure 9 that show synergy is only apparent at defined concentrations.

Our data additionally provides insights into the possible functions of the identified G4 sensitisers

and indicates roles in DNA damage response (DDR), transcription/chromatin remodelling, nucleic

acid unwinding, splicing and ubiquitin-mediated proteolysis. Our findings substantially advance our

knowledge of G4 interactions with DDR beyond BRCA1/2 as several key HR genes were identified

as novel G4-sensitisers including PALB2, BAP1 and the deubiquitinase USP1. Importantly, this high-

lights that such HR repair mechanisms are an integral and important cellular response in preventing

cell death induced through the increased persistence of G4s. Persistent G4 structures are also inhibi-

tory to DNA replication/cell cycle progression (reviewed in Valton and Prioleau, 2016 ), and it is of

note that we also uncovered many cell cycle/DNA replication sensitivities such as PCNA, CHEK1,

CCND1, CDC7, RFC2 and RFC4. Taken together these suggest that G4 stabilisation with small mole-

cules could be an attractive therapeutic strategy to inhibit cell growth.

Deficits in G4-unwinding helicases are predicted to increase the persistence of G4 structures

resulting in heightened sensitivity to G4 ligands. Several known G4-associated helicase deficiencies

were recovered, including RECQL4, RTEL1 and DHX36, alongside many others with no known G4

link (see Figure 10A). Here, we demonstrate for the first time that the DDX42 DEAD/DEAH helicase

is in fact a previously unidentified structure-specific G4-binding protein. On a wider level, this acts as

proof-of-principle that other specific G4 interacting proteins exist within the sensitiser list of over

700 proteins. Other known G4-helicases such as BLM, WRN, PIF1 and FANCJ (reviewed in Wu and

Brosh, 2010) were not identified as sensitisers, which may reflect functional redundancy

(Spillare et al., 2006), or a low ligand concentrations and/or cell type effects.

Our findings highlight the ubiquitin-protesome pathway and modifications such, as neddylation

as unexplored areas with respect to G4s. The only documented ubiquitin-G4 relationship in human

cells is with HERC2, an E3 ubiquitin ligase that is implicated in G4 resolution whose loss sensitises

cells to G4 ligands (Wu et al., 2018). We also independently validate HERC2 as a G4 sensitiser in

our screen and extend our observations to cover the full breadth of the proteosomal degradation

pathway, including members of E1 ligase (UBA3, UBA2, SAE1), E2 ligase (UBE2H), E3 ligase

(NEDD4L, RBX1, CUL1, RNF20), deubiquitinating enzyme (USP1 and USP37) and proteosome

(PSMC2) families (see Table 2) (Senft et al., 2018; Wei and Lin, 2012) Given the involvement of

ubiquitin-proteasomal regulation in pathways, such as DDR and cell cycle, that are generally deregu-

lated in cancer (Harrigan et al., 2018), this opens up an interesting intersection between ubiquitin

regulation and G4s. As ubiquitin components are being targeted for anticancer therapies

(Huang and Dixit, 2016), their efficacy might be enhanced through simultaneous G4 targeting and

here we have provided strong proof-of-principle of this using synergistic combinations of pimozide

(targeting UPS1) and the G4 ligand PDS.

In contrast to other genetic screens identifying sensitiser genes that enhance the efficacy of anti-

cancer agents (Azorsa et al., 2009; Martens-de Kemp et al., 2017), our work suggests that persis-

tent G4s are problematic for splicing. We identified several cancer-associated splicing factors as G4

sensitisers, including SRSF10, HNRNPM and the known G4-interactor FUS, which is overexpressed in

several cancers (Crozat et al., 1993; Dvinge et al., 2016; Takahama et al., 2013). For the latter, a

drug inhibiting general spliceosome assembly (Table 1) has been pharmacologically explored

Figure 8 continued

DOI: https://doi.org/10.7554/eLife.46793.014

Figure supplement 3. Short-term siRNA knockdowns validate four key sensitivities from the shRNA screening in

A375 cells.

DOI: https://doi.org/10.7554/eLife.46793.015

Figure supplement 3—source data 1. Source files for western blots.

DOI: https://doi.org/10.7554/eLife.46793.016
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Figure 9. Cell death potentiation mediated by pharmacological inhibition of WEE1 or USP1 with the G4-stabilising ligand PDS. (A) Cell death

potentiation with G4-stabilising ligands in combination with either gene deficiencies, such as shRNA-mediated knockdown (top), or pharmacological

inhibition of a protein (bottom). (B) Numbers of depleted shRNA hairpins and median log2FC values for WEE1 and USP1 in the genome-wide and

focused screens. (C–F) Synergy plots for HT1080 (C, D) and A375 (E, F) cells treated with PDS in combination with MK1775 (C, E) or pimozide (D, F). To

Figure 9 continued on next page
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(Kotake et al., 2007) raising the possibility of potentiation by G4-stabilising ligand combinatorial

treatment.

We designated four of the genetic vulnerabilities as ‘key’ genes (BRCA1, TOP1, DDX42, and

GAR1) whose deficiencies stood out with respect to consistent sensitivity to PDS and PhenDC3 in

both cell lines tested. Given this, we postulate that deficiencies in any of these four genes will impart

significant G4 ligand sensitivity for a range of cell types and/or with other G4 ligands. As GAR1-defi-

ciencies are implicated in chronic lymphocytic leukaemia and contribute to telomere dysfunction

(Dos Santos et al., 2017), we suggest that this cancer may be acutely sensitive to G4-stabilisation

by small molecules.

In conclusion, we have revealed genes and pathways that interact with stabilised G4 structures.

This information provides new insights into G4-related biology, especially into the functional path-

ways and roles as G4-interacting proteins. Furthermore, this work reveals novel disease-related

genetic vulnerabilities for G4-ligands. Overall, these data provide a unique and comprehensive

resource that can be further explored to understand biology that may involve G4s and also inspire

new therapeutic possibilities.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Cell line
(H. Sapiens)

A375 ATCC Cat# CRL-1619,
RRID:CVCL_0132

Cell line
(H. Sapiens)

HT1080 ATCC Cat# CCL-121,
RRID:CVCL_0317

Cell line
(H. Sapiens)

Plat-A Cell Biolabs Inc Cat# RV-102,
RRID:CVCL_B489

Antibody Mouse monoclonal
anti-Beta Actin

Merck Cat# A5441,
RRID:AB_476744

WB (1:250)

Antibody Mouse polyclonal
anti-DDX42

Abcam Cat# ab80975,
RRID:AB_2041042

WB (1:250)

Antibody Rabbit monoclonal
anti-Beta Actin

Cell Signalling
Technology

Cat# 4970,
RRID:AB_2223172

WB (1:500)

Antibody Rabbit polyclonal
anti-BRCA1

Cell Signalling
Technology

Cat# 9010,
RRID:AB_2228244

WB (1:50)

Antibody Rabbit monoclonal
anti-GAPDH

Cell Signalling
Technology

Cat# 5174,
RRID:AB_10622025

WB (1:50)

Antibody Rabbit polyclonal
anti-GAR1

NovusBio Cat# NBP2-31742,
RRID:AB_2801566

WB (1:100)

Antibody Rabbit polyclonal
anti-GST, HRP-
conjugated

Abcam Cat# ab3416,
RRID:AB_30378

ELISA (1:10,000)

Continued on next page

Figure 9 continued

determine any synergy in cell killing, 3D response surface plots were calculated using Combenefit software with the BLISS model for an average of

three biological replicas. Heat bar- blue shading indicates synergy combinations, red indicates antagonism (see also Figure 9—figure supplements 1

and 2).

DOI: https://doi.org/10.7554/eLife.46793.018

The following figure supplements are available for figure 9:

Figure supplement 1. Synergy calculations for PDS with MK1775 and pimozide.

DOI: https://doi.org/10.7554/eLife.46793.019

Figure supplement 2. Clonogenic cell survival assay demonstrates enhanced cell death upon treatment with PDS in combination MK1775 or pimozide.

DOI: https://doi.org/10.7554/eLife.46793.020
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https://scicrunch.org/resolver/AB_30378
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody Rabbit monoclonal
anti-LaminB1

Cell Signalling
Technology

Cat# 12586,
RRID:AB_2650517

WB (1:250)

Antibody Rabbit monoclonal
anti-TOP1

Abcam Cat# ab109374,
RRID:AB_10861978

WB (1:250)

Recombinant
DNA reagent

pCMV-VSV-G
plasmid

Addgene Cat # 8454,
RRID:Addgene_8454

plasmid

Recombinant
DNA reagent

G-quadruplex focused
shRNA plasmid
library

transOMIC technologies,
this paper

supplied as a
glycerol stock,
Materials and
methods subsection:
‘Composition and
recombinant DNA
reproduction of
shRNA libraries’

Recombinant
DNA reagent

transOMIC LMN
genome-wide
shRNA
plasmid library

transOMIC technologies supplied as multiple
glycerol stocks

Sequence-
based reagent

Biotinylated
oligonucleotides

Biffi et al. (2013),
Herdy et al. (2018),
this paper

Materials and
methods
subsection
‘Oligonucleotide
annealing’

Sequence-
based reagent

Genomic
qPCR primers

this paper Materials and
methods
subsection
‘Barcode recovery,
adapter ligation and
sequencing’

Sequence-
based reagent

Pasha/DGCR8
siRNA

Qiagen Cat# 1027423

Sequence-
based reagent

siRNAs this paper Materials and
methods
subsection
‘siRNA validation
experiments
– transfection,
experimental
outline,
immunoblotting’

Peptide,
recombinant
protein

Recombinant
human DDX42

NovusBio Cat# H0001325-P01

Commercial
assay or kit

BluePippin 2%
Internal Standard
Marker Kit

Sage Science Cat# BDF2010

Commercial
assay or kit

CellTitre-Glo One
Solution Assay
Reagent

Promega Cat# G8461

Commercial
assay or kit

KAPA library
quantification kit for
Illumina platforms

Kapa Biosystems Cat# 07960140001

Commercial
assay or kit

KOD Hot Start DNA
polymerase

Merck Cat# 710864

Commercial
assay or kit

Lipofectamine
RNAiMAX

ThermoFisher
Scientific

Cat# 13778150

Commercial
assay or kit

Muse Count
and Viability kit

Merck Cat# MCH600103

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

QIAmp DNA
Blood Maxi Kit

Qiagen Cat# 51194

Commercial
assay or kit

QIAquick PCR
purification kit

Qiagen Cat# 28104

Commercial
assay or kit

Qubit dsDNA
HS assay kit

ThermoFisher
Scientific

Cat# Q32851

Commercial
assay or kit

RIPA lysis buffer ThermoFisher
Scientific

Cat# 8990

Commercial
assay or kit

ZR GigaPrep Kit Zymo Research Cat# D4057

Chemical
compound, drug

Ampicillin Merck Cat# A5354

Chemical
compound, drug

Chloroquine
diphosphate

Acros organics Cat# 455240250

Chemical
compound, drug

cOmplete mini
protease inhibitor

Roche Cat# 11836153001

Chemical
compound, drug

DMSO ThermoFisher
Scientific

Cat# 20688

Chemical
compound, drug

Geneticin Gibco Cat# 10131035

Chemical
compound, drug

MK1775 Cambridge
Bioscience

Cat# CAY21266

Chemical
compound, drug

PenStrep ThermoFisher
Scientific

Cat# 1507063

Chemical
compound, drug

PhenDC3 In-house synthesis De Cian et al., 2007a

Chemical
compound, drug

Pimozide Merck Cat# P1793-500MG

Chemical
compound, drug

Pyridostatin (PDS) In-house synthesis Rodriguez et al. (2008)

Chemical
compound, drug

Sodium Butyrate Merck Cat# 303410

Chemical
compound, drug

TMB substrate Merck Cat# T4444

Software,
algorithm

Bowtie 2 v2.2.6 Langmead and
Salzberg, 2012

http://bowtie-bio.
sourceforge.net/
bowtie2/index.shtml

Software,
algorithm

ClueGO v3.5.1 Bindea et al., 2009;
Bindea et al., 2013

http://www.ici.upmc.fr/
cluego/cluego
Download.shtml

Software,
algorithm

ColonyArea Guzmán et al., 2014 Image J plugin

Software,
algorithm

Code used for
shRNA screen
data analysis

This paper All scripts are
available at:
https://github.com/
sblab-bioinformatics/
GWscreen_G4sensitivity

Software,
algorithm

Combenefit Di Veroli et al., 2016 https://sourceforge.
net/projects/combenefit/

Software,
algorithm

Cytoscape v3.6.0 Shannon et al., 2003 http://www.cytoscape.org/

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

edgeR v3.6 Robinson et al., 2010 http://bioconductor.org/
packages/release/bioc/
html/edgeR.html

Software,
algorithm

DAVID Huang et al., 2009a,
Huang et al., 2009b

https://david.ncifcrf.gov

Software,
algorithm

FastQC v0.11.3 Andrews, 2010 http://www.bioinformatics.
babraham.ac.
uk/projects/fastqc

Software,
algorithm

FASTX-Toolkit
v0.0.14

Gordon and
Hannon, 2010

http://hannonlab.cshl.
edu/fastx_toolkit.html

Software,
algorithm

Graphpad Prism GraphPad Prism
(https://graphpad.
com)

RRID:SCR_015807 Version 6

Software,
algorithm

PolySearch2 Liu et al., 2015a http://polysearch.
cs.ualberta.ca/

Software,
algorithm

Python
programming
language v2.7.10

https://www.
python.org

Software,
algorithm

R programming
language v3.2.1

https://cran.r-
project.org/

Software,
algorithm

Unix tools
(cat, cut, awk,
sort and uniq)

https://opengroup.
org/unix

Cell lines
HT1080 (RRID: CRL-1619) and A375 (RRID: CRL-121) were obtained from the American Type Culture

Collection repository (ATCC) (LGC Standards, United Kingdom) and Plat-A (RRID: RV-102) was

obtained from Cell Biolabs Incorporation. All cell lines were cultured in DMEM medium (Thermo-

Fisher Scientific, cat #41966029) supplemented with 10% (v/v) heat inactivated FBS (ThermoFisher

Scientific, cat #10500064) and grown at 37˚C in a 5% CO2 humidified atmosphere. Cell lines were

authenticated using small tandem repeat (STR) profiling and regularly checked to be mycoplasma-

free by RNA-capture ELISA. All cell lines tested negative for Mycoplasma contamination. None of

the cell lines used in our studies was mentioned in the list of commonly misidentified cell lines main-

tained by the International Cell Line Authentication Committee.

Quantification of live cell numbers
Live cell numbers (e.g. for plating cells for CellTitre-Glo assays, the screens and Incucyte experi-

ments) were determined using the Muse Cell Analyzer (Merck), ‘Count and Viability’ assay according

to manufacturer’s instructions. Cells were diluted either 1:10 or 1:20 in ‘Muse Count and Viability kit’

solution (Merck, cat # MCH60013), to give a viable cell concentration of 1–2 � 106 cells/mL, with

‘Events to Acquire’ parameter set at 1000 events. Three cell counts were recorded.

Determination of G4 ligand concentration for shRNA screens
PDS and PhenDC3 (both synthesised in-house) (De Cian et al., 2007b; Rodriguez et al., 2008) were

used as 100 mM stocks, dissolved in DMSO (Thermofisher Scientific, cat # 20688). GI20 values were

calculated by treating A375 and HT1080 cells with serial dilutions of PDS and PhenDC3 for 96 hr and

determining cell death via a CellTitre-Glo One Solution assay (Promega, cat # G8461) according to

manufacturer’s protocol. Each serial dilution was replicated four times for two-cell-seeding densities

(1000/1500 cells per well). For both densities, curves were plotted averaging the four replicates in

Prism (GraphPad v6) using a Non-Linear regression model, ‘dose-response – inhibition’ equation [log

(inhibitor) vs. normalised response – variable slope] and GI20 values calculated. The GI20 concentra-

tions used represent an average of three separate assays per cell line and yielded the following
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Figure 10. DDX42 is a predominantly nuclear G4-binding protein. (A) Number of depleted hairpins and median log2FC values for DEAH/DEAD-box

helicase genes within the 758 genes identified in the genome-wide screen. Those highlighted in blue caused sensitivity to both PDS and PhenDC3. (B)

Representative immunoblots showing cytoplasmic (C) and nuclear (N) lysates for HT1080, human embryonic kidney (HEK) and HeLa cells probed for

DDX42, laminB1 and GAPDH2. (C, D) GAPDH and laminB1 protein levels for (C) cytoplasmic and (D) nuclear lysates (mean for two biological

replicates ± standard deviation). (E) DDX42 nuclear protein levels (normalised to cytoplasmic levels, mean for two biological replicates ± standard

deviation). (F, G) DDX42 binding curves G4s by ELISA. (F) NRAS 5’ UTR RNA G4 (rG4), mutated G4 sequence (rG4 mut) and RNA hairpin. (G) MYC DNA

G4 (dG4) and mutated control (dG4 mut). Apparent Kd is calculated from five replicates (values are indicative as the model assumes saturation kinetics).

DOI: https://doi.org/10.7554/eLife.46793.021

The following source data and figure supplement are available for figure 10:

Source data 1. Source files for western blots.

DOI: https://doi.org/10.7554/eLife.46793.023

Figure supplement 1. Circular dichroism spectroscopy for G4 oligonucleotides.

DOI: https://doi.org/10.7554/eLife.46793.022
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Table 1. Possible chemotherapeutic combinations for G4-stabilising ligands with clinically relevant pharmacological drugs

Gene
Oncogene/tumour
suppressor

Combinatorial/
single agent Available drug treatments

Cancer association
summary Reference

BRCA1/
2

Tumour suppressor Single agent Olaparib
CX-5461

Deficient in ovarian,
breast and colorectal
cancer.

Lee et al., 2014;
Xu et al., 2017;
McLuckie et al., 2013;
Zimmer et al., 2016

CCDC6 Tumour suppressor Single agent Olaparib Inactivated in thyroid
and lung cancers.
CCDC6-deficient
tumours are cisplatin-
resistant but olaparib
sensitive.

Puxeddu et al., 2005;
Morra et al., 2015

CDK12 Oncogene Combinatorial Dinaclib (SCH77965) High-grade serous
ovarian
cancer, often exhibits
gain-of-function CDK12.

Parry et al., 2010;
Bajrami et al., 2014

KEAP1 Oncogene/Tumour
suppressor

Combinatorial/
single agent

CDDO-Me CPUY192018 KEAP1 inactivated in
multiple
cancers including thoracic
and endometrial; also has
oncogenic role, CDDO-
Me used for
leukaemia and sold
tumours.

Sanchez-Vega et al.,
2018;
Abed et al., 2015;
Lu et al., 2016;
Wang et al., 2014

PSMC2 Oncogene Combinatorial Proteosome inhibitors: Bortezomib
CEP187710 Carfizomib

Ubiquitin is emerging as
chemotherapeutic target,
and
general proteasome
inhibitors
clinically are used against
multiple myeloma.

Chen et al., 2011a;
Mattern et al., 2012;
Edelmann et al., 2011

SMAD4 Tumour suppressor Single agent GSKi: NCT01632306 NCT01214603
NCT01287520

Inactivated in 50% of
pancreatic
adenocarcinomas.
Negatively
regulated by GSK, GSKis
in
clinical trials for
metastatic
pancreatic cancer and
acute leukaemia.

Schutte et al., 1996;
Hahn et al., 1996;
Demagny and De
Robertis, 2016;
McCubrey et al., 2014

SRSF10 Oncogene Combinatorial E7107 1C8 Over-expressed in
colon cancer. 1C8 inhibits
SRSF10 and impairs HIV
replication. FUS
interacting
protein. E7107 is a
splicing
inhibitor preventing
spliceosome assembly.

Zhou et al., 2014;
Shkreta et al., 2017;
Cheung et al., 2016;
Kotake et al., 2007

UBA3 Oncogene Combinatorial MLN4924 Upregulated in AML and
multiple solid cancers.
MLN4924 is in Phase I
clinical trials.

Soucy et al., 2009

USP1 Oncogene/Tumour
suppressor

Combinatorial/
single agent

Pimozide Over-expressed in
melanoma, gastric,
cervical and NSCLC;
under-expressed in
leukaemia and
lymphoma.
Pimozide is a potent
USP1-targeting drug.

Garcı́a-
Santisteban et al., 2013;
Chen et al., 2011b

WEE1 Oncogene/Tumour
suppressor

Combinatorial/
single agent

AZDMK1775 Over-expressed in several
cancers, some
NSCLC are deficient.

Matheson et al., 2016;
Richer et al., 2017;
Backert et al., 1999;
Yoshida et al., 2004

Table 1 continued on next page
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concentrations used for the screens - A375: 10 mM PhenDC3 and 1.5 mM PDS; HT1080: 1 mM

PhenDC3 and 0.5 mM PDS.

Composition and recombinant DNA production of shRNA libraries
The genome-wide screen uses the transOMIC LMN shRNA library against the human protein coding

genome, consisting of 113,002 total shRNAs, split between 12 pools for ease-of-handling (approxi-

mately 10,000 shRNAs per pool) with an average number of five optimised hairpins per gene. The

G4 focused screen consists of a custom shRNA pool (transOMIC technologies) with the same LMN

vector (8018 shRNAs); this includes 1247 genes (7436 shRNAs) uncovered in the genome-wide

screen (751 sensitisers and 496 upregulated genes), 116 additional genes identified from the litera-

ture as potentially G4-associated (439 shRNAs) and shRNAs targeting 37 olfactory receptors as non-

targeting controls (143 shRNAs). 496 upregulated genes (FDR � 0.05, 50% or three hairpins;

log2FC � 1) were included to mimic the genome-wide screen on a smaller scale by maintaining the

population ratio of sensitisation and resistance. In this custom pool, unlike the commercially available

genome-wide library, we capped the number of shRNAs at seven per gene. The backbone of both

libraries contains NeoR and ZsGreen markers to allow monitoring of infected cell lines by Geneticin

(Gibco, cat # 10131035) selection and fluorescence (MacsQUANT), respectively. Both libraries were

provided as glycerol stocks. Bacterial density was determined by calculating the colony-forming units

(CFU) from dilutions of the original glycerol stock after plating on agar plates (overnight, 37˚C, 100

mg/mL ampicillin). Glycerol stocks were thawed completely with sufficient volume taken (based on

CFU) to ensure a minimum of 1000-fold hairpin representation and inoculated into liquid culture (LB

media + 100 mg/mL ampicillin). Plasmid DNA was isolated using ZR Gigaprep kit D4057 (Zymo

research) according to manufacturer’s protocol and DNA quantified by Nanodrop Onec (Thermo

Fisher Scientific).

shRNA stable cell line creation
For the genome-wide screen, each pool was treated independently, necessitating the creation of 12

different polymorphic cell lines each containing an average of 10,000 shRNAs, for both HT1080 and

A375, per replica (three replicas, 36 polymorphic cell lines). Virus was produced using the Platinum-A

packaging cell line (4–6 � 15 cm plates per pool) and calcium phosphate transfection. 24 hr after

plating Platimum-A cells (70–80% confluency), media was replaced with DMEM medium supple-

mented with 1% (v/v) PenStrep (Thermo Fisher Scientific, cat # 150763) and 10% (v/v) heat inacti-

vated FBS, shRNA library plasmid (75 mg) was then mixed with pCMV-VSV-G plasmid (7.5 mg,

Addgene cat # 8454), Pasha/DGCR8 siRNA (2.7 mM, Qiagen cat # 1027423) to increase viral titre

and 0.25 M CaCl2 in a total volume of 1.5 mL per 15 cm dish and bubbled with 1.5 mL 2 x HBS (50

mM HEPES, 10 mM KCl, 12 mM Dextrose, 280 mM NaCl, 1.5 mM Na2PO4 at pH 7.00) and added to

the Platinum-A cells (containing 17mL media) in a dropwise fashion. Immediately before adding the

DNA-Pasha-transfection mixture to the Platinum-A cells, chloroquine diphosphate (lysosomal inhibi-

tor, Acros Organics cat # 455200250) was added to the plates at a final concentration 2.5 mM. 14–16

hr after transfection, fresh media was added with 1:1000 1 M sodium butyrate (Merck, cat # 303410)

for enhanced mammalian expression of the shRNA LMN plasmid. Virus was then harvested 48 hr

after transfection and filter sterilised (0.45 mM) and stored at 4˚C for a maximum of 7 days. Viral titre

was determined by performing mock infections and quantifying fluorescent cells, via flow cytometry

(MacsQUANT, Miltenyi Biotec Ltd.) 48 hr after infection. For both the genome-wide and focused-

Table 1 continued

Gene
Oncogene/tumour
suppressor

Combinatorial/
single agent Available drug treatments

Cancer association
summary Reference

WHSC1 Oncogene Combinatorial DA3003-1 PF-03882845 Chaetocin TC-
LPA5-4 ABT-199

Over-expressed in
prostate cancer,
multiple myeloma
and mantle cell
lymphoma. five potent
candidate inhibitors.

Coussens et al., 2017;
Bennett et al., 2017

DOI: https://doi.org/10.7554/eLife.46793.024
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Table 2. Examples of cancer-associated genetic vulnerabilities to G4 ligands.

Gene category Gene name Function/pathway Summary
Cancer
association summary References

DNA damage
repair

PALB2 Homologous
recombination;
binds BRCA2

Inactivating
mutations
predispose
patients to
myeloid
leukaemia,
Wilm’s tumour
and
Fanconi anaemia.

Harrigan et al., 2018;
Nepomuceno et al., 2017

BAP1 Homologous
recombination; binds
BRCA1,
deubiquitinase
for Histone 2A
and tumour
suppressor HCFC-1

Inactivating
mutations found
in uveal
melanoma
and mesotheliomas.

Harrigan et al., 2018;
Carbone et al., 2013

USP1 Fanconi anaemia
and translesion
synthesis
DDR;
deubiquitinase
required for
FANCD2, FANCI
and PCNA
localisation to
sites of DNA
damage

USP1 mRNA
over-expressed
in melanoma,
gastric, cervical
and NSCLC;
under-expressed
in leukaemia
and lymphoma.

Harrigan et al., 2018;
Nijman et al., 2005;
Huang et al., 2006;
Garcı́a-Santisteban et al., 2013

TOP1 Relieves torsional
stress during
DNA replication;
suppresses
genomic instability
at actively
transcribed
exogenous
G4-forming sequences

Common cancer
target, to
induces
DNA damage
following
pharmacological
inhibition,
lethal to cells.

Yadav et al., 2014;
Wang, 2002

Helicase activity RECQL4 RTEL1 Previously identified
G4-helicases

RECQL4
(Rothmund-
Thomsun
syndrome)
and RTEL1
(Hoyeraal-
Hreidarsson
Syndrome),
deficiencies
impart increased
risks of
cancer
cancer,
autoimmunity
and premature
ageing.

Brosh, 2013

Table 2 continued on next page
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screen, 3.6 � 106 target cells were infected with a viral volume predicted to cause 30% infection

(MOI 0.3) to minimise multiple shRNA integrations per cell. This provides approximately 10 � 106

shRNA expressing cells (1000-fold shRNA representation). Virus was diluted in serum free media

plus polybrene (8 mg/mL) with infections carried out in triplicate and treated as independent repli-

cates hereafter. 48 hr after infection cells antibiotic selection was performed with 800 mg/mL

(HT1080) and 1000 mg/mL (A375) geneticin for 7–9 days (antibiotic concentrations were determined

from 7-day toxicity curves prior to transfection setup).

Cell culture for pilot, genome-wide and focused shRNAs pools
Following complete antibiotic selection, a reference time point was harvested (t0) and cells were

split into 3 � 15 cm plates per replica: PDS, PhenDC3 and DMSO vehicle control, each containing

8–10 � 106 cells to maintain 1000-fold hairpin representation. Every 72 hr, cells were trypsinised,

counted via Muse Cell Analyzer to determine the number of population doublings, and 10 � 106

(A375 genome-wide and focused) or 8 � 106 (HT1080) cells per replica re-plated in fresh drug/

DMSO and media (17 mL media per plate). At all times, sufficient cell numbers were used so that a

Table 2 continued

Gene category Gene name Function/pathway Summary
Cancer
association summary References

Chromatin
remodellers

ANKRD11 Transcription factor;
Recruits
histone deacetylases

Tumour suppressor epigenetically silenced
in
breast cancers.

Lim et al., 2012
Neilsen et al., 2008
Noll et al., 2012

MLL4 H3K4
lysine methyl
transferase

Frequently inactivated
in several
cancers.

Froimchuk et al., 2017
Kadoch et al., 2013;
Rao and Dou, 2015

SMARCA4
SMARCB1 SMARCE1

SWI/SNF
ATP-dependent
chromatin remodellers

Mutated in 20%
of human
cancers;
doxorubicin
resistant
triple-negative
breast cancer
is associated
with loss of
SMARCB1,
SMARCA4, or
KEAP1
(a BRCA1 interactor).

Kadoch et al., 2013;
Shain and Pollack, 2013

Ubiquitin USP37 Deubiquitinating
enzyme which
stabilises MYC

Upregulated
in lung cancer.

Pan et al., 2015

NEDD4L E3 ubiquitin ligase Expression
correlates with
poor patient
outcome in
hepatocellular
and gastric
carcinomas.

Zhao et al., 2018;
Gao et al., 2012

RNF20 E3 ubiquitin
ligase;
chromatin
remodelling
and DDR

Tumour supressor
down-regulated in
several cancers.
Deletion is
main
contributor
to chromosomal
instability in
colorectal cancer.

Moyal et al., 2011;
Shema et al., 2008;
Barber et al., 2008

Splicing FUS Splicing
component and
known G4-interactor

Over-expressed in
colon, breast
and liposarcoma
cancers, respectively.

Crozat et al., 1993;
Dvinge et al., 2016;
Takahama et al., 2013

DOI: https://doi.org/10.7554/eLife.46793.025
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minimum of 1000 or 800 cells per shRNA was maintained (A375 and HT1080, respectively), to ensure

maximal potential for uncovering phenotypic effects from each shRNA hairpin tested (Knott et al.,

2014). The volume of DMSO used in the ‘vehicle’ condition is equal to the volume for 10 mM

PhenDC3. The remaining drug treatments were supplemented with DMSO to match this volume to

keep the same DMSO concentration between treatment cell lines and screens. For the pilot screen,

two final timepoints were harvested after 7 and 15 population doublings (t7 and t15), pellets

extracted and analysed as described below. Based on the pilot screen, discussed below, a final time

point (tF) was harvested after 15 population doublings for subsequent genome-wide and focused

screen. For each pool of the genome-wide screen, 12 samples were generated (t0, DMSO tF, PDS

tF, PhenDC3 tF; three replicas each). Therefore, 144 samples of 10 � 106 cells were generated to

cover the entire screen. For each cell line of the focused screen, 12 samples were generated (t0,

DMSO tF, PDS tF, PhenDC3 tF, three replicas each).

Pilot screen technique to determine genome-wide parameters
To determine the most appropriate tF for the genome-wide screen, cells (from shRNA pool 8) were

harvested after 7 and 15 population doublings (t7 and t15 respectively) and the average log2FC (tF/

t0) counts for each hairpin were determined as described below. For t7, 13 and 115 shRNAs were

significantly altered following PDS and PhenDC3 treatment respectively (FDR � 0.05). At t15, more

hairpins were significantly depleted following PDS and PhenDC3 treatment (746 and 93 shRNAs

respectively, excluding those significantly changed in DMSO).

Barcode recovery, adapter ligation and sequencing
All PCR and sequencing oligonucleotides (Merck) are summarised in the table below. Cell pellets (10

� 106 cells) were resuspended in PBS and genomic DNA extracted using QIAmp DNA Blood Maxi

Kit (Qiagen, cat # 51194) according to the manufacturer’s spin protocol, eluted in a final volume of

1200 mL and quantified by Qubit DNA HS Assay Kit (Thermo Fisher Scientific, cat # Q32851). The

shRNA inserts were PCR-amplified from all DNA in each sample, in multiple 50 mL reactions each

using 1.5 mg gDNA, with KOD Hot Start DNA Polymerase (Merck, cat # 710864) and the following

reagents (included within the kit): 5 mL 10 x buffer, 5 mL 2 mM each dNTPs, 4 mL MgSO4 (25 mM),

1.5 mL polymerase, 4 mL DMSO. Forward (Mir-F) and reverse (PGKpro-R) primers flanking the loop

and antisense sequence of the hairpin region were used at a final concentration of 300 nM. PCR was

performed under the following conditions: 98˚C for 5 min, then for 25 cycles of 98˚C for 35 s, 58˚C

35 s and 72˚C for 35 s, followed by a final extension at 72˚C for 5 min. 1.2 mL of pooled PCR reaction

were cleaned-up using QIAquick PCR purification kit (Qiagen, cat # 28104) according to manufac-

turer’s protocol. 2 mg purified PCR product were PCR amplified in a second step, using forward (P5-

Seq-P-Mir-Loop) and reverse (P7-Index-n-TruSeq-PGKpro-R) primers containing the P5 and P7 flow-

cell adapters, respectively. PCR was performed in 8 � 50 mL reactions each with 500 ng template

DNA. The reverse primer contains TruSeq adapter small RNA Indexes for multiplexing and a 6-nucle-

otide barcode, denoted ‘nnnnnn’ below. PCR reagents were as for the first PCR, with the exception

of the primers, which were used at a final concentration 1.5 mM. The second PCR was performed

under the following conditions: 98˚C for 5 min, then for 25 cycles of 94˚C for 35 s, 52˚C 35 s and 72˚

C for 35 s, followed by a final extension at 72˚C for 5 min. 200 mL of pooled secondary PCR product

was cleaned up as previously and the desired product (~340 bp) was extracted using BluePippin

(Sage Science) 2% Internal Standard Marker Kit (DF marker 100–600 bp; Sage Science, BDF2010),

according to manufacturer’s protocol using a broad range elution (300–400 bp). Individual samples

were quantified with a KAPA library quantification kit (KAPA Biosystems, cat # 0796-6014-0001)

using a BioRad CFX96 Real Time PCR instrument with no Rox according to manufacturer’s protocols.

Libraries were diluted to 4 nM in RNAse free water. For the genome-wide screen samples, 24 librar-

ies (12 pools) and for the focused screen samples, 24 libraries (both cell lines) were combined to cre-

ate a pooled 4 nM stock, with each sample having a unique TruSeq adapter. The genome-wide

screen samples were sequenced in six batches; all focused screen samples were sequenced simulta-

neously. DNA-Seq libraries were prepared from these samples using the NextSeq Illumina Platform

v2 High Output Kit 75 cycles, followed by 36 base pair single-read sequencing performed on an Illu-

mina NextSeq instrument, using a custom sequencing primer.
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Oligo name Description Sequence 5’�3’

Mir5-F Primary PCR
Forward Primer

5’-CAGAATCGTTGCCTGCACATCTTGGAAAC- 3’

PGKpro-R Primary PCR
Reverse Primer

5’ -CTGCTAAA GCGCATGCTCCAGACTGC- 3’

P5-Seq-P-Mir-Loop Secondary PCR
forward Primer

5’-AATGATACGGCGACCACCGAGATCTACACT
AGCCTGCGCACGTAGTGAAGCCACAGATGTA-3’

P7-Index-n-Truseq-PGKpro-R Secondary
PCR barcoded
reverse primer

5’-CAAGCAGAAGACGGCATACGAGAT nnnnnnGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTCTGCTAAAGCGCATGCTCCAGACTGC – 3’

SeqPrimer MirLoop Custom
sequencing primer

5’-TAGCCTGCGCACGTAGTGAAGCCACAGATGTA-3

Sequencing, read processing, alignment and counting of shRNAs
Sequencing data have been deposited in ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under

accession number E-MTAB-6367. Reads were trimmed to 22 nucleotides, base qualities were evalu-

ated with FastQC v0.11.3 (Andrews, 2010) and bases were filtered from the 3’ end with a Phred

quality threshold of 33 using the FASTX-Toolkit v0.0.14 (Gordon and Hannon, 2010). Trimmed

reads were aligned to the 113,002 reference shRNA sequences provided by transOMIC technologies

(Knott et al., 2014) using Bowtie 2 v2.2.6 with default parameters (Langmead and Salzberg, 2012),

which resulted in overall alignment rates of 90–95% with an average of 98% of reference sequences

detected. The generated SAM files were processed to obtain shRNA counts using Unix tools

(https://opengroup.org/unix) and Python scripts (v2.7.10, https://www.python.org), and library purity

and potential contaminations were investigated with stacked bar plots and multidimensional scaling

(MDS) using the R programming language v3.2.1 (https://cran.r-project.org). The code and scripts

developed during the development of the project are available in our group’s GitHub website

(Martı́nez Cuesta, 2019; copy archived at https://github.com/elifesciences-publications/GWscreen_

G4sensitivity).

Filtering, normalisation, differential representation analysis and
defining sensitisation
To discard shRNAs bearing low counts, each library was filtered based on a counts-per-million

threshold of 0.5 for all initial time points (t0), for example in a library of 10M reads, shRNAs with at

least five counts for all initial time points will pass this filter. Normalisation factors were calculated to

scale the raw library sizes using the weighted trimmed mean of M-values (TMM) approach

(Robinson et al., 2010). To compare groups of replicates (time points and chemical treatments) for

each pool, differential representation analysis of shRNA counts was performed using edgeR

(Robinson et al., 2010). Common and shRNA-specific dispersions were estimated to allow the fitting

of a negative binomial generalised linear model to the treatment counts. Contrasts between the ini-

tial time point and the treatments were defined (PDS-t0, PhenDC3-t0, and DMSO-t0) and likelihood

ratio tests were carried out accordingly (Dai et al., 2014). Fold changes (FC) were then computed

for every shRNA, and false discovery rates (FDR) were estimated using the Benjamini-Hochberg

method. A gene was defined as significantly differentially represented for a given treatment if at

least 50% or a minimum of 3 shRNAs were significant (FDR � 0.05); sensitisation was additionally

determined by applying a log2FC � �1.

Exploring genes associated to G4s in databases and biomedical
literature
Three different approaches were developed to uncover genes linked to G4s in the literature and

molecular biology databases. 18 high confidence G4-related genes were obtained by scanning for

genes in which the corresponding UniprotKB (The UniProt Consortium, 2017) entry is annotated

with the term ’quadruplex’ or genes annotated with at least one of the following 11 GO terms with

any evidence assertion method (Ashburner et al., 2000):
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GO id Name Type Link

GO:0051880 G-quadruplex
DNA binding

Molecular function https://www.ebi.ac.uk/
QuickGO/term/GO:0051880

GO:0002151 G-quadruplex
RNA binding

Molecular function https://www.ebi.ac.uk/
QuickGO/term/GO:0002151

GO:0061849 telomeric
G-quadruplex
DNA binding

Molecular function https://www.ebi.ac.uk/
QuickGO/term/GO:0061849

GO:0071919 G-quadruplex
DNA formation

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:0071919

GO:0044806 G-quadruplex
DNA unwinding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:0044806

GO:1905493 regulation of
G-quadruplex
DNA binding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:1905493

GO:1905494 negative
regulation
of
G-quadruplex
DNA binding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:1905494

GO:1905495 positive
regulation
of
G-quadruplex
DNA binding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:1905495

GO:1905465 regulation of
G-quadruplex
DNA unwinding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:1905465

GO:1905466 negative
regulation of
G-quadruplex
DNA unwinding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:1905466

GO:1905467 positive
regulation
of
G-quadruplex
DNA unwinding

Biological process https://www.ebi.ac.uk/
QuickGO/term/GO:1905467

Furthermore, 55 confirmed human G4-interacting proteins as defined by the G4IPB database

(Mishra et al., 2016) (http://bsbe.iiti.ac.in/bsbe/ipdb/index.php) were also used to determine pre-

defined G4-interacting proteins from the genome-wide shRNA screen. For this, gene entries were

removed where the only G4-relationship was a predicted G4-forming sequence in the mRNA or

DNA (i.e. not a direct protein interaction) or where the protein was not human. To extend the list of

G4-interacting proteins, text-mining using PolySearch2 (Liu et al., 2015b) was used. Human protein-

coding gene names and G4-terms and synonyms are defined using the corresponding MeSH term id

D054856 (https://www.ncbi.nlm.nih.gov/mesh/68054856) and the thesaurus of gene names obtained

from the PolySearch2 website (http://polysearch.cs.ualberta.ca/). A relevancy score measures the

strength of association between two text groups, and higher the score, the more likely terms from

the two groups co-occur within the same abstract; the score also accounts for the distance between

terms from the two groups. A total of 5477 pieces of text were identified in PubMed and PubMed

Central where any of the G4 terms co-occur with more than 500 human gene names. Overall, this

generated 526 G4-associated genes, with 54 (10%) uncovered as G4-sensitisers (https://github.com/

sblab-bioinformatics/GWscreen_G4sensitivity), which were manually edited to 16 genes as discussed

in the main text and figures.

KEGG pathway, gene ontology and protein domain enrichment analysis
The ClueGO v2.3.3 (Bindea et al., 2009; Bindea et al., 2013) plugin for Cytoscape (Shannon et al.,

2003) (v3.5.1) was used to determine networks of enriched KEGG pathways and Gene Ontology

terms (Biological Process and Molecular Function) for significantly depleted genes upon G4 ligand
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treatment. Specifically, a right-sided (Enrichment) test based on the hyper-geometric distribution

was performed on the corresponding Entrez gene IDs for each gene list and the Bonferroni adjust-

ment (p<0.05) was applied to correct for multiple hypothesis testing. Only experimental evidence

codes (EXP, IDA, IPI, IMP, IGI, IEP) were used. The Kappa-statistics score threshold was set to 0.4

and GO term fusion was used to diminish redundancy of terms shared by similar proteins. Other

parameters include: GO level intervals (3–8 genes) and Group Merge (50%). Protein domains were

investigated using DAVID (v6.8) to integrate GENE3D crystallographic data and PFAM sequence

information and enrichment was considered significant if the EASE score p<0.05 (Finn et al., 2016;

Yeats et al., 2006).

COSMIC analysis
Cancer mutation data (CosmicMutantExport.tsv) from the COSMIC database v82 (Forbes et al.,

2015) was used to investigate the association between G4 sensitisers and cancer genes. ~150,000

were mutations available in COSMIC for 702 (93%) sensitiser genes, with some predicted to be path-

ogenic by the FATHMM algorithm embedded within the COSMIC database. The Cancer Gene Cen-

sus (http://cancer.sanger.ac.uk/census) was used to investigate whether G4 sensitisers are enriched

in genes containing mutations causally implicated in cancer. Fisher’s exact tests as implemented in R

were used to calculate fold enrichment significance of sensitisers that are cancer genes in COSMIC

(compared to the percentage of protein-coding genes in COSMIC – 3.3%).

siRNA validation experiments – transfection, experimental outline,
immunoblotting
ON-TARGETplus siRNAs (Dharmacon/GE healthcare) were used as summarised in the table below.

Cells were transfected with either targeting or non-targeting control siRNAs using lipofectamine

RNAiMAX (Thermo Fisher Scientific, cat # 13778150) and OptiMEM reduced serum medium (Thermo

Fisher Scientific) according to the manufacturer’s protocol (reagent protocol 2013) alongside a non-

transfected control. 24 hr after transfection, cells were trypsinised, counted and re-plated in media

supplemented with PDS, PhenDC3 or DMSO vehicle control (minimum two biological replicates per

condition) in a 48-well plate format (seeding density - 8,000 cells per well A375; 4,000 cells per well

HT1080). Cell growth was monitored for 144 hr using IncuCyteZOOM live cell analysis (Sartorius)

and cell confluency calculated as a percentage of the well area covered. Scans were performed every

3 hr; nine scans per well. To monitor protein levels, cells transfected simultaneously with the same

siRNA-reagent mixture were harvested 48 hr and 144 hr after transfection, by cell scraping and lysed

on ice (30 min) with RIPA lysis buffer with protease inhibitor +EDTA (Thermo Fisher Scientific, cat #

8990). Lysates were analysed by capillary electrophoresis via the Protein Simple Wes platform

according to manufacturer’s protocol with antibodies summarised in the key resource table above.

Lysates from non-transfected and siRNA-treated (targeting and non-targeting) samples were probed

with antibodies against BRCA1 (Cell Signalling Technology, cat # 4970-CST), TOP1 (Abcam, cat #

AB109374), GAR1 (NovusBio cat #NBP2-31742) or DDX42 (Abcam cat #AB80975), plus anti-beta

actin antibody (mouse Merck cat # A5441; rabbit cat # 4970-CST) by multiplexing. For non-targeting

and targeting lysates, the area of the desired band was normalised to beta-actin and then normal-

ised to the protein level in the non-targeting sample, for three (48 hr after transfection lysates) or

two independent Wes runs (144 hr after transfection). Protein depletion is expressed as an average

of these normalised values. All lysates were used at a concentration of 0.8 mg/mL and antibody dilu-

tions as follows: BRCA1 1:50; TOP1 1:250; GAR1 1:100; DDX42 1:250; rabbit-actin 1:500; mouse-

actin 1:250.

siRNA Catalogue number Sequence 5’�3’

Non-targeting 2 D-001810-02-05 UGGUUUACAUGUUGUGUGA

BRCA1 (A375) J-003461–09 CAACAUGCCCACAGAUCAA

BRCA1 (HT1080) J-003461–12 GAAGGAGCUUUCAUCAUUUC

TOP1 (both cell lines) J-005278–08 CGAAGAAGGUAGUAGAGUC

DDX42 (both cell lines) J-012393–11 GGAGAUCGACUAACGGCAA

GAR1 (both cell lines) J-013386–06 UCCAGAACGUGUAGUCUUA
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G4 ligand and drug treatments
10 mM stocks in DMSO of PDS (in house synthesis), MK1775 (Cambridge Bioscience, cat#

CAY21266) and pimozide (Merck, cat# P1793-500MG) were used as for synergy experiment. Cells

were seeded in Corning, Tissue Culture-treated 96-well clear bottom plates (Thermofisher, cat#07-

200-587) for HT1080 (1000 cells per well) and A375 (1500 cells per well) cell lines. 24 hr after plating,

media was removed and cells were treated with different concentrations of PDS and MK1775 or

pimozide in media in a final volume of 150 mL, alongside non-treated and solvent-treated controls.

After 96 hr, cell death was determined via a CellTitre-Glo One Solution assay (Promega, cat #

G8461) according to manufacturer’s protocol using the PHERAstar FS (BMG labtech) to detect lumi-

nescence, using the recommended settings. Values were normalised to and expressed as a percent-

age of the untreated controls. This was performed for three biological replicas. Data were analysed

via Combenefit software using the BLISS independence model since the molecule have independent

targets (Di Veroli et al., 2016) to determine synergy. For the clonogenic cell survival assay, A375

(300 cells per well) and HT1080 (400 cells per well) were plated as single cells in 12-well plates. The

next day, cells were treated with DMSO or the indicated doses of PDS, pimozide and/or MK1775 in

media. After 8 days, colonies were fixed with 3% trichloroacetic acid (TCA) for 90 min at 4˚C, washed

with MiliQ, air dried and then stained with 0.057% (v/v) Sulforhodamine B solution (Merck, cat #

230162–5G) for 30 min at room temperature. Plates were then washed four times with 1% acetic

acid, air dried and colonies visualised using GelCount (Oxford Optronix). Colony growth was deter-

mined using the ‘colony intensity percentage’ parameter in the ColonyArea Image J plugin

(Guzmán et al., 2014), which considers both the intensity and percentage of area covered by the

colonies. Values were normalised to and expressed as a percentage of the untreated controls and

then further processed by Combenefit software, as described above, to determine synergy. A total

of three independent biological replicates were performed.

Sub-cellular localisation of DDX42
HT1080, HEK and HeLa cells were harvested from a 70% confluent 15 cm plate by cell scraping in

PBS on ice and pelleted by centrifugation (500 g, 5 min, 4˚C). Pellets were resuspended in three vol-

umes of low-salt buffer (20 mM HEPES pH7.4, 10 mM NaCl, 3 mM MgCl2, 0.2 mM EDTA, 1 mM

DTT) plus protease inhibitor (cOmplete mini, Roche cat#11836153001), lysed on ice (15 min) and

0.5% Igepal added. Samples were vortexed (1 min) and centrifuged (900 g, 15 min, 4˚C) and the

supernatant collected for cytoplasmic extracts. Nuclear pellets were washed in low-salt buffer, super-

natant discarded and then resuspended in high-salt buffer (20 mM HEPES pH7.4, 500 mM NaCl, 3

mM MgCl2, 0.5% Igepal, 0.2 mM EDTA, 1 mM DTT) plus protease inhibitors, followed by lysis on ice

with intermittent vortexing (30 min). Lysates were passed through a syringe needle to promote lysis

and shear genomic DNA and followed by centrifugation (13,000 g, 10 min, 4˚C). Lysis confirmed by

trypan blue staining according to manufacturer’s protocols (Thermofisher Scientific cat#15250061).

The supernatant was then collected as nuclear extract. Cytoplasmic and nuclear lysates were quanti-

fied on a Direct Detect platform (Merck) and DDX42 expression analysed by immunoblotting using

the Protein Simple Wes instrument as described above with a lysate concentration of 0.5 mg/mL.

Samples were also immunoblotted with antibodies against nuclear laminB1 (CST 12586; 1:250) and

cytoplasmic GAPDH to confirm subcellular fractionation efficiency (CST 5174, 1:50).

Oligonucleotide annealing
Biotinylated oligonucleotides for G4 and non-G4 forming sequences (IDT technologies; see Table

below) were annealed in 10 mM TrisHCl pH 7.4, 100 mM KCl by heating at 95˚C, 10 min followed by

slow cooling to room temperature overnight at a controlled rate of 0.2˚C/min. Annealed oligonu-

cleotides were stored at 4˚C for maximum 1 month.

Oligo Rna/DNA Sequence

NRAS G4 RNA 5’ [Btn] UGU GGG AGG GGC GGG UCU GGG UGC 3’

Continued on next page
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Continued

Oligo Rna/DNA Sequence

NRAS mut RNA 5’ [Btn] UGU AGA AAG AGC AGA UCU AGA UG 3’

Stem loop RNA 5’ [Btn] ACA GGG CUC CGC GAU GGC GGA GCC CAA 3’

Myc G4 DNA 5’ [Btn] TGA GGG T GGG TA GGG T GGG TAA 3’

Myc mut DNA 5’ [Btn] TGA GAG T GAG TA GAG T GAG TAA 3’

Enzyme-Linked immunosorbent assay
Recombinant human DDX42 with an N-terminal GST tag was purchased from NovusBio (cat#

H0001325-P01). Streptavidin-Coated High-Binding Capacity 96-well plates (ThermoScientific prod

#15501) were hydrated with PBS (30 min) and coated with 50 nM biotinylated oligonucleotides (1 hr,

shaking 450 rpm). Wells were washed three times with ELISA buffer (50 mM K2HPO4 pH 7.4 and 100

mM KCl/100 mM LiCl); 1 min shaking, 450 rpm. Wells were then blocked with 3% (w/v) BSA (Merck,

cat# A7030) in ELISA buffer for 1 hr, at room temperature and then incubated with serial dilutions of

DDX42 up to 200 nM for 1 hr. Wells were washed three times with 0.1% TWEEN-20 in ELISA buffer

and then incubated for 1 hr with anti-GST HRP-conjugated antibody (Abcam AB3416) diluted

1:10,000 in blocking buffer. Wells were again washed three times with ELISA-Tween, and the bound

anti-GST HRP detected with TMB substrate (Merck,cat#T4444) for 2 min. Reactions were stopped

with 2 M HCl. Absorbance at 450 nm was measured with PheraSTAR plate reader (BMG labtech).

Binding curves with standard error of the mean (SEM) were fitted using GraphPad Prism software,

using a non-linear regression fit, one site, specific binding model with saturation kinetics. The follow-

ing equation was used: y=(Bmax*x)/(Kd +x), where x = concentration of DDX42 (nM) and Bmax is the

maximum specific binding (i.e. saturation).

Circular dichroism spectroscopy
200 mL of 10 mM oligonucleotide were prepared in assay buffer and annealed as described above.

CD spectra were recorded on an Applied Photo-physics Chirascan CD spectropolarimeter using a 1

mm path length quartz cuvette. CD measurements were performed at 298 K over a range of 200–

320 nm using a response time of 0.5 s, 1 nm pitch and 0.5 nm bandwidth. The recorded spectra rep-

resent a smoothed average of three scans, zero-corrected at 320 nm (Molar ellipticity � is quoted in

105 deg cm2 dmol�1). The absorbance of the buffer was subtracted from the recorded spectra.
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Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558:465–469.
DOI: https://doi.org/10.1038/s41586-018-0209-9, PMID: 29899445

Cheung PK, Horhant D, Bandy LE, Zamiri M, Rabea SM, Karagiosov SK, Matloobi M, McArthur S, Harrigan PR,
Chabot B, Grierson DS. 2016. A parallel synthesis approach to the identification of novel Diheteroarylamide-
Based compounds blocking HIV replication: potential inhibitors of HIV-1 Pre-mRNA alternative splicing. Journal
of Medicinal Chemistry 59:1869–1879. DOI: https://doi.org/10.1021/acs.jmedchem.5b01357, PMID: 26878150

Coussens NP, Kales SC, Henderson MJ, Lee OW, Horiuchi KY, Wang Y, Hall MD. 2017. Small molecule inhibitors
of the human histone lysine methyltransferase NSD2 / WHSC1 / MMSET identified from a quantitative High-
Throughput screen with nucleosome substrate. bioRxiv. DOI: https://doi.org/10.1101/208439

Creacy SD, Routh ED, Iwamoto F, Nagamine Y, Akman SA, Vaughn JP. 2008. G4 resolvase 1 binds both DNA
and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-
DNA and G4-RNA resolving activity in HeLa cell lysates. Journal of Biological Chemistry 283:34626–34634.
DOI: https://doi.org/10.1074/jbc.M806277200, PMID: 18842585

Crozat A, Aman P, Mandahl N, Ron D. 1993. Fusion of CHOP to a novel RNA-binding protein in human myxoid
liposarcoma. Nature 363:640–644. DOI: https://doi.org/10.1038/363640a0, PMID: 8510758

Dai Z, Sheridan JM, Gearing LJ, Moore DL, Su S, Wormald S, Wilcox S, O’Connor L, Dickins RA, Blewitt ME,
Ritchie ME. 2014. edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens.
F1000Research 3:95. DOI: https://doi.org/10.12688/f1000research.3928.2, PMID: 24860646

Zyner et al. eLife 2019;8:e46793. DOI: https://doi.org/10.7554/eLife.46793 35 of 40

Tools and resources Biochemistry and Chemical Biology Chromosomes and Gene Expression

https://doi.org/10.1038/nsmb.2339
http://www.ncbi.nlm.nih.gov/pubmed/22751019
https://doi.org/10.1038/nchem.1548
http://www.ncbi.nlm.nih.gov/pubmed/23422559
https://doi.org/10.1371/journal.pone.0102711
https://doi.org/10.1371/journal.pone.0102711
http://www.ncbi.nlm.nih.gov/pubmed/25033211
https://doi.org/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447
https://doi.org/10.1093/bioinformatics/btt019
http://www.ncbi.nlm.nih.gov/pubmed/23325622
https://doi.org/10.1038/nrg3296
https://doi.org/10.3390/ijms151017493
http://www.ncbi.nlm.nih.gov/pubmed/25268620
https://doi.org/10.1038/nrc3560
http://www.ncbi.nlm.nih.gov/pubmed/23842644
https://doi.org/10.1038/nature03443
http://www.ncbi.nlm.nih.gov/pubmed/15829966
https://doi.org/10.1093/nar/gks068
http://www.ncbi.nlm.nih.gov/pubmed/22351747
https://doi.org/10.1093/nar/gkw1280
https://doi.org/10.1038/nrc3459
http://www.ncbi.nlm.nih.gov/pubmed/23550303
https://doi.org/10.1016/j.dnarep.2011.04.013
https://doi.org/10.1016/j.dnarep.2011.04.013
http://www.ncbi.nlm.nih.gov/pubmed/21561811
https://doi.org/10.1038/nbt.3295
http://www.ncbi.nlm.nih.gov/pubmed/26192317
https://doi.org/10.1038/nrd3374
http://www.ncbi.nlm.nih.gov/pubmed/21532565
https://doi.org/10.2174/156800911794519752
https://doi.org/10.2174/156800911794519752
http://www.ncbi.nlm.nih.gov/pubmed/21247388
https://doi.org/10.1016/j.chembiol.2011.08.014
https://doi.org/10.1016/j.chembiol.2011.08.014
http://www.ncbi.nlm.nih.gov/pubmed/22118673
https://doi.org/10.1038/s41586-018-0209-9
http://www.ncbi.nlm.nih.gov/pubmed/29899445
https://doi.org/10.1021/acs.jmedchem.5b01357
http://www.ncbi.nlm.nih.gov/pubmed/26878150
https://doi.org/10.1101/208439
https://doi.org/10.1074/jbc.M806277200
http://www.ncbi.nlm.nih.gov/pubmed/18842585
https://doi.org/10.1038/363640a0
http://www.ncbi.nlm.nih.gov/pubmed/8510758
https://doi.org/10.12688/f1000research.3928.2
http://www.ncbi.nlm.nih.gov/pubmed/24860646
https://doi.org/10.7554/eLife.46793


Damerla RR, Knickelbein KE, Strutt S, Liu FJ, Wang H, Opresko PL. 2012. Werner syndrome protein suppresses
the formation of large deletions during the replication of human telomeric sequences. Cell Cycle 11:3036–
3044. DOI: https://doi.org/10.4161/cc.21399, PMID: 22871734

De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D, Teulade-Fichou MP, Shin-Ya K, Lacroix L,
Lingner J, Mergny JL. 2007a. Reevaluation of telomerase inhibition by quadruplex ligands and their
mechanisms of action. PNAS 104:17347–17352. DOI: https://doi.org/10.1073/pnas.0707365104, PMID: 17954
919

De Cian A, Delemos E, Mergny JL, Teulade-Fichou MP, Monchaud D. 2007b. Highly efficient G-quadruplex
recognition by bisquinolinium compounds. Journal of the American Chemical Society 129:1856–1857.
DOI: https://doi.org/10.1021/ja067352b, PMID: 17260991

Demagny H, De Robertis EM. 2016. Point mutations in the tumor suppressor Smad4/DPC4 enhance its
phosphorylation by GSK3 and reversibly inactivate TGF-b signaling. Molecular & Cellular Oncology 3:e1025181.
DOI: https://doi.org/10.1080/23723556.2015.1025181, PMID: 27308538

Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI. 2016. Combenefit: an
interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32:2866–2868.
DOI: https://doi.org/10.1093/bioinformatics/btw230, PMID: 27153664

Dos Santos PC, Panero J, Stanganelli C, Palau Nagore V, Stella F, Bezares R, Slavutsky I. 2017. Dysregulation of
H/ACA ribonucleoprotein components in chronic lymphocytic leukemia. PLOS ONE 12:e0179883. DOI: https://
doi.org/10.1371/journal.pone.0179883, PMID: 28666010

Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. 2016. RNA splicing factors as oncoproteins and tumour
suppressors. Nature Reviews Cancer 16:413–430. DOI: https://doi.org/10.1038/nrc.2016.51, PMID: 27282250

Edelmann MJ, Nicholson B, Kessler BM. 2011. Pharmacological targets in the ubiquitin system offer new ways of
treating cancer, neurodegenerative disorders and infectious diseases. Expert Reviews in Molecular Medicine
13:e35. DOI: https://doi.org/10.1017/S1462399411002031, PMID: 22088887

Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights
C, Martin NM, Jackson SP, Smith GC, Ashworth A. 2005. Targeting the DNA repair defect in BRCA mutant
cells as a therapeutic strategy. Nature 434:917–921. DOI: https://doi.org/10.1038/nature03445, PMID: 1582
9967

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-
Vegas A, Salazar GA, Tate J, Bateman A. 2016. The pfam protein families database: towards a more
sustainable future. Nucleic Acids Research 44:D279–D285. DOI: https://doi.org/10.1093/nar/gkv1344,
PMID: 26673716

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok
CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ. 2015. COSMIC: exploring the world’s
knowledge of somatic mutations in human cancer. Nucleic Acids Research 43:D805–D811. DOI: https://doi.
org/10.1093/nar/gku1075, PMID: 25355519

Froimchuk E, Jang Y, Ge K. 2017. Histone H3 lysine 4 methyltransferase KMT2D. Gene 627:337–342.
DOI: https://doi.org/10.1016/j.gene.2017.06.056, PMID: 28669924

Gao C, Pang L, Ren C, Ma T. 2012. Decreased expression of Nedd4L correlates with poor prognosis in gastric
cancer patient. Medical Oncology 29:1733–1738. DOI: https://doi.org/10.1007/s12032-011-0061-3, PMID: 21
909941

Garcı́a-Santisteban I, Peters GJ, Giovannetti E, Rodrı́guez JA. 2013. USP1 deubiquitinase: cellular functions,
regulatory mechanisms and emerging potential as target in cancer therapy. Molecular Cancer 12:91.
DOI: https://doi.org/10.1186/1476-4598-12-91, PMID: 23937906

Giri B, Smaldino PJ, Thys RG, Creacy SD, Routh ED, Hantgan RR, Lattmann S, Nagamine Y, Akman SA, Vaughn
JP. 2011. G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA. Nucleic Acids Research 39:7161–
7178. DOI: https://doi.org/10.1093/nar/gkr234, PMID: 21586581
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