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Abstract

Anesthetic development has been a largely empirical process. Recently, we described a GABAergic mimetic model system
for anesthetic binding, based on apoferritin and an environment-sensitive fluorescent probe. Here, a competition assay
based on 1-aminoanthracene and apoferritin has been taken to a high throughput screening level, and validated using the
LOPAC1280 library of drug-like compounds. A raw hit rate of ,15% was reduced through the use of computational filters to
yield an overall hit rate of ,1%. These hits were validated using isothermal titration calorimetry. The success of this initial
screen and computational triage provides feasibility to undergo a large scale campaign to discover novel general
anesthetics.
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Introduction

General anesthetics are used so commonly today that it is

difficult to escape life without having been exposed to them.

Despite their widespread use, no new general anesthetics have

been developed for over 30 years; all current development seems

targeted at pharmacokinetics as opposed to pharmacodynamics.

But this is not because these drugs have been optimized in terms of

specificity and side effect profile. Indeed, there is growing concern

that general anesthetics, especially the volatile ones, are associated

with cognitive effects that long outlast their residence in the brain

[1]. Thus, a need exists for new general anesthetics with improved

safety and specificity.

Previous development of general anesthetic drugs has always

been empirical, or based on non-specific physicochemical

properties, such as hydrophobicity. This is a result of not having

validated protein targets, or not having high resolution structures

of even putative targets, such as the GABAA receptor [2]. We have

recently reported that a soluble protein, apoferritin, mimics the

pharmacodynamic behavior of general anesthetic targets, and

more specifically the GABAA receptor [3,4]. Further, this protein

is readily crystallized and x-ray diffraction data of the anesthetic

protein complex resolved to high resolution [5]. This apoferritin

site binds specifically a wide range of general anesthetics, including

those that are inhaled and those that are injectable, and excludes

the non-immobilizers [6]. Therefore, we reasoned that this site

might serve as a platform for the first protein-based anesthetic

screening effort.

Screening efforts require a robust assay to report on binding or

an activity change in the target. Since our previous work with

apoferritin did not identify significant changes in apoferritin

activity on occupancy of the anesthetic site, we sought an assay to

report on occupancy alone. Most such assays employ fluorescence

competition, whereby a fluorescent reporter molecule is displaced

by compounds that also bind the site. A suitable candidate was

identified, and the binding and fluorescence properties of 1-

aminoanthracene (1-AMA) have recently been reported [3].

Further, we have shown that known general anesthetics (e.g.,

isoflurane and propofol) inhibit 1-AMA fluorescence (binding)

with IC50 values that closely approximates their KD obtained

through an independent method (isothermal titration calorimetry)

[3]. In this communication, we report on the miniaturization of

this assay and its validation in high throughput screening mode

using the LOPAC1280 library of bioactive molecules.

Results

Assay Miniaturization
The previously-reported apoferritin-1-AMA binding assay was

miniaturized to 3 mL in 1,536-well plates. Baseline plate reads with

no added compound demonstrated robust signal and excellent

well-to-well uniformity in 1,536-well format (Figure 1). When 50%

saturated 1-AMA was complexed with 15 mM apoferritin, the

fluorescence increased 5.3-fold relative to free 1-AMA and the

associated Z’ factor [7] exceeded 0.85 (Figure 1). This result was

reproduced with two lots of horse-spleen apoferritin and upon

repeated testing. Robust signal was maintained when the

apoferritin concentration was lowered to 8 mM, in order to lower

the protein consumption. Figure 2 also demonstrates that the assay

reagents, as formulated at their screening concentrations, were

stable for over 24 hours: both the Z’ factor and the signal-to-

background ratio remained flat for the duration of the stability test.
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This excellent overnight stability coupled with robust assay

performance in 1,536-well plate format indicates that the assay

can be screened in an automated and unattended fashion.

Quantitative High Throughput Screening (qHTS) of
LOPAC1280 Library

The LOPAC1280 library was screened in qHTS mode [8] using

the above described 1-AMA/apoferritin assay, with library

compounds tested at seven concentrations in the range of

77 mM to 25 nM. The assay performance remained robust over

the course of the screen, with high Z’ factor maintained

throughout (Figure 3). Detailed results are provided in PubChem

(PubChem AID to be provided upon manuscript acceptance).

Figure 4 shows the cumulative library response in both 3D and pie

format, representing the activity distribution of compounds.

Concentration response curves (CRCs) were categorized into

three groups: inactive, active, inconclusive based on the quality of

the CRC and the maximum response of the compound. First,

inactive compounds have a maximum response of less than 3

sigma of the assay (10% inhibition for the LOPAC1280 screen).

The qHTS yielded 910 compounds classified as inactive.

Additionally, 142 of the compounds displayed a signal increase

in the assay. These potential ‘activators’ were considered artifacts

and were also categorized as inactives. Among the compounds that

produced a signal decrease, CRCs with a partial or full response

and a maximum response greater than 60% inhibition were

categorized as active (5 compounds). An additional 201 com-

pounds had weaker inhibitory response, where the CRC r2 was

less than 0.9 (noisy curves) or where the maximum response was

less than 6 sigma. These less reliable responses were nevertheless

Figure 1. Assay Miniaturization to 1,536-well format. Plate image (above) is shown with quantitation (below). Columns 1,2,5–48 are 15 mM
ApoF + 1-AMA, column 3,4 are free 1-AMA. 3 mL total volume, 15 min. incubation prior to fluorescence read. Top = raw ViewLux CCD image; bottom
= RFU data from CCD image demonstrating consistency. The Z’ factor and signal-to-background calculated from the first 128 wells of data (left four
columns) were 0.87 and 5.3, respectively.
doi:10.1371/journal.pone.0007150.g001
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carried through the next steps of triaging together with the 5

actives. Finally, a small set of compounds (22) had curves that were

unclassified. These were noisy responses that showed some signal

change only at the highest concentration tested and were thus

considered to be inactive (listed as inconclusive in the pie chart of

Figure 4).

Filtering of Screening Hits
Most of the 206 inhibitors yielded incomplete CRCs. Physico-

chemical filtering of the 206 compounds eliminated all but 21

compounds. It is assumed that qHTS signal inhibition in the

eliminated compounds was largely the result of inner-filter or

aggregation effects. Finally, compounds that were classified as

‘‘inhibitors’’ based only on a single point of activity were

eliminated (2/21 compounds) to yield a final list of 19 active

compounds.

ITC
Eighteen of the 19 compounds could be obtained from the

primary suppliers for the low-throughput validation study. Of the

18 compounds, 11 yielded unambiguous evidence of a classic

exothermic binding interaction (see Figure 5A for an example),

and two provided endothermic relationships. Of the five giving

ambiguous data, or no heat signal at all (see Figure 5B for an

example), low compound solubility appears to be the dominant

reason. Figure 6 gives a list and structure of all the obtained

Figure 3. Robustness of screening assay: Z’ factor during the
experiment averaged 0.89.
doi:10.1371/journal.pone.0007150.g003

Figure 2. Assay stability. Bottles with free 1-AMA or complex were stored at 4uC, connected to a liquid dispenser at shown time points, and the
assay performed as described above. Fluorescence intensity, signal-to-background ratios (S:B) and Z’ factor were computed from 64 column 1,2 wells
(complex) and 64 column 3,4 wells (free 1-AMA).
doi:10.1371/journal.pone.0007150.g002

Figure 4. Cumulative results of the screen. Compounds are
grouped according to inhibitor (blue), activator (red), inactive (dark
grey) and inconclusive (light grey) categories.
doi:10.1371/journal.pone.0007150.g004
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compounds, their physical parameters, and the results from both

qHTS and ITC. Considerable noise exists in the relationship

between the IC50 calculated from qHTS data and the KD

calculated from the enthalpograms (Figure 7), presumably because

the high protein (8 mM) and probe (15 mM) concentrations, and

limitations to compound solubility, produce incomplete curves in

the qHTS experiment. Nevertheless, the relationship between

qHTS and ITC measures of affinity is significant, and does not

deviate significantly from the line of identity.

Discussion

Despite decades of study, the mechanism of anesthetic action

has not emerged, and as a result, design of new anesthetic drugs

has been reduced to empiricism. There is general agreement,

however, that direct interactions with protein underlie the

desirable effects of anesthetics, lending hope that novel compounds

can be found. The problem has been the lack of validated,

structurally accessible targets on which to focus. The GABAA

receptor/ion channel, for example, is thought by many investiga-

tors to be an important anesthetic target [9], yet only homology

models based on a low resolution cryoEM structure of the

nicotinic acetylcholine receptor are available [10]. Further, there is

only a general idea of where the anesthetic site on this large

heteroligomer resides [2,11]. Thus, a surrogate approach, based

on another protein that displays pharmacodynamic mimicry [4,5],

was employed here. The assay method is based on a fluorophore

that binds the anesthetic cavity on apoferritin, shows a large

increase in fluorescence on binding, and is a general, GABAergic

anesthetic itself [3].

The number of raw hits obtained in this screen is large, but the

filtering based on known cavity characteristics [4,5], shows that

most are due to interactions other than competitive binding at the

anesthetic site. These interactions include fluorescence interfer-

ence and aggregation, although the latter is expected to enhance

signal rather than reduce because of partitioning of 1-AMA into

the compound micelle; indeed, we observed 142 such compounds

in the screen. Fluorescence interference will primarily be due to

inner-filter effect, whereby the compound absorbs the excitation or

emission wavelengths of 1-AMA. For example, compounds S-1693

and S-3066 were classified as inhibitors by qHTS, each producing

,30% inhibition at maximal concentrations (77 mM), but ITC

failed to provide convincing evidence of binding. This is likely due

to considerable absorbance at the excitation wavelength (340 nm).

Future assays will take advantage of the broad absorbance band of

1-AMA, and red-shift the excitation wavelength closer to 400 nm.

This should also have the advantage of better signal to noise ratios,

permitting decreased reagent consumption.

The simple filters used here take advantage of the fact that

apoferritin has a high (1.7 Å) resolution structure, the general

anesthetic binding site has been identified, and it is an enclosed

cavity, rather than a surface patch [5]. Thus, there are defined

limitations on the size and physiochemical character of compounds

which can be accommodated in this site. Further, because of the

stability of the apoferritin oligomer, this site is unlikely to undergo

significant ‘‘induced fit’’. We chose filter parameters broad enough

to capture novel compounds, but exclude those clearly outside the

range that could be accommodated by the apoferritin site. We

recognize that our filtering process is essentially a partial return to

empiricism, but we note that it retains the important element of

targeted protein binding. That the protein site is providing the

dominant selectivity, as opposed to the filters, is illustrated by the

fact that these filters alone select 176 of 910 inactive LOPAC

compounds. Figure 8 shows that while there is the expected

difference in mean hydrophobicity between screened inactive and

inhibitors, the overlap is large. This suggests that the 3 dimensional

interactions of compound atoms with those of the cavity lining, (e.g.,

the pharmacophore) have the largest influence on binding.

Figure 5. Typical ITC enthalpograms. LOPAC compound T-8543 shows clear exothermic binding behavior (A), while S-3066 does not (B).
doi:10.1371/journal.pone.0007150.g005
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Inspection of the final, validated hits reveals no obvious

pharmacophore, chemical group, or structural feature to explain

binding. Final compounds range in size between 168 and 250

MW, have one to three rings, and a variety of bulky, generally

hydrophobic constituents. But several have charged or polar

groups, no doubt to aid solubility. It is important to realize that the

LOPAC set already have validated drug activities and many are

clinically used for this purpose. Only one general anesthetic is

included in LOPAC, propofol, and it was successfully identified in

this screen. Since general anesthesia is an important side effect that

would be selected against in the development of other drugs, we

did not predict many useful hits in this feasibility screen.

Nevertheless, several candidate compounds were identified for

further testing using receptor or in vivo assays. It is interesting to

note that several compounds have documented activities shared by

some of the existing general anesthetics: inhibition of glutamate,

adrenergic and dopamine receptors, nitric oxide synthase,

monoamine oxidase and various kinases and phosphatases [12].

It is possible that something like general anesthesia is elicited at

concentrations of these compounds higher than needed to produce

their current primary effects.

We validated the final list using isothermal titration calorimetry,

an entirely different and low throughput methodology, to detect

and characterize favorable interactions between two reactants (in

this case, LOPAC compound and apoferritin). Most compounds

showed unambiguous evidence of a favorable interaction, but

several did not. We found that the majority of ITC-negative

compounds were the least soluble, meaning that our saturated

solution did not contain adequate concentrations of compound to

achieve enough occupancy in the apoferritin site to permit

Figure 6. Final compound characteristics and binding summary. Shown are the eighteen compounds, their stick structures and chemical
names. The qHTS IC50 is computed directly from the 1-AMA inhibition data, in molar units, fixing the infinite value to 270%. The ITC KD is derived
from single class fits to enthalpograms (n = 1), and is in molar units (NB = no binding). The ITC [compound] column represents the molar
concentration of compound achieved after mixing and filtration prior to loading into ITC syringe. Target concentration was 1 mM in each case, but
clearly not achieved in all. Compound concentrations were measured with UV absorbance.
doi:10.1371/journal.pone.0007150.g006
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detection at the high-protein ITC conditions. Worse, the ITC

experiment only achieves a compound concentration of about

17% of the saturated concentration in the syringe (see Figure 6).

Furthermore, the DMSO included in the qHTS assay may have

increased compound concentration to the point where 1-AMA

displacement could be observed. Such co-solvents are typically not

included in ITC experiments because of extreme dilution heats if

the buffers are not precisely matched. Further prosecution of such

compounds is not warranted as very hydrophobic compounds tend

to be poor anesthetics [6], a phenomenon generically related to the

cut-off effect [13]. At the same time, more soluble compounds tend

to be low affinity anesthetics, thus expanding the screen to increase

compound concentrations (by delivering double the amount of

compound via two successive pin transfers) is not considered a

productive strategy.

In summary, we have developed and tested the feasibility of a

quantitative high throughput assay of a general anesthetic protein

binding site. This initial screen of the LOPAC1280 library of

compounds demonstrates that the 1-AMA/apoferritin assay can

be used in miniaturized high-throughput screening mode, and sets

the stage for screens of large-size compound libraries. A high rate

of false positives can be addressed through simple filters to achieve

an overall hit rate of about 1% of a validated drug library.

Refinements in screening methodology and post-screening triaging

is expected to further limit the yield of false positives.

Methods

Materials
1-AMA and horse spleen apoferritin were obtained from Sigma

and used without further purification. Dimethyl sulfoxide (DMSO,

certified ACS grade) was from Fisher, Inc. The Library of

Pharmacologically Active Compounds (LOPAC1280, Sigma-

Aldrich) was received as a set of 10 mM DMSO solutions and

formatted in 1,536-well compound plates as a dilution series [7].

Preliminary studies showed only a modest reduction in 1-AMA/

apoferritin signal intensity (,10%) at the maximal expected

DMSO concentration of 1%. Medium binding black solid-bottom

1,536-well plates (assay plates), and 1,536-well polypropylene

plates (compound plates) were purchased from Greiner Bio One

(Monroe, NC).

Screening
Three mL of reagents (free 1-AMA (50% saturated solution of 1-

aminoanthracene in PBS) in columns 3,4 as negative control and

1-AMA/apoferritin mixture (10 mM apoferritin in 50% saturated

1-aminoanthracene in PBS (,15 mM)) in columns 1, 2, 5–48) were

dispensed into 1,536-well Greiner black assay plates. Compounds

(23 nL) were transferred via Kalypsys pintool equipped with

1,536-pin array (10 nL slotted pins, V&P Scientific, San Diego,

CA). The plates were incubated for 10 min at room temperature,

and then read on a ViewLux high-throughput CCD imager

(Perkin-Elmer, Waltham, MA) using standard UV excitation filter

(340 nm, bandwidth 60 nm) and fluorescein emission filter

(540 nm, bandwidth 25 nm). Throughout the screen, reagent

bottles and all liquid lines were made light-tight to minimize

reagent degradation. Activity was computed as the normalized

fluorescence response relative to free 1-AMA and 1-AMA/

apoferritin complex values. Concentration–effect relationships

were derived by using publicly-available curve-fitting algorithms

developed in-house (http://ncgc.nih.gov/pub/openhts/). A four

parameter Hill equation was fitted to the concentration-response

data by minimizing the residual error between the modeled and

observed responses. Compounds were classified as either active

inhibitor, active activator, inconclusive or inactive as described in

the results.

Data filtering
Compounds showing enhancement of signal intensity are

assumed to represent either fluorescence interference or aggrega-

tion phenomena. Thus, for this assay, hits were defined as only

those that showed inhibition of signal intensity, comprising

complete or partial concentration response curves (CRCs). These

hits were then further truncated through the use of two

Figure 7. Relationship between qHTS IC50 and ITC KD. Shown are
13 compounds for which ITC experiments provided reliable parameters,
together with the fit (solid line, R2 = 0.4; P = 0.02) and the line of identity
(dotted).
doi:10.1371/journal.pone.0007150.g007

Figure 8. Filter performance. Applying screening criteria to both the
inhibitor and inactive groups recovered 21/206 and 157/910 com-
pounds respectively. In each of these filtered groups, the mean and
range for molecular weight, polar surface area (PSA) and octanol/water
partition coefficient (ALogP) are shown. While the inhibitor compounds
are significantly more hydrophobic, as suggested by the higher mean
ALogP (**, P,0.005), the overlap is large and illustrates that the filters
alone provide insufficient discrimination.
doi:10.1371/journal.pone.0007150.g008
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computational filters. Because the character of this deep pocket,

with respect to size and physicochemical character, is well known

[5], we eliminated any compounds larger than 250 Da, and any

with ALogP values outside the range of 1–4. Clinically used

general anesthetics are all consistent with these filters.

Isothermal Titration Calorimetry (ITC)
The filtered compound list was then subjected to a secondary

validation using a direct binding technology, isothermal titration

calorimetry (ITC) (MicroCal VP-ITC, Northampton, MA).

Compounds were obtained directly from Sigma, Altan, Tocris or

Acros, and ,1 mM solutions were prepared in a phosphate

buffered saline (PBS). This was accomplished through vigorous

shaking and sonication of the solution, followed by filtration

through 0.2 mm PTFE syringe filters. Concentrations were then

confirmed with absorption spectroscopy. Several compounds were

found to be far less soluble in aqueous buffer than 1 mM, limiting

the ability of ITC to determine binding (see below). The ITC cell

was loaded with 2.5 mg/ml apoferritin, and the syringe loaded

with the compound solution. Titrations were conducted at 20uC,

subtracted by buffer to buffer and compound to buffer runs, and

the enthalpograms fitted to a single class binding site model using

Origin 7.0. Each compound was run in duplicate.
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