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Abstract: Cancer cells possess metabolic properties that are different from benign cells. These unique
characteristics have become attractive targets that are being actively investigated for cancer therapy.
p21cip1/waf1, also known as Cyclin-Dependent Kinase inhibitor 1A, is encoded by the CDKN1A gene.
It is a major p53 target gene involved in cell cycle progression that has been extensively evaluated.
To date, p21 has been reported to regulate various cell functions, both dependent and independent of
p53. Besides regulating the cell cycle, p21 also modulates apoptosis, induces senescence, and maintains
cellular quiescence in response to various stimuli. p21 transcription is induced in response to stresses,
including those from oxidative and chemotherapeutic treatment. A recent study has shown that in
response to metabolic stresses such as nutrient and energy depletion, p21 expression is induced to
regulate various cell functions. Despite the biological significance, the mechanism of p21 regulation
in cancer adaptation to metabolic stress is underexplored and thus represents an exciting field.
This review focuses on the recent development of p21 regulation in response to metabolic stress and
its impact in inducing cell cycle arrest and death in cancer cells.
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1. Introduction

Eukaryotic cells utilize complicated mechanisms to regulate cell division and quiescence in
response to both internal and external stimuli. These cells rapidly divide under certain conditions
such as embryonic development and wound healing. Conversely, they stop proliferating in response
to adverse conditions and enter cell cycle arrest and post-development quiescence. Hence, the cells
develop a sophisticated braking system required for survival. Deregulation of this mechanism can
result in loss of genome integrity and cancer development. p21 (Cip1/WAF1) was first identified as a
Cyclin-Dependent Kinase (CDK) regulator that inhibits the retinoblastoma gene (Rb) phosphorylation
and G1/S cell cycle progression [1]. In this capacity, p21 was identified as the p53 target gene that
suppresses the growth of human brain, lung and colon tumor cells in vitro [2]. Early studies also
discovered that interactions between p21 and other proteins, most notably CDKs, are highly regulated
events that control cell cycle progression [3–5]. p21 binds to CDK and obstructs CDK interaction with its
substrates such as the Rb family members, hence, negatively regulating G1/S cell cycle progression [6–8].
Following DNA damage, p21 prevents Cdc25 activation by competing with its binding to PCNA
(Proliferating Cell Nuclear Antigen), thus maintaining G2/M arrest [9,10]. Since its discovery over
25 years ago, p21 has been characterized as an important player that employs different mechanisms to
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regulate multiple cellular functions. As evident by the growing literature, p21 regulation continues to
attract significant attention from various researchers in many fields.

2. Regulation of p21

2.1. Transcriptional Regulation of p21

p21 transcription can be regulated by either a p53-dependent or -independent manner.
These regulations were described in the early years of p21 studies, where p21 induction in response to
radiation-induced DNA damage was characterized as p53-dependent [11]. In contrast, its induction
during differentiation was independent of p53 [12]. The cellular contexts on how p21 is regulated by
these mechanisms remain an active field of study. Various studies have identified key players that
interact with p53 to regulate p21 expression. These include NF-κB-p65 nuclear factor [13], the bZIP
transcription factor (Zta) and NDF (Nucleosome-Destabilizing Factor) [14], BRCA1 (Breast Cancer
type 1), p33ING1 (Inhibitor of Growth Family Member 1), p300/CBP (CREB Binding Protein) and IRF-1
(interferon regulatory factor 1) [15–18]. In addition, HRas also induces p21 transcription, where the
HRas-ARF (ADP Ribosylation Factors)-p53-p21 circuit has been reported to induce senescence [19].

During normal tissue development and serum-stimulated growth in vitro, p21 is primarily
regulated in a p53-independent manner by a number of transcription factors [20]. Under various
growth conditions and cell types, different transcription factors have been identified to regulate p21
expression [21,22]. They include SMAD transcription factors downstream of Transforming Growth
Factor-β (TGF-β) [23,24], Specificity Protein 1 (SP-1) [25], Myogenic Differentiation (MyoD) [26,27],
BETA2 [28], progesterone receptors (PR) [29], and transcription factors AP2, E2Fs, C/EBPα,
and C/EBPβ [14,30]. Increased Raf kinase expression also induces p21 and cell cycle arrest through the
p53-independent pathway [14,30–32]. Different repressors have also been reported to regulate p21
expression. For example, Gfi-1B, a cellular proto-oncogene expressed in the bone marrow and spleen,
is a direct repressor of the p21 promoter [33]. Another protein, HMG-Box Protein 1 (HBP1), can inhibit
E2F-stimulated p21 transcription [34]. Notably, MYC (MYC oncogene) can inhibit p21 transcription
and contribute to anti-estrogen therapy resistance in ER-α-positive breast cancers [35]. Additionally,
MYC induces AP4, another p21 repressor to inhibit p21 transcription [36].

Epigenetic processes can also regulate p21 transcriptional activation. They can be induced
through the p53-independent pathway by chromatin remodeling following acetylation of histones H3
and H4 in the p21 promoter region [37–40]. DNA methylation also plays a role in p21 transcription.
Hypermethylation of the promoter region near the Sp1 consensus element significantly reduces Sp1/Sp3
binding, thereby inhibiting p21 expression [41]. MYC also mediates the recruitment of DNA CpG
methyltransferase 3a (Dnmt3a) to form a DNA binding complex and repress p21 expression [42].
In conclusion, there are complex mechanisms involved in the regulation of p21 transcription, which
underscores its importance in cell function. Future studies will provide insights in contexts of p21
expression under physiological and pathophysiological conditions.

2.2. Post-Translational Regulation of p21

p21 is also subjected to post-translational modification. Most notably, it is regulated
by serine-threonine kinases phosphorylation at Ser-130, Ser-146, Thr-57 and Thr-145.
These phosphorylation events impact both the function and stability of p21. For example, Thr-145
phosphorylation by AKT kinase disrupts p21 binding to PCNA and enhances its cytoplasmic localization.
This, in turn, promotes cell survival and transformation in breast cancers [43–47]. AKT phosphorylation
at Ser-146 is also reported to increase p21 stability and cell survival [43]. Phosphorylation at Thr-57
and Ser-130 by Glycogen Synthase Kinase 3-β (GSK3β) and CDK2-Cyclin E, respectively, increases p21
ubiquitination and proteolytic degradation [48,49]. Although various phosphorylation events have
been reported, their impact on p21 function has not all been clearly defined [30,50,51]. Thus, further
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investigation is necessary to enhance our understanding of how these post-translational modifications
regulate p21 degradation and functions.

3. Cellular Functions of p21 in Normal and Cancer Cells

3.1. Regulating Cell Cycle Progression

Inhibition of cell cycle progression is one of the main cellular functions of p21. It mainly occurs by
inhibiting cyclins A/CDK2, E/CDK2, and D1/CDK4 activities, thereby preventing the phosphorylation
of Rb protein [52]. The ability to induce cell cycle arrest in response to various stresses defines the
importance of p21 in the regulation of proliferation, particularly its role as a major tumor suppressor.
The molecular mechanisms involved in this process have been extensively reviewed by others [30,53].

3.2. Mediating Apoptosis

p21 has been demonstrated to regulate apoptosis in a paradoxical manner, depending on the
cellular context [30,54,55]. It has been implicated as a negative regulator for both p53-dependent and
p53–independent apoptosis [53,56]. For example, loss of p21 sensitizes HCT116 cells to radiotherapy
by enhancing apoptosis via the p53 pathway [57]. Independent of p53, p21 can inhibit apoptosis
triggered by various signals such as TGF-β, Tumor Necrosis Factor- α (TNF-α), Interferon- γ (IFN-γ),
and histone deacetylase inhibitors [53]. In contrast, numerous studies have shown a pro-apoptotic
role of p21 in both p53-dependent and p53-independent manners. For example, p21 induction in
mammary tumor cells enhances apoptosis independent of p53 activity [58]. Collectively, these studies
have shown that p21 regulation of apoptosis and other functions involves complex mechanisms that
are highly dependent on tissue differentiation and environmental stimuli [59–61].

3.3. Inducing Senescence

p21 is also a major regulator of cellular senescence, a complex program involving multiple signaling
pathways. p21 interacts with p16INK4A tumor suppressor to inhibit cyclin-dependent kinases,
suppressing retinoblastoma protein phosphorylation and the expression of cell proliferation-associated
genes [62]. Similar to its regulation on other processes, p21’s impact on senescence occurs in both
p53-dependent and –independent manners. For example, overexpressing p21 in p53-deficient cells
promotes premature senescence and protects cancer cells from chemotherapeutic drugs [63]. A complex
interaction between Reactive Oxygen Species (ROS) and p21 has also been reported to induce senescence
and growth arrest [64]. Interestingly, p21-induced senescence was recently suggested as pro–survival
in nature, as its suppression results in the death of senescent cells [65]. Similar to other processes, p21
regulation of senescence involves complex mechanisms that require in-depth investigations.

3.4. Maintaining Stem Cell Property

A hallmark of stem cells is their ability for self-renewal. Most stem cell populations are in the
quiescent state until they are stimulated. p21 has been reported to maintain cellular quiescence [66,67]
and postulated to function as a molecular switch for cell cycle entry. Absence of p21 leads to
deregulated cell division and stem cell exhaustion. p53 has been reported to regulate cell cycle
entry of hematopoietic stem cells [68]. However, p21 can be induced independently of p53, even
acting to counter p53 modulation. For example, in response to irradiation-induced DNA damage,
the p21-mediated induction of HES1 (Hairy and Enhancer of Split-1) could repress p53. This allows the
stem cells to avoid apoptosis and preserves their ability to self-renew, countering p53 functioning [69,70].
In a p21 knockout mouse model, p21 promotes ALDH1 (Aldehyde Dehydrogenase-1) activity and
tumor-initiating property partially through Wnt/TCF and cyclin D1 signaling pathways [71]. Although
p21 is an active player in regulating both normal and cancer cell stemness, the associated signaling
pathways remain to be clarified.
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3.5. p21 in Cancer Metastasis

Apart from its well-established roles, p21 may also directly or indirectly influence cancer metastasis.
However, the association between p21 expression and metastatic ability is inconsistent in different
cancers. In some cancers, p21 levels are inversely related to the metastatic phenotype, where a
higher p21 expression predicts a favorable disease outcome [72–75]. One possible explanation is
that the loss of p21 reduces the inhibitory effect on cell cycle progression, enhancing the continuous
proliferation independent of growth stimulatory signals. In contrast, high levels of p21 expression
are associated with increased metastasis, the recurrence of disease and decreased patient survival
in certain cancers [76–78]. One of the major hypothesis is that in addition to forming quaternary
complexes with various cyclins/cdks, p21 accumulation predominantly forms binary complexes with
PCNA [79]. Consequently, this releases active cyclin/cdk complexes that result in unfettered cellular
proliferation [76]. Collectively, these studies indicate that the role of p21 in metastasis vary in different
cancers. Therefore, more studies are required to delineate the precise underlying mechanism of p21
regulation in metastasis.

3.6. p21 in Cancer Therapy

Both p21 inactivation and activation have been implicated in cancer therapy resistance. p21
inactivation is associated with paclitaxel and 5-Fluorouracil (5FU) resistance in noncancerous breast
epithelial and colon cancer cells, respectively [80,81]. In contrast, the induction of p21 expression is
associated with a significant increase in the treatment resistance to paclitaxel and cisplatin in certain
epidermoid carcinoma cells [82]. In another study, the STAT3-mediated transcriptional activation of
p21 confers resistance to breast cancer cells against Taxol treatment [83]. In addition to its expression
level, p21 localization also contributes to the cancer cell resistance to therapy. For instance, cytoplasmic
p21 was shown to protect testicular embryonal carcinoma cells against cisplatin-induced apoptosis,
while p21 translocation to the nucleus by AKT inhibition sensitizes cells to cisplatin [84]. Similarly,
cytoplasmic p21 is accountable for 5FU resistance in colorectal cancers by inhibiting apoptosis [85].
Altogether, these findings suggest cytoplasmic p21 accumulation is associated with poor prognosis.
Thus, in addition to its expression level, the regulation of p21 cellular localization should be taken into
consideration in improving treatment response.

4. p21 Regulation in Response to Metabolic Stress

Metabolism is a cornerstone for various cellular functions. It is so important that Major metabolic
enzymes and regulatory pathways are conserved from unicellular organisms to mammals. Metabolic
stress can be triggered by either nutrient unavailability or malfunction of important proteins involved
in the metabolic machinery. Adaption to metabolic stress is essential for cell proliferation and survival.
p21 is involved in cellular responses to various stressors [86–88]. Recent findings on p21 responses
to metabolic stress, its impact on cell proliferation and survival, as well as their relevance to cancer
biology are discussed below.

4.1. p21 and Fasting

p21 plays an important role in cell response to nutrient deficiency. Studies have shown that
p21 is transcriptionally upregulated in mice under short-term fasting [89,90]. A major mechanism
involves the Forkhead Box O family of transcription factors, known regulators for gluconeogenesis,
lipogenesis and autophagy. These factors bind to the p21 promoter and regulate its transcription
during fasting [89,91,92]. In a p21 knockout mouse model, fasting resulted in reduced serum free fatty
acids (FFA) and triglyceride (TG) levels. Compared with their wild-type littermates, the accumulation
of ketone bodies occurs more rapidly in the knockout mice, suggesting a faster depletion of lipid
storage [90]. Mice lacking p21 also showed muscle protein degradation during fasting, likely through
a ubiquitination-related process [90]. Transcriptome analysis of p21 knockout mice after 24-hr fasting
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showed a defective activation of PPARα (Peroxisome Proliferator-Activated Receptor-α), a crucial
protein for fasting adaptation, suggesting a link between p21 and PPARα in modulating physiological
responses to fasting [90,93,94]. It is evident from the study that p21 plays an active role in regulating
organismal responses to nutrient depletion.

4.2. p21 and AMPK

Cellular nutrient uptake can stimulate intracellular nutrient-sensing mechanisms. This, in turn,
activates anabolic pathways aiming at increasing biosynthesis. Apart from nutrient availability,
the stimulation of growth factor signaling also accelerates anabolism. Nutrient deprivation, particularly
glucose, is sensed by the AMP-activated kinase (AMPK), a key regulator of the catabolic-anabolic
balance. AMPK is an allosteric enzyme that is directly regulated by the AMP to ATP ratio, which
is a readout for cellular energy status [95,96]. Given its key role, it is not surprising that the G1/S
transition is directly regulated by glucose availability and AMPK activity [97]. The expression of a
constitutively-active AMPKα2 catalytic subunit (CA-AMPK) in mouse embryonic fibroblasts (MEFs)
significantly inhibited G1 to S-phase entry in the cell cycle. Interestingly, a similar expression of
constitutively-active AMPK in p53-deficient MEFs failed to induce full cell cycle arrest. In subsequent
studies, AMPK was found to phosphorylate p53 and activated its transcription activity, resulting in the
upregulation of p21 protein production [97]. This suggests that the AMPK-p21 signaling pathways are
involved in response to starvation. This finding was validated in a separate study that linked AMPK
and p21 in regulating the cell cycle progression [98].

While it is not the focus of the current review, it is important to note that AMPK can also sense DNA
damage stress and induce p21 transcription in both p53-dependent and-independent manners [99–101].
It appears that the activation of AMPK in this context is likely mediated through its upstream regulator
LKB1 (Liver Kinase B1) [100,102,103]. In addition to AMPK, an AMPK-related kinase involved in
metabolic homeostasis, MPK38 (Murine protein serine-threonine kinase 38 or Maternal embryonic
leucine zipper kinase-MELK), was recently shown to interact with and stabilize p21, leading to
p21-mediated apoptosis and cell cycle arrest [104]. Together, the evidence links AMPK as a central
cell energy-sensing molecule in controlling p21 expression via either p53-dependent or- independent
mechanisms, suggesting p21 involvement in the cellular response to metabolic stress. Nevertheless,
more studies are necessary to delineate the mechanisms of AMPK-dependent p21 activation under
different conditions and cell states.

4.3. p21 and Amino Acid Deficiency

Amino acids are important building blocks and signaling intermediators. Their deficiency can
alter many cellular metabolic functions that, in turn, regulate cell cycle progression and survival
through complex regulations, including those involving p21 [105–108]. The translation of p21 was
selectively upregulated by Integrated Stress Response kinase GCN2, a widely-studied sensor for amino
acid deficiency through the phosphorylation of the eukaryotic translation initiation factor eIF2α [108].
In addition to regulating p21 translation, amino acid deprivation has been suggested to activate ERK1/2
(extracellular signal-regulated kinases 1 and 2), which increases p21 mRNA stability [109]. PI3K and
mTOR signaling may also impact the level of p21 [109]. Interestingly, GCN-2 expression is elevated
in several tumors, suggesting an amino acid deficient state in the tumor microenvironment [107].
In addition, the GCN2 mediated induction of p21 may play a role in inhibiting tumor cell proliferation
and reducing tumor growth [108]. Together, these findings indicate that amino acid availability,
through multiple signaling pathways, can regulate the p21 level that, in turn, impacts cell proliferation.

5. p21 in Cancer Metabolism and Therapy

In cancer, p21 is generally perceived as a tumor-suppressor protein. This hypothesis is supported
by the observations that p21-null mice spontaneously developed tumors [110]. Additionally, many
human cancers such as colorectal, cervical, head and neck, as well as small-cell lung cancers have
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reduced p21 expression [73,111–114]. However, p21 has also been postulated as a pro-tumorigenic
protein. However, this theory is derived from the correlations among p21 levels, tumor grades and
stages, rather than a direct causal relationship analysis [30,115].

5.1. Metabolic Characteristics of Cancer Cells

Compared with their benign counterparts, cancer cells have distinct metabolic characteristics that
present therapeutic opportunities. One of the most recognized signatures of cancer metabolism is the
Warburg effect, or aerobic glycolysis, which describes the preference of cancer cells using glycolysis over
oxidative phosphorylation to metabolize glucose and derivatives for energy production. As a result of
incomplete oxidation, most cancer cells consume glucose to generate more metabolic intermediates and
lactic acid than benign cells [116,117]. Multiple oncogenic molecules promote glycolysis; these include
mutant RAS, MYC, PI3K, and the loss of p53 tumor suppressor [118].

Despite their dependence on glycolysis in the metabolism, mitochondria respiration in cancer
cells is important for generating energy and nucleic acid synthesis [119]. As a matter of fact, one
can argue that the remaining respiration capacity becomes indispensable to cancer cells [120,121].
Hence, targeting mitochondrial respiration is a viable approach for selected cancer cells. In this
regard, it has been suggested that cancer cells, which already have reduced oxidative phosphorylation,
are sensitive to mitochondria inhibitors [122]. From this standpoint, an effective type 2 diabetes agent
metformin has been the focus of intense investigation for cancer treatment and prevention [120,123].
Although the molecular mechanism(s) behind its therapeutic effect requires further clarification, recent
studies demonstrate that metformin reduces tumorigenesis by inhibiting the mitochondrial complex I
activity [123–126]. Both population and in vitro cellular studies have suggested that metformin should
be further evaluated for its efficacy as an anti-cancer agent [127–130]. Indeed, various prospective
clinical trials that investigate the utility of metformin for cancer treatment are ongoing. Besides
metformin, new mitochondria respiration inhibitors are under development [131]. In addition to
aerobic glycolysis and respiration adaptations, various metabolic changes have been reported in cancer
cells, including the dominant expression of pyruvate kinase isozyme M2 (PKM2) in place of PKM1 [132],
as well as genetic mutations in succinate dehydrogenase (SDH) [133] and isocitrate dehydrogenase
(IDH) [134]. Given the scope of the review, we will focus on p21 regulated processes.

5.2. p21 in Cancer Metabolism and Its Therapeutic Implications

RAS mutation driven-oncogenesis accounts for one-third of human cancers. The relevance
of the RAS mutation becomes even more apparent if the aberrancies in relevant pathways such
as EGFR (Epidermal Growth Factor Receptor) mutations and MAPK (Mitogen-Activated Protein
Kinases) signaling components are also taken into consideration [135–137]. RAS-driven signaling
stimulates cell growth and proliferation. However, when extremely elevated, RAS signaling
can induce cell cycle arrest and senescence through activated RAF/ERK signaling [138–140].
The RAS/RAF/ERK pathway can further induce cell cycle arrest and senescence through upregulating
p21 in some cancer cells [141]. The association between this signaling pathway and p21 is
supported by the observation that the manipulation of the post-translational modification enzyme
isoprenylcysteine carboxylmethyltransferase (ICMT) activity up-regulates p21 levels [142]. ICMT is the
last enzyme in the post-translational prenylation processing of CAAX proteins (containing C-terminus
Cysteine-Aliphatic-Aliphatic-Any of a selection of amino acids), which include the RAS family of
small GTPases. An early mouse model of RAS tumorigenesis has shown that ICMT loss of function
up-regulates the level of p21 [143].

To better understand the mechanisms underlying p21 elevation in response to ICMT inhibition and
its role in cancer cell proliferation and survival, we evaluated a panel of cancer cells from diverse tissue
origins. Cancer cells that are sensitive to ICMT inhibition show a constellation of changes related to
metabolism that include the reduction of mitochondria respiration, the induction of autophagy, cell cycle
arrest and apoptosis [144–147]. Noteworthy, the p21 induction appears to accompany these phenotypes
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in sensitive cell lines (Figure 1) [142]. The treatment of cells with an ICMT inhibitor suppresses cellular
proliferation and induces autophagy, both in in vitro and in vivo settings [146,148,149]. In addition to
ICMT-induced metabolism changes observed above, the involvement of p21 in autophagy regulation,
cell proliferation and survival was investigated [150,151].
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Figure 1. The pancreatic cell lines that are sensitive but not resistant to the isoprenylcysteine
carboxylmethyltransferase (ICMT) inhibitor have elevated p21 and undergo apoptosis upon inhibitor
treatment. (A) The ICMT inhibitor, named Cysmethynil (Cysm), dose-response curve of cell viability in
different pancreatic cancer cell lines. (B) Immunoblots of sensitive and resistant cell lines indicating
the expression of p21, cyclin D1 and apoptosis marker cleaved PARP (C-PARP, Poly-ADP-Ribose
Polymerase 1). The figure is adopted from the published work by Manu et al., 2017 [142].

To better understand how p21 regulation leads to cell adaptation following metabolic distress, it is
necessary to briefly discuss the cellular process of autophagy—a fundamental eukaryotic cell adaptation
in response to a nutrient-depleted state. The double membranous structure of autophagosomes forms
as a self-digestive organelle in the lysosomal pathway to degrade damaged/aged organelles and
protein aggregates; this maintains homeostasis in cells under normal conditions [152]. Autophagy
is also an important catabolic response under the regulation of multiple signaling pathways. Under
nutritional stress, cells are programmed to reduce anabolic activity and upregulate autophagy to
sustain survival [153–157]. When persisted, the prolonged depleted state would lead to cell death either
in an autophagy-dependent or independent manner [154]. Abnormalities in autophagy regulation
have been implicated in different disease states, including cancer [158]. Manipulating autophagy levels
has recently been implemented in cancer treatment [159–161].

In evaluating the impacts of ICMT inhibition in cancer cells, we found that p21 is induced only
in the sensitive cell lines upon ICMT suppression. Marked reduction in mitochondrial respiration
and consistent depletion of cellular “fuel molecules”, such as ATP and other NTPs, were also noted
following exposures to the ICMT inhibitor. The mitochondria targeting effect has been shown to
be responsible for most of the anti-proliferative effects [147]. The phenotypes of ICMT inhibition
were further investigated in a panel of pancreatic cancer cell lines to compare responses from both
treatment sensitive and resistant cells [142]. When ICMT was suppressed by either pharmacological
or genetic means, both p21 mRNA and protein levels were significantly upregulated only in the
sensitive pancreatic cancer cells. This was accompanied by reduced mitochondria respiration, cell
cycle arrest and eventually cell death. Consistent with energy stress, ICMT inhibition in sensitive cells
also resulted in AMPK activation. In contrast, lack of constellation of phenotypes in p21 induction,
AMPK activation, autophagy, cell cycle arrest and cell death was observed in cancer cells that are
resistant to the ICMT inhibitor. We hypothesize that if p21 mediates cell responses to nutrition and
energy depletion, then glucose starvation or treatment with mitochondria inhibiting agents should
elicit similar responses in these sensitive cells. Metformin, as we have discussed earlier, has been
reported to inhibit the mitochondria respiratory chain complex I. Indeed, we have observed similar
responses of p21 elevation, AMPK activation and other relevant phenotypes in cells that were exposed
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to either glucose starvation or metformin treatment (Figure 2A), lending strong support for the role of
p21 in the regulation of cellular responses to metabolic stress in many cell types.
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to nutrient/energy depletion.

As discussed earlier, p21 regulates cell cycle progression and apoptosis. Therefore, it makes
physiological sense that p21 would be involved in sensing and transmitting the signal of metabolic
stress. Indeed, when we further evaluated the role of p21 in response to ICMT inhibition, we found
that p21 is an upstream regulator of cell cycle progression, autophagy and apoptosis, through the
transcriptional regulation of downstream effectors that include BNIP3 (BCL2 Interacting Protein
3), LC3 (Microtubule-associated protein 1A/1B light chain 3B) and ULK1 (Unc-51 Like Autophagy
Activating Kinase 1). Both ULK1 and LC3 are well-known proteins that promote the initiation
and extension of autophagosomes. BNIP3 is a mitochondrial member of proapoptotic BCL2 family
proteins containing a motif similar to the BH3 domain, which is a regulator of both autophagy and
apoptosis [162–166]. BNIP3 upregulation was reported to sensitize cancer cells to apoptosis, while the
loss of BNIP3 rendered cancer cell more resistant towards therapy [167–169]. Consistent with its role in
cancer cell death [170–173], it is no surprise that BNIP3 expression was suppressed in several types of
cancers. The role of p21 in promoting autophagy and apoptosis was also evaluated by the concurrent
knockdown of ICMT and p21. In ICMT inhibition-sensitive MiaPaCa-2 pancreatic cancer cells, the loss
of p21 rescued the cell cycle arrest, autophagy and apoptosis that accompanied ICMT inhibition.

In summary, we have discussed the evidence that supports p21 as a key regulator and signaling
node in mediating cancer cells’ response to nutrition and fuel depletion. Overall, the evidence supports
that p21 functions to integrate catabolism activities, cell cycle progression, and ultimately programmed
cell death (Figure 2B). While the exact underlying mechanism(s) are yet to be identified, it makes
sense that cells would utilize p21 as a central biological coordinator to respond to energy starvation
by (i) halting growth and proliferation as these activities require both building blocks and energy,
(ii) increasing catabolic activity, such as autophagy, to produce fuels and metabolic intermediates
to sustain essential cell activities for survival, and (iii) initiating the cell death process when faced
with persistent metabolic stress. While more research is required to delineate the role of p21 in
these processes, such knowledge would be highly applicable for the future development of cancer
therapeutics and for biomarker identification.
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6. Discussion

The field of p21 has grown tremendously in the last three decades. Since its discovery in the
1980s as a Cyclin-Dependent Kinase inhibitor, p21 has attracted significant attention from researchers
in many fields, as evident from the thousands of research publications on this protein. To date,
p21 is known not only as a cell cycle regulator, but also as a key player in various other cellular
functions including senescence, apoptosis, and self-renewal. p21 has also been long regarded as a
stress response protein. In this regard, p21 can function as a coordinator for DNA damage repair
pathways. Adding to its portfolio, p21 has recently been reported to act as a central regulator in
cell adaptation to metabolic stress, particularly energy depletion in response to either starvation or
treatment with mitochondria respiration inhibitors. Although this aspect has only been recently
investigated with relatively few publications, the impact of these findings in understanding basic cell
biology and the development of potential new therapy is apparent. For example, although recent
findings demonstrate that stress-induced levels of p21 primarily leads to cell cycle arrest and cell death,
the exact outcomes of p21 activation are very much dependent on the type, intensity and duration of
particular stress, as well as the cell type upon which the stress acts [142]. Another example is the role
of p21 in maintaining stemness. p21 has been reported to help stem cells maintain quiescence and
genomic integrity, and possibly inhibit apoptosis. However, during prolonged stress, p21 can activate
apoptosis. Therefore, it will be an interesting, albeit challenging field of research, to further define the
role and impact of p21 regulation in the context of different stimuli and cell types.

This review hopefully highlights (i) the significance of emerging p21 research as a promising
therapeutic approach for biologists and oncologists, and (ii) the necessity to continue the effort in
understanding p21’s function as a coordinator of metabolic stress responses. As mentioned above,
because of its dichotomy function, it is a challenging task to fully understand how p21 regulates
various biological and cellular functions, particularly those associated with the cancer metabolism and
its potential therapeutic implementation. Concerted explorations to understand p21 in adaptation to
stress, metabolic and other stimuli, are essential for its translational application in cancer therapy.
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