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ABSTRACT

Knowledge of interaction network between different proteins can be a useful tool 
in cancer therapy. To develop new therapeutic treatments, understanding how these 
proteins contribute to dysregulated cellular pathways is an important task. PARP1 
inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. 
It is crucial to find new candidate interactors of PARP1 as new therapeutic targets 
in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. 
By a yeast-based genome wide screening, we previously discovered 90 candidate 
deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in 
yeast. Here, we performed an integrated and computational analysis to deeply study 
these genes. First, we identified which pathways these genes are involved in and 
putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern 
and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, 
we evaluated expression and alteration in several cancers with cBioPortal, and the 
interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-
related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 
breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 
protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation 
of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells.

Our study identified candidate genes that could have an effect on PARP inhibition 
therapy. Moreover, we also confirm that yeast-based screenings could be very helpful 
to identify novel potential therapy factors.

INTRODUCTION

Gene network analysis may reveal protein’s 
interaction with functional and therapeutic significance 
that could lead to development of new therapeutic 
treatment with higher clinical utility. Moreover, 
integration data analysis could be a useful tool to improve 
efficiency of drugs when resistance develops, because it 
gives the opportunity to have more targets to treat with a 
combination approach and reduce frequency of resistance.

Here, we focused on the poly (ADP-ribose) 
polymerase 1 (PARP1) gene and its interaction network, 
because PARP1 inhibition is widely used in cancer 
therapy. Knowledge of its interactions could not only 
help to discover new applications of these inhibitors in 
different cancers with specific dysregulated pathways 
related to PARP1. PARP1 encodes for a nuclear protein 
that attaches a poly(ADP-ribose) polymer (PAR) to itself 
and other target proteins dealing with DNA repair and 
related pathways; PARylation is necessary to activate 
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DNA repair and to bring proteins to the sites of damage 
and is reported to be stimulated in presence of DNA 
damage [1, 2]. Generation of PAR following stresses is an 
extremely rapid process; however, PAR is also catabolized 
rapidly by proteins that promote PAR degradation [3–5]. 
The prompt turnover of PAR is crucial for efficient DNA 
repair. Defects in PAR catabolism result in DNA damage 
that is deleterious to cells [6, 7]. Considering that cells are 
continuously exposed to various types of DNA-damage 
agents, DNA repair mechanisms must be robust and 
almost free of errors to ensure cell survival [8].

Repair of DNA single strand breaks (SSB) is the 
main role of PARP1; this kind of damage is repaired 
through different mechanisms such as base excision repair 
(BER) and nucleotide excision repair (NER). PARP1 has 
been reported to be involved in all these DNA repair 
pathways [9]. PARP1 is also involved in repair of DNA 
double strand breaks (DSB) that are the most severe type 
of DNA damage and must be repaired by mechanisms free 
of errors to preserve DNA sequence integrity. PARP1 has 
been shown to recognize DNA DSBs and recruits factors to 
facilitate DSB repair either by homologous recombination 
(HR) or non-homologous end joining (NHEJ) [10, 11]. 
In addition, PARP1 has a role in other cellular pathways 
like DNA replication, chromatin structure modification 
and cell cycle control. In particular, PARP1 seems to have 
a role in stabilization and restart of arrested replication 
fork, and can facilitate nucleosome disassembly by histone 
PARylation resulting in chromatin relaxation [12–17]. 
Moreover, by remaining stably associated with certain 
promoters, PARP1 can also activates genes involved in 
transcription restart after completion of mitosis [18].

Inhibition of PARP1 in cancer therapy is a strategy 
used in those types of cancers where DNA repair is 
defective causing an effect called “synthetic lethality”. By 
definition, a synthetic lethal interaction occurs between 
two genes when the perturbation of either gene alone is 
viable but the perturbation of both genes simultaneously 
results in cell death [19]. Thus, PARP1 inhibitors are 
mainly used in breast and ovary tumors carrying defects in 
the homologous recombination gene BRCA1 or BRCA2, in 
combination with DNA damaging agents such as cisplatin 
or topoisomerase-1 inhibitors [20]. So far, olaparib, 
rucaparib and niraparib have been approved by the US 
Food and Drug Administration (FDA) [21, 22]. These 
inhibitors bind the catalytic domain of PARP1 leading to 
a reduction of PARylation and, therefore, to a defect in 
DNA repair [23, 24]. Moreover, some evidence suggests 
that PARP1 inhibitors also cause formation of PARP1-
DNA complexes with increased cytotoxicity and cell death 
[25]. However, some patients develop resistance to PARP1 
inhibitors, leading to treatment failure [26]. Resistance to 
PARP1 inhibitors is one big issue that needs to be solved to 
increase efficiency of drugs and chance of patient survival 
[27]. There are three principal mechanisms of resistance: 
restoration of BRCA1/2 function through “reverse” 

mutations, partial restoration of HR through somatic loss 
of 53BP1, a NHEJ factor that when deleted, promotes 
damaged DNA ends to produce ssDNA ends competent for 
HR, and upregulation of multidrug efflux transporters such 
as P-glycoprotein (Pgp) resulting in a higher rate of drug 
efflux [28–30]. In order to overcome this limitation, it is 
of pivotal importance to identify proteins that modulate 
PARP1 activity that could be new target to increase 
efficiency of PARP inhibitors or to generate new drugs 
that could be used in combination with already existing 
ones. This combinational approach with PARP1 inhibitors 
has been already used with success in specific cancers and 
several clinical trials are ongoing [20]. For this reason, 
the identification of predictive biomarkers and the ability 
to overcome PARP1 inhibitor resistance will be crucial 
to enable further optimization of PARP1 inhibitors for 
cancer therapy; moreover, understanding PARP1 relation 
network could expand utility of PARP1 inhibitors also to 
other cancers where these interactors or related pathways 
are altered.

Recently, through a genome-wide genetic screening 
in the yeast Saccharomyces cerevisiae, we have identified 
90 candidate genes potentially affecting PARP1 activity; 
in particular, when these genes are deleted in yeast, PARP1 
cannot perform its activity and yeast cells are able to grow 
[31]. Here, we performed an integrating computational 
analysis of these candidate genes by interrogating several 
databases. Then, we carried out functional validation 
and we identified three genes that could have a role in 
PARP1 activity and could be considered new promising 
therapeutic targets.

RESULTS

Previously, we reported that expression of PARP1 
is lethal in yeast. We have also demonstrated that PARP1-
induced lethality is due to PARP1 activity [31]. Moreover, 
we have identified PARP1 putative new “functional 
interactors” that potentially could either directly interact 
with PARP1 or just be involved in related pathways and 
modulate PARP1 function. We found 90 gene deletions 
able to suppress the PARP1-induced lethality in yeast; this 
indicates that these genes are somehow involved in PARP1 
activity [31]. For the sake of clarity and completeness, the 
list of these genes was reported and shown in Table 1. 
We thought it could be interesting to study more in depth 
these interactors, in order to find candidate proteins that 
could modulate PARP1 activity and to assess if these new 
putative interactions could be exploited to develop new 
therapeutic treatments.

Most genes belong to cellular metabolism, RNA 
processing and chromatin remodeling pathways

To gain more information about these genes/proteins, 
we performed a computational integration analysis by 
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interrogating several databases to see whether these 
genes are mutated or differentially expressed in cancers. 
First, we manually divided these genes into cellular 
pathways where they are involved; from metabolism to 
epigenetic control: the total number of genes belonging 
to each pathway is shown in Figure 1A. As much as 
37% of genes (33/90) belong to cellular metabolism and 
sugar transport. Defects in this type of pathways may 
cause energy metabolism reprogramming that leads to 
modification in NAD+ biochemistry and, finally, affects 
PARP1 activity. Nevertheless, these genes can be also 
considered as a positive control of our yeast assay because 
alterations in galactose uptake and metabolism could just 
led to defect in PARP1 promoter induction. Moreover, 13% 
(12/90) and 11% (10/90) of the genes belong to mRNA 
processing/transport and chromatin assembly, respectively 
(Table 1, Figure 1A); this again confirms the reliability 
of our assay, since it is known that PARP1 is involved 
in these mechanisms [32, 33]. Out of 90 genes, 7 belong 
to ubiquitination and cell proliferation pathway, and 4 to 
ribosome biogenesis (Table 1, Figure 1A); 2 genes belong 
to MAPK and chromosome segregation pathway (Table 
1, Figure 1A) that are related to PARP activity [34–37]. 

Finally, 6 out of 90 genes are part of the phospholipids 
biosynthesis pathway (Table 1, Figure 1A).

Identified genes are reported to be mutated in 
cancer

Next, we looked for the type of mutations and 
which mutations are more frequent, and in which type of 
tumors these genes are more likely mutated. To investigate 
whether these genes have been reported to be mutated in 
different types of cancer, we have queried the COSMIC 
database; total number of somatic mutations is shown 
in Figure 1B. A total of 8,297 mutations belonging to 
all 90 genes are reported; missense mutations represent 
the 86% of total mutations. As expected, mutations such 
as: in frame insertion/deletion and complex type are less 
frequent than the other types (Figure 1B).

Then, we analyzed how those mutations are 
distributed in different cancers. As PARP1 inhibitors are 
used in clinical therapy of breast, ovarian and prostate 
cancer, and clinical trials are ongoing to analyze their 
efficacy in melanoma, colorectal, pancreatic and gastric 
cancer [38–41], we analyzed how somatic mutations of our 

Table 1: Genes identified with the yeast genome wide screening, and related pathways

Gene Name Total number of 
genes

Related Pathway

CRNKL1, PAN2, RPUSD1, SART1, SNRPC, WBP11, 
ZCCHC7, ZFP36, ZFP36L1, ZFP36L2, NUP210, RRN3 12 mRNA processing and transport

GALK1, GALK2, GCK, HK1, HK2, HK3, HKDC1, ALG6, 
LDHD, MOGS, PSAT1, NADK, ENTPD5, ENTPD6, 
PIKFYVE, WDR85

16 Cellular metabolism

SLC2A6, SLC2A8, SLC30A1, SLC30A10, SLC30A2, 
SLC30A3, SLC30A4, SLC30A8, SLC35B4, SLC44A1, 
SLC44A2, SLC44A3, SLC44A4, SLC44A5, SLC7A13, 
SLC7A14, SLC7A4

17 Aminoacids and Sugar Transport

H1F0, H1FNT, H1FX, HIST1H1T, NCOR1, NCOR2, 
RCOR1, RCOR2, RCOR3, PRMT5 10 Chromatin Assembly

RAP1A, RAP1B, RAP2A, RAP2B, RAP2C, ZFYVE21, 
ZFYVE28 7 Cell proliferation and adhesion

INCENP, ZNF207 2 Chromosome segregation

HECTD2, HERC3, HERC4, HERC5, HERC6, UBE3A, 
YOD1 7 Ubiquitination and ubiquitin-

related pathway

AGPAT3, AGPAT4, AGPAT5, AGPS, LCLAT1, TALDO1, 6 Phospholipids biosynthesis

RIT1, RIT2 2 MAPK pathway

REXO1, REXO1L1, REXO1L10P, REXO1L11P 4 Ribosome biogenesis

ARGLU1, HTATSF1, LENG8, SH3YL1, TCP11, TCP11L1, 
TCP11L2 7 Other Pathways

List of the genes is taken from La Ferla et al., 2015 [31]. Genes are grouped in pathways where they belong.
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Figure 1: The genes identified by the yeast-based screening belong to several cellular pathways and are mutated in 
different kinds of cancer.  (A) “Cellular metabolism” and “amino-acid and sugar transportation” are the pathways where most genes 
belong. “mRNA processing and transport” and “Chromatin assembly” are pathways where PARP1 is deeply involved. Also, pathways such 
as “Chromosome segregation” and “MAPK” are related to PARP1. (B) Total mutations are retrieved from COSMIC. Data are grouped for 
type of mutation. The number of mutations is reported at the top of any histogram. (C) Number of mutations found in different cancers 
(from COSMIC) where PARP1 inhibition is currently used in therapy (breast, ovarian and prostate cancer) or where clinical trials are 
ongoing (intestine, lung, pancreas, melanoma and gastric cancer). Missense and nonsense mutations are shown for each kind of cancer. 
The number of nonsense and missense mutations of all the genes is reported for any kind of cancer. (D) all the genes are reported to carry 
somatic mutations in Cancer (COSMIC). Total number of somatic mutations for each gene is indicated. Genes are divided between probable 
“oncogene” and probable “tumor suppressor” applying 20/20 rule [44].
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candidate genes are distributed among these cancers (Figure 
1C). These genes are reported to be mostly mutated in large 
intestine, lung, skin and stomach cancer (Figure 1C).

The distribution and the number of somatic 
mutations among candidate genes is very variable and 
ranges from just one single mutation (REXO1L11P) to 
362 mutations (NCOR1) (Figure 1D). The chromatin 
remodeling complex genes NCOR1 and NCOR2 are the 
most frequently mutated genes; a high level of somatic 
mutations was also found for NUP210, a glycoprotein 
member of the nuclear pore membrane and PIKFYVE an 
enzyme involved in inositol phosphate metabolism which 
is required for endocytic-vacuolar pathway and nuclear 
migration [42, 43]. Applying the 20/20 rule [44], we were 
able to classify our genes in probable tumor-suppressors or 
oncogenes (Figure 1D, Supplementary Table 1).

12 genes out of 90 are associated to cancer

In order to understand the involvement of these 
genes in neoplastic occurrence, we interrogated the 
DisGeNET database and we identified 12 genes associated 
to neoplasms. All results were filtered for DisGeNET 
Score value greater than 0.2 (Table 2). More information 
about these genes, such as: gene alterations and related 
publications, retrieved from DisGeNET, can be found in 
the Supplementary Table 2. These 12 genes have been 
deeper analyzed with g:Profiler in order to find more 
specific interaction with PARP1 (Supplementary Table 
3). As shown in Table 2, genes identified by this analysis 
belong to the following cellular pathways: chromatin 
remodeling (H1F0, NCOR1 and RCOR1), cell division 
(INCENP), mRNA processing (ZFP36, ZFP36L2), 
ribosome biogenesis (REXO1), MAPK pathway (RIT1) 
and serine biosynthesis (PSAT1). Moreover, this enriched 
functional analysis showed a statistically significant 
interaction of PARP1 with these genes in several cellular 
processes/components (Supplementary Table 3).

In addition, to query for drug-gene interactions, we 
interrogated DGIdb, and we found that 2 gene products 
have drugs acting among pathways where they are 
involved (Table 3): notably, selumetinib is already reported 
that to have a higher effect when used in combination 
with PARP inhibitors [45]. Therefore, this suggests that 
modulating the activity of these gene products it could 
improve efficacy of PARP1 inhibitors.

cBioPortal analysis identified interactions at 
different levels in cancers

We analyzed the 12 DisGeNET-identified genes 
in selected human cancers with cBioPortal in order to 
identify any correlation between gene expression and 
PARP1 in selected human cancers. Any kind of interaction, 
between these genes and PARP1 could suggest an impact 
also in PARP1 activity. Based on DisGeNET results, we 

performed this analysis in 8 different cancer data for a 
total of 2,466 samples and 2,176 patients as showed in 
Table 4. In these cancer data sets, these genes are altered in 
30–55% of samples/patients (Table 4). We first performed 
a co-occurrence /mutually exclusivity analysis in order to 
see if alterations such as; gene amplification, deletion or 
mutation in PARP1, statistically co-occur or are mutually 
exclusive with the same kind of alterations in the candidate 
genes. Results of this analysis are showed in Figure 
2A. In all cancer samples there is association between 
PARP1 alteration, and, at least, one gene; in all the cases 
this association is a co-occurrence of amplification; 
this co-occurrence is particularly frequent for RIT1 that 
was found to be amplified in 6 out of 8 cancer types, 
suggesting a genetic interaction between their pathways 
and a possible common de-regulation in cancer (Figure 
2A). Interestingly, in the case of neuroendocrine prostate 
cancer, alteration in all the genes with the exception of 
NCOR1, showed a statistically significant co-occurrence 
with PARP1.

Next, we performed a co-expression analysis 
to address whether PARP1 expression is correlated to 
expression of candidate genes in different cancers. These 
data are expressed as Pearson correlation coefficient 
(p) and are shown in Figure 2B. Interestingly, 9 out of 
12 genes showed a medium expression correlation with 
PARP1 in prostate cancer; INCENP showed the highest 
correlation (p > 0.6). Moreover, INCENP revealed a 
medium correlation with PARP1 also in breast, liver, 
ovarian and stomach cancer (Figure 2B). All the data and 
coefficient values are present in Supplementary Table 4.

GeneMANIA interaction network

Results obtained with DisGeNET were supported 
by GeneMANIA database. We confirmed some of the 
previous predicted interaction identifying co-expression of 
PARP1 with H1F0 and PSAT1. Moreover, we identified 
a physical interaction between TALDO1 and PSAT1 
(Figure 2C. left). We then analyzed the interaction network 
between PARP1 and RIT1 or INCENP by enlarging the 
network also to identify new interactors. No additional 
INCENP interactor was found; interestingly, results 
obtained for RIT1 strengthened interaction to PARP1, 
since NTRK1 has been identified as a common member 
in their network (Figure 2C, right).

Expression atlas analysis identifies specific 
differential expression

To validate the data from this computational 
analysis, we decided first to check the mRNA expression 
level of RIT1, INCENP and PSAT1 the “EMBL-EBI 
expression atlas” database. We selected hormone receptors 
positive (+) and triple negative breast cancer cell lines 
(Figure 3A), and high grade ovarian serous and ovarian 
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clear cell lines (Figure 3B). We compared the expression 
in cell lines from PARP1 inhibitor treatable cancers 
(triple negative breast and high grade serous cancers) 
with cell lines from PARP1 inhibitor not-treatable cancers 
(hormone receptors-breast cancer and ovarian clear cell 
cancer) (see Materials and Methods). Results showed that 
RIT1 expression was higher (p<0.05) in triple negative 
breast cancer and high grade ovarian cell lines than in 
the other cell lines; PSAT1 expression is significantly 
higher in triple negative breast cancer cell lines (p<0.001) 
as compared to the other breast cell lines. Expression of 
PARP1 and INCENP showed no statistically significant 
difference (Figure 3A and 3B).

PARylation analysis and drug sensitivity
To evaluate influence on PARP1 activity, we down-

regulated the expression of RIT1, PSAT1 and INCENP by 
using siRNA and analyzed the level of PARylation in MCF7 
breast cancer cell line. We performed these experiments in 
the presence of the PARP inhibitor “olaparib” to assess if 
down regulation of these genes could affect PARylation and 
have an additive effect with olaparib treatment.

After assessing efficiency of selected siRNAs by qRT-
PCR (Figure 3C) and by western blot analysis (Figure 3D), 
we measured PAR and PARP1 level by western blot analysis 
in MCF7 cell lines treated with olaparib and specific siRNA 
(Figure 3E, right and left panel). Densitometry showed 
that down-regulation of RIT1 and INCENP determined 
a statically significant decrease in PAR level only when 
olaparib is added (Figure 3F, panel 1 and 2). No effect was 
seen without drug treatment (Figure 3F, panel 2). Moreover, 
a statistically significant increase in PARP1 level was seen 
when RIT1 is down-regulated (Figure 3F, panel 3). When 
olaparib was added, PARP1 level significantly increased in 
RIT1- and INCENP-siRNA treated cells (Figure 3F, panel 
4). Finally, we determined the olaparib sensitivity in MCF7 
cells after inhibiting RIT1, INCENP or PSAT1 by specific 
siRNA (Figure 3G). Cells with low level of INCENP and 
PSAT1 were more sensitive to olaparib at almost any 
concentration tested. Precisely, PSAT1-inhibited cells 
showed a statistically significant reduction in cell survival 
at any olaparip concentration; olaparib significantly reduced 
survival in INCENP-inhibited cells at concentration higher 

Table 2: List of 12 candidate genes identified though DisGeNet analysis

Gene Name Cancer Type Gene Description Pathway

ENTPD6 Seminoma ectonucleoside triphosphate 
diphosphohydrolase 6 (putative)

Extracellular nucleotides 
catabolism

H1F0 Leukemia, Myelocytic, 
Acute H1 histone family member 0 Chromatin remodelling

HERC3 Liver neoplasms HECT and RLD domain containing 
E3 ubiquitin protein ligase 3 Ubiquitination

INCENP Melanoma inner centromere protein Cell division

NCOR1

Mammary Neoplasms

nuclear receptor corepressor 1 Chromatin remodelling

Bladder Neoplasm

Carcinoma, Transitional Cell

Glioblastoma

Liver neoplasms

PSAT1 Non-Small Cell Lung 
Carcinoma phosphoserine aminotransferase 1 Serine biosynthesis

RCOR1 Colonic Neoplasms REST corepressor 1 Chromatin remodelling

REXO1 Polycystic Ovary Syndrome RNA exonuclease 1 homolog Ribosome biogenesis

RIT1 Lymphangioma, Cystic Ras like without CAAX 1 MAPK regulation

TALDO1 Liver carcinoma transaldolase 1 Lipid biosyntehsis

ZFP36 Neoplasm Invasiveness ZFP36 ring finger protein
mRNA degradation

ZFP36L2 Prostatic Neoplasms ZFP36 ring finger protein like 2

All genes are related to cancer and have alterations or variants reported in database. All candidate genes have been analyzed 
and their relation with cancer has been calculated with DisGeneNet database which gives a score of this association 
from 0 to 1 based on type of sources (level of curation, model organisms) and the number of publications supporting the 
association. We selected genes that have a score higher than 0.2.
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than 1μM. In RIT1 inhibited cells, olaparib statistically 
reduced survival at the highest dose (10μM) (Figure 3G).

DISCUSSION

As PARP1 inhibitors could affect several DNA repair 
pathways, they are widely used in cancer therapy because 
this treatment could lead to cancer cell death through a 
mechanism called “synthetic lethality”[19]. One drawback 
of cancer treatment with PARP1 inhibitors is the onset of 
resistance that often occurs. This means that is extremely 
important to identify new factors or interactors controlling 
or regulating PARP1 activity that can be therapeutic targets. 
Theoretically, to increase efficiency of PARP1 inhibitors in 
cancer therapy, we could modulate the activity of proteins 
related to its function; this could enhance clinical utility 
of PARP inhibitors and give further clue to address the 
resistance to PARP inhibitors. Moreover, the discovery 
of different interactors could lead to a more and efficient 

personalized therapy that may reduce development of 
resistance and expand therapy application of these drugs.

Results from our wide-genome screening in yeast 
showed that deletion of genes identified suppresses the 
growth inhibition phenotype caused by PARP1 expression, 
suggesting that their activity is required to PARP1 to perform 
its function [31]. Moreover, cancers carrying mutations in 
these genes could be more sensitive to PARP1 inhibition, 
because our data suggest that their activity could efficiently 
modulate PARP1 activity. Therefore, this computational 
and integration analysis was aimed to find human genes 
(homologous to those ones identified in yeast) involved in 
pathways related to PARP1. Finally, we selected 12 genes that 
belong to cellular pathways chromatin remodeling and mRNA 
processing; it is known that PARP1 has a role in these cellular 
processes indicating that all those genes could be potential 
PARP1 functional interactors. Carcinogenesis often depends 
on mis-regulations of multiple pathways [46, 47], suggesting 
that related pathways function cooperatively and that their 
alteration could lead to a pathologic condition. On the other 

Table 3: Gene products that are already targeted by drugs

Gene Name Drug Name Alternative 
name

Target Pathway Source

INCENP

N~6~-CYCLOHEXYL-
N~2~-(4-MORPHOLIN-4-

YLPHENYL)-9H-PURINE-
2,6-DIAMINE

Reversine Aurora kinase Cell division DrugBank

RIT1 GDC-0941 Pictilisib PI3K MAPK CIViC

RIT1 AZD-6244 Selumetinib MEK MAPK CIViC

Drug-gene information has been retrieved from DGIdb as described in the materials and methods. Name and alternative name of 
drugs are showed; moreover, the actual target, pathway where target belong, and data-sources is showed.

Table 4: The selected genes are found to be altered in defined cancer studies

Cancer type Data set size % Genes alteration

Pancreatic Cancer (UTSW, Nat Commun 2015) 109 patients, 109 samples 55 %

Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer 
Atlas) 509 patients / 509 samples 40 %

Ovarian Serous Cystadenocarcinoma (TCGA) 316 patients, 316 samples 40 %

Neuroendocrine Prostate Cancer (Trento/Cornell/Broad 
2016) 77 patients, 107 samples 46 %

Breast Invasive Carcinoma (TCGA) 963 patients, 963 samples 30 %

Liver Hepatocellular Carcinoma (TCGA) 373 patients, 373 samples 31 %

Stomach Adenocarcinoma (TCGA, Nature 2014) 287 patients, 287 samples 33 %

Sarcoma (TCGA) 252 patients, 254 samples 35 %

The selected genes retrieved from DisGeNet analysis have been analyzed with cBioPortal. We reported data referred to 
cancer samples where the selected genes were found altered in at least 30% of cases. The size of data set and the percentage 
of gene alterations are shown.
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Figure 2: Functional interaction and correlation between PARP1 and the 12 selected genes. (A) Heat-map of amplification 
correlation between PARP1 and the selected 12 genes in cancer from cBioPortal. Lowest p-value means highest correlation and most 
frequent de-regulation of their pathway in cancer. (B) Heat-map of expression correlation between PARP1 and the 12 genes in cancer 
samples from cBioPortal. Higher Pearson coefficient (p) means high correlation indicating that PARP1 and the selected gene are highly 
expressed in that kind of cancer/tissue. (C) GeneMANIA network between the selected proteins and PARP1 (left). Physical and genetic 
interactions, co-expression, shared protein domains co-localization and common pathway are shown by different colors. On the right, 
network between RIT1 and PARP1 is shown.
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Figure 3: Effect of RIT1, INCENP and PSAT1 on PARylation and PARP1 protein level, and olaparip sensitivity. (A) 
Expression of INCENP, RIT1 and PSAT1 in triple negative and hormone receptor positive (+) breast cancer cell lines: (B) Expression 
of INCENP, RIT1 and PSAT1 in high grade serous and ovarian clear cell cancer lines. Data were compared and statically analyzed by 
Student’s t-test as indicated: ns, not significant, *p<0.05, ***p<0.001. (C) Expression level measured by qRT-PCR of total RNA extracted 
from siRNA-transfected cells. Results are the mean of 3–4 experiments ± SD. (D) Western blot analysis of total protein extracts from MCF7 
cells transfected with siRNA. Each lane was loaded with 30μg of protein as reported in Materials and Methods. Primary and secondary 
antibodies are described in the Materials and Methods. Tubulin was evaluated as loading control. (E) PARylation and PARP1 level in cell 
transfect with siRNA and treated with the PARP inhibitor “olaparib”. Western blot analysis of total protein extracts from siRNA-transfected 
MCF7 cells to measure PARylation and PARP1 level in olaparib not-treated (left) and treated (right) cells. Each lane was loaded with 30μg 
of protein as reported in Materials and Methods. Antibodies are described in the Materials and Methods. Tubulin was evaluated as loading 
control. (F) Densitometry was carried out by direct normalization on tubulin level. In panels 1 and 2, data on PARylation level are shown; 
in panels 3 and 4, data on PARP1 protein level. Panels 1 and 3 are referred to not-treated cells, panels 2 and 4 to olaparib-treated cells. 
Results are the mean of 3–4 experiments ± SD. Statistical analysis was performed using the Student’s t-test; ns, not significant, *p< 0.05, 
**p< 0.01, ***p< 0.001. (G) Effect on RIT1, INCENP and PSAT1 on olaparib sensitivity in MCF7 cells. Cells are transfected with specific 
siRNA and after 6 hours re-plated in presence of different doses of olaparib (0, 5, 1, 2, 5, 10 μM) or DMSO. After 48 hours cell viability is 
calculated as described in Materials and Methods. Results are reported as mean of 3–4 experiments ± SD. Statistical analysis was performed 
using the Student’s t-test by comparing data from siRNA-not-transfected (NT) to siRNA-transfected cells; *p< 0.05, **p< 0.01, ***p< 0.001.
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hand, the correlation of expression patterns could imply that 
these genes are involved in connected biological processes. 
Finally, combining functional and genetic information 
retrieved by several databases, we selected genes that are 
correlated to cancer development and also linked to PARP1. 
Among the 12 candidates, we decided to focus our analysis to 
those genes that genetically and functionally better correlate 
with PARP1 INCENP, RIT1 and PSAT1 resulted  the most 
interesting candidates. In this study, we have also provided 
new evidence demonstrating that INCENP, RIT1 and PSAT1 
may have a functional role in modulating PARP1 activity. We 
found that RIT1 and INCENP affect PARylation and PARP1 
level, particularly in olaparib-treated cells; more interestingly, 
INCENP, RIT1 and PSAT1 have an influence on olaparib 
sensitivity in MCF7 cells. Altogether, these results suggest 
that INCENP, RIT1 and PSAT1 could affect PARP1 activity 
and are potentially candidates as therapy target to increase the 
efficacy of PARP1 inhibitors. Therefore, further investigation 
to better characterize the effect of these genes with PARP 
inhibitors could give interesting results for clinical therapy.

Deficiency in BER pathways induces genetic 
instability resulting in dramatic changes in gene expression 
and energy metabolism resembling changes found in many 
cancers [48]. Serine biosynthesis represents one of these 
pathways subjected to dramatic changes in cancer [49]. 
Moreover, BER deficient cells displayed a significant 
increase in expression of PSAT1, one of the key enzymes 
involved in serine biosynthesis, leading to an anabolic 
cellular state and an increased antioxidant capacity [50]. 
Thus, in cancer cells, PARP1 and PSAT1 inhibition could 
fail to promote changing in gene expression leading to 
cell death. Moreover, PSAT1 physically interacts with 
TALDO1, another candidate interactor of PARP1; therefore, 
their combined inhibition could improve PARP1-inhibitor 
efficiency and overcome resistance development [51].

Among all genes analyzed, INCENP has the highest 
expression correlation with PARP1, strongly indicating 
a functional relation between the two genes. In addition, 
our results showed a cooperative effect between PARP 
inhibition with olaparib treatment either on PARylation 
reduction or cell viability. These data suggest that, not only 
INCENP functionally interacts with PARP1, but also that 
this new function could be exploited to push cells to death.

In addition, our analysis identified NTRK1 kinase as 
a physical PARP1 interactor and, also, as a protein related 
to RIT1 pathway. This is particularly interesting because 
NTRK1 is a membrane-bound receptor that phosphorylates 
itself and members of the MAPK pathway [52] and it 
is already known that it confers resistance to cancer 
chemotherapy by activating p38 mitogen-activated protein 
kinase signaling pathways [53, 54], where RIT1 belongs. 
Our data support the idea that inhibition of RIT1 and PARP1 
could lead to an excess DNA damage accumulation and, 
finally, to cell death. Therefore, it could be very informative 
to study the possible cooperation between PARP inhibitors 
and the RIT1 drugs we found by this analysis.

In conclusion, INCENP, RIT1 and PSAT1 seem to 
be the most interesting functionally-related genes that may 
modulate PARP1 activity. For these reasons, it should be 
important to check whether these genes carry mutations in 
tumors that are not responsive to PARP1 inhibitors.

Computational analysis and further functional 
validation in human cells demonstrated that “functional 
interactors” found by using yeast genome-wide screenings 
are likely to be relevant in human and may contribute 
to identify new molecular factors affecting disease 
progression and therapy. Yeast has been proven to be very 
useful to identify human proteins involved in HR and 
BRCA1-tumorigenesis [55, 56]. Recently, yeast-based 
screenings have been developed to identify new drug-
combination for breast cancer therapy and new cancer 
associated genes [57, 58]. Our work confirms again 
the power of yeast genetics as tool to study functional 
interactions between human proteins owing to the 
conservation between this simple organism and humans.

MATERIALS AND METHODS

Database analysis and bioinformatics tools

To analyze the data set of 90 genes, we developed a 
script for R frame work to perform a pipeline for filtering 
and processing data from different sources; the steps are:

a) data mining analysis on COSMIC and DisGeNET 
database;

b) functional profiling using the “g:Profiler” web-
based toolset;

c) discovering for drug-gene interactions on DGIdb;
d) data retrieving of all publications from NCBI-

PubMed about the filtered dataset;
e) gene alteration association and co-expression 

correlation analysis on cBioPortal database;
f) interaction network analysis with GeneMANIA.

Somatic mutation analysis

Information about the candidate genes identified 
with yeast screening such as characteristics and abundance 
of somatic mutations and distribution along different 
cancers has been taken from COSMIC database [59]. 
There are two types of data in COSMIC: expert curation 
data that are manually imputed from peer reviewed 
publications, and genome-wide screen data that are 
uploaded from publications reporting large scale genome 
screening data or imported from other databases such as 
TCGA (https://cancergenome.nih.gov/) and ICGC (http://
icgc.org/icgc). Filtering our results for mutations found 
in cancer where PARP1 inhibition is already in use and 
where clinical trials are ongoing, we got the information 
about the number of variants for each gene present in 
database and relation to pathogenicity and cancer type 
where the gene is more often found mutated.

https://cancergenome.nih.gov/
http://icgc.org/icgc
http://icgc.org/icgc
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We also applied the 20/20 rule from Vogelstein 
et al. [44, 60] to divide these genes between “probable 
oncogenes” and “probable tumor suppressors”.

Disease association analysis

Candidate genes have been analyzed also by the 
DIsGeNET (http://www.disgenet.org) that integrates 
human gene-disease associations (GDAs) from various 
expert curated databases and text-mining derived 
associations including Mendelian, complex and 
environmental diseases [61]. We used “disgenet2r”, an 
R package, enabling the development of bioinformatic 
workflow to query and analyze DisGeNET data, and 
visualize the results within R framework. We used the 
most recent released DisGeNET v5.0 (May, 2017). Data 
in DisGeNET are divided in curated and animal models; 
the first set of data is from databases such as UniProt, 
PsyGeNET, ORphanet, the second set from MGD (Mouse 
Genome Database) and RGD (Rat Genome Database). 
Gene-disease correlation was analyzed and a final score 
was given according to their level of evidence; this score 
ranges from 0 to 1 and takes into account the number and 
type of sources (level of curation, model organisms), and 
the number of publications supporting the association.

Functional analysis

Functional enrichment analysis was performed by 
g:Profiler toolkit that studies multiple sources of functional 
evidence, including gene ontology terms, biological 
pathways, regulatory motifs of transcription factors and 
microRNAs, human disease annotations and protein-
protein interactions (http://biit.cs.ut.ee/gprofiler/) [62].

Drug-gene interactions and publications data 
retrieving

Information about drug-gene interactions for 
selected candidate genes has been retrieved with DGIdb 
(http://www.dgidb.org/search_interactions) by using the 
DGIdb API (Application Program Interface) through a 
simple JSON based interface [63]. For the identified genes, 
information has been retrieved from CIViC and Drugbank 
database with this algorithm. CIViC is an expert-
crowdsourced knowledgebase for Clinical Interpretation of 
Variants in Cancer describing the therapeutic, prognostic, 
diagnostic and predisposing relevance of inherited 
and somatic variants of all types. Drugbank database 
is a bioinformatics and cheminformatics resource that 
combines detailed drug data with comprehensive target 
information [64, 65].

To retrieve publications from NCBI-PubMed, we 
used the R package RISmed that is an API for the Entrez 
Programming Utilities that provide a stable interface 
into the “Entrez” query and database system at NCBI. 
“Entrez” system currently includes many databases 

covering a variety of biomedical data, including nucleotide 
and protein sequences, gene records, three-dimensional 
molecular structures, and the biomedical literature [66].

Alteration association and expression analysis

We analyzed correlation between alteration and 
expression of candidate genes and PARP1 in 8 different 
manual selected cancer data sets by taking advantage of 
cBioPortal database that provides visualization, analysis 
and download of large-scale cancer genomics data sets [67, 
68]. We selected patients/samples related to cancer treated 
with PARP inhibitors. In particular: pancreatic cancer, 
uterine corpus endometrial carcinoma, ovarian serous 
cystadenocarcinoma, neuroendocrine prostate cancer, 
breast invasive carcinoma, liver hepatocellular carcinoma, 
stomach adenocarcinoma and sarcoma. After this selection, 
we performed a statistical mutual exclusivity or co-
occurrence analysis between alterations in our candidate 
genes and PARP1; copy number alterations, amplifications, 
deletions and mutations were analyzed. Results are shown 
as p-value of frequency of this association and a statistical 
correlation has been discovered only for gene amplification. 
Then, we performed a co-expression analysis to see if the 
expression of our candidate genes is related to expression 
of PARP1. Results are expressed as “Pearson correlation” 
coefficient (p). 0 < p < 0.3 means weak correlation, 0.3 < 
p < 0.6 medium correlation and p > 0.6 high correlation.

Interaction network

Interaction network analysis has been performed 
with GeneMANIA [69] (https://genemania.org/) that finds 
interconnections between proteins in term of co-expression, 
physical interaction, genetic interaction, shared protein 
domains, co-localization and common pathway. Two 
different analyses have been made: first, it has been studied 
the interaction network just between the 12 proteins identified 
from DisGeNET and then, a deeper analysis on the most 
promising proteins retrieved from cBioPortal to include also 
secondary members of the “interaction” network.

Expression analysis

Differential expression analysis related to INCENP, 
RIT1 and PSAT1 has been analyzed in “EMBL-EBI 
Expression Atlas” (https://www.ebi.ac.uk/gxa/home) 
that gives information on the abundance and localization 
of RNA (and proteins) across species under different 
biological conditions [70, 71]. As triple negative breast and 
high ovarian serous cancers are reported to be currently 
treated with PARP inhibitors [72] [73], we analyzed and 
compared RIT1-, INCENP- and PSAT1-expression in 
hormonal receptors (triple) negative breast cancer cell 
lines and hormonal receptors positive (+) breast cancer 
cell lines, and in high ovarian serous cancer cell lines and 
clear cell ovarian cancer cell lines. Data were statistically 

http://www.disgenet.org
http://biit.cs.ut.ee/gprofiler/
http://www.dgidb.org
https://genemania.org/
https://www.ebi.ac.uk/gxa/home
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analyzed by using the Student’s t-test for unpaired data. 
List of cell lines analyzed and genes expression data are 
showed in Supplementary Table 5.

Cell transfection, drug treatments, qRT-PCR 
and western blot

MCF7 breast cancer cell line was used for cellular 
validation experiments. MCF7 cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM) high-
glucose with 10% fetal bovine serum with the addition 
of sodium pyruvate and not essential amino-acids (NEA).

Olaparib was obtained from Selleckchem; stock 
solutions were made in DMSO at 10, 5, 2, 1 and 0.5 mM 
and stored at −20°C in the dark. Stock solutions were 
diluted 1/1000 directly in culture medium to reach the 
final concentration.

SiRNAs against selected genes (PSAT1, RIT1 and 
INCENP) were transfected by using the “Lipofectamine 
2000” transfection protocol as recommended by the 
manufacturer (ThermoFisher). After 48 hours, total 
RNA was extracted with QIAzol lysis reagent protocol 
(Qiagen). Amounts corresponding to 1μg of RNA have 
been retro-transcribed to cDNA and analysed by qRT-
PCR to evaluate the expression level of RIT1, PSAT1 and 
INCENP. Glyceraldehyde-3-Phosphate Dehydrogenase 
(GAPDH), phorphobilinogen deaminase (PBDG) and 
succinate dehydrogenase (SDHA) have been used as 
housekeeping genes. Sequence of siRNA and primers are 
available upon request.

Protein extracts from olabarip-treated and/or 
siRNA transfected cells (48 hours after transfection) 
were performed by re-suspending cells in lysis buffer on 
ice for 30 minutes, then cell suspensions were sonicated 
for 25 minutes and centrifuged at 14000g at 4°C for 30 
minutes. Supernatants with total proteins were recovered 
and quantified. Western blots were carried out as follows: 
30μg of total cell were loaded on 10% polyacrylamide 
pre-casted gel (Invitrogen) and analyzed by SDS-PAGE. 
Thereafter, proteins were transferred to nitrocellulose 
membrane for antibodies hybridization. Membrane 
was blocked with 5% milk; all primary antibodies were 
incubated at 4°C overnight and anti-mouse and anti-
rabbit secondary antibodies were incubated for 1 hour at 
room temperature. Anti-PAR rabbit polyclonal antibody 
(4336-BPC-100) was purchased from Trevigen, anti-
PARP mouse monoclonal antibody (sc-8007) and mouse 
monoclonal anti-INCENP (sc-376514) from Santa Cruz 
Biotechnology, anti-RIT1 rabbit polyclonal antibody 
(PA5-30919) and anti-PSAT1 rabbit polyclonal antibody 
(PA5-22124) from ThermoFisher Scientific. Densitometry 
was performed by computer assistance; results are the 
mean of 3–4 independent gels ±SD. To determine if RIT1, 
INCENP and PSTA1 affects olaparib sensitivity MCF 
7 cells were seeded in 6 wells at 90% confluency and 
transfected with for siRNA as described before. After 4-6 

hours of transfection, 6×103 cells were seeded in 12-wells 
plates, treated in duplicate with DMSO and five different 
concentration of olaparib (0.5, 1, 2, 5 and 10 μM). After 
48 hours, cells were fixed with paraformaldehyde at 4% 
for 10 minutes, stained with crystal-violet for 15 minutes 
and washed. The day after, cells were detached with acetic 
acid and counted. Each line with different siRNA was 
normalized with its DMSO and for each concentration. 
Results are the mean of 3–4 independent experiments ± 
SD. Statistical analysis was carried out by Student’s t-test.

Availability of data and materials

All the data and materials used in this study are 
available at Institute of Clinical Physiology, CNR, Pisa, 
Italy.
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