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Abstract

Distinguishing mutations that determine an organism’s phenotype from (near-) neutral ‘hitchhikers’ is a fundamental
challenge in genome research, and is relevant for numerous medical and biotechnological applications. For human
influenza viruses, recognizing changes in the antigenic phenotype and a strains’ capability to evade pre-existing host
immunity is important for the production of efficient vaccines. We have developed a method for inferring ‘antigenic trees’
for the major viral surface protein hemagglutinin. In the antigenic tree, antigenic weights are assigned to all tree branches,
which allows us to resolve the antigenic impact of the associated amino acid changes. Our technique predicted antigenic
distances with comparable accuracy to antigenic cartography. Additionally, it identified both known and novel sites, and
amino acid changes with antigenic impact in the evolution of influenza A (H3N2) viruses from 1968 to 2003. The technique
can also be applied for inference of ‘phenotype trees’ and genotype–phenotype relationships from other types of pairwise
phenotype distances.
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Introduction

Influenza viruses are responsible for ,500,000 deaths annually

and are a substantial threat to human health [1]. Besides seasonal

infections caused by human viruses, four major pandemics over the

last 100 years have resulted in ,50 million deaths worldwide [2–4].

The viruses are classified into three genera (A, B, C), all from the

Orthomyxoviridae family, which comprises single-stranded, negative

sense RNA viruses. Influenza A and B viruses evolve rapidly and

continuously accumulate amino acid changes in the antibody-

binding (epitope) sites of the surface proteins, resulting in changes in

antigenicity. Thus, novel ‘antigenic types’ regularly appear and rise

to predominance, causing worldwide epidemics despite existing

vaccination programs [5,6]. Influenza A viruses are further

categorized into subtypes based on the composition of their surface

proteins, hemagglutinin (H or HA) and neuraminidase (N or NA).

In the human population, the subtypes H1N1 and H3N2 are

currently circulating [7]. Both global population structure and

geographic migration patterns are known to influence the evolution

of H3N2. Russell et al. suggested East–Southeast Asia to serve as a

global reservoir, from which seasonal epidemics in temperate zones

are seeded [8]. Other regions, such as China or USA, might serve as

seeding regions, too, and migration from and to other tropical

regions than East-Southeast Asia is thought to have a significant

influence on the global dynamics [9,10].

To monitor genetic and antigenic changes, the World Health

Organization (WHO) runs a global surveillance program [11].

Quantification of viral antigenic phenotypes is done with the

hemagglutination inhibition (HI) assay, which measures the ability

of an antiserum to inhibit the agglutination of red blood cells by a

viral antigen [12]. Antigenic cartography, involving multidimen-

sional scaling of log-normalized HI titers, subsequently generates

an accurate low-dimensional representation of the antigenic

distances between antigen–antiserum pairs [5,13]. If a novel

antigenic type with increasing prevalence is detected, the vaccine

composition, consisting of two strains of influenza A (H3N2 and

H1N1) and one strain of influenza B, is updated to include an

antigenically closer match.

Antigenic cartography of influenza A (H3N2) isolates from 1968

to 2003 revealed that antigenic types circulate for 3.3 years, on

average, in worldwide epidemics before being replaced by a

successor [5]. A comparison of antigenic and genetic maps showed

that, the antigenic impact of genetic changes varies, depending on

the nature of the amino acids exchanged, their structural

positioning and epistatic interactions with other sites. Subsequent

studies have incorporated both antigenic and genetic data for

predicting antigenically novel strains [14–16]. Additionally, many

groups have investigated the influence of sequence positions and

sequence variation on viral evolution, based on different

computational criteria [17–24].

Even though the general principles governing the antigenic

evolution of influenza A viruses are well studied, computational

methods for directly determining the antigenic impact of

individual amino acid exchanges do not yet exist. Such analyses
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currently require time- and cost-intensive experimental character-

ization of mutant viruses [5]. On the other end of the spectrum,

antigenic cartography allows identification of ‘cluster difference

substitutions’, comprising all near-conserved changes that distin-

guish consecutive antigenic clusters.

We describe a method for the inference of ‘antigenic trees’, which

is based on a least-squares optimization (LSO) procedure of fitting

pairwise antigenic distances onto an evolutionary tree for the major

antigenic determinant of influenza A. It is a computational method

allowing for a more fine-grained resolution of the antigenic impact

of individual changes than antigenic cartography without time- and

cost-intensive experiments. Application to HA sequences and

serological data from human influenza A (H3N2) viral isolates

from 1968 to 2003 determined the antigenic impact of all branch-

associated amino acid changes for this time period. Our technique

identified known antigenic types and the amino acid changes

associated with the type transitions. For sufficiently resolved

branches, the antigenic impact of individual exchanges could be

quantified. The method furthermore found known and novel key

HA sites and changes in antigenic evolution.

Results

We applied our method to infer an antigenic tree from genetic

sequences of the hemagglutinin segment and serological data (HI

titers of antigen-antiserum pairs) for 258 influenza A (H3N2)

isolates sampled between 1968 and 2003 [5]. Antigenic branch

lengths were determined by fitting the antigenic distances between

viral isolates (the antigens) and antisera raised against reference

strains to the branches of a maximum likelihood tree (see Materials

& Methods). Antigenic branch lengths were realized as two

independent weights (up and down) and represented the antigenic

properties of antigens and antisera in the tree. The antigenic path

length between two isolates, corresponding to the sum of the

branch weights (either up- or down-weight, depending on the

direction in the tree) for all connecting branches on the path

between them in the tree, reflected their overall antigenic distance

(Figure 1, high resolution Figures S1 and S2).

To investigate how accurately antigenic distances were fitted

onto the tree, we evaluated its ability to predict unseen antigenic

distances by leave-one-out cross validation [25]. In this experi-

ment, an antigenic tree is inferred from all but one antigenic

distance and then is applied to predict the left out distance. A

predicted distance corresponds to the antigenic path length

between the two respective isolates in the tree (see Materials &

Methods). This was repeated for every antigenic distance and the

overall accuracy of predicting antigenic distances estimated by the

absolute prediction error and the root mean squared error

(RSME) averaged over all leave-one-out experiments (see

Materials & Methods). The leave-one-out absolute prediction

error was 0.86 antigenic units (, a two-fold dilution, SD 0.72) and

the correlation measured by Pearson’s correlation coefficient

between predicted and measured values was 0.86. Using

placement on an antigenic map estimated from the same data,

Smith et al. report an average absolute prediction error of 0.83

antigenic units (SD 0.67) and a Pearson’s correlation coefficient of

0.80 for 481 measurements of antigenic distances [5]. The RMSE

penalizes large prediction errors more than small prediction errors,

and is a well suited measure of predictive accuracy. For our

method, the leave-one-out RMSE is 1.12 antigenic units,

corresponding to approximately a two-fold dilution. This is

comparable to the ten-fold cross validation RMSE of Cai et al.

on this data set (1.05 antigenic units) [26], who used a matrix

completion algorithm prior to multi dimensional scaling. Our

method therefore performs similarly to antigenic cartography in

predicting antigenic distances, with a slightly larger error but also a

slightly higher correlation between predicted and measured values.

This is despite the fact that inferring antigenic branch lengths for

an antigenic tree allows far fewer degrees of freedom than an

antigenic map, where the data is not forced on a fixed structure.

Note that for the prediction of antigenic distances, other well-

suited methods also exist [26,27].

As we infer a tree topology from nucleotide sequences, branches

might be without any amino acid changes and thus lack

explanatory power if they are assigned antigenic weights. This

allows accommodating measurement errors in HI titers in

antigenic branch weights or variation caused by changes in other

viral antigens, such as the surface glycoprotein neuraminidase. HI

titers are imprecise, as they reflect two-fold dilutions instead of

quantitative estimates, and are often highly variable, with

measurements varying between experiments and laboratories.

For instance, the two isolates A/Finland/220/92 and A/Stock-

holm/20/91 have the same nucleotide sequence, and hence no

changes on their respective tip branches (tips), but differ strongly in

their HI values, where A/Finland/220/92 shows an antigenic

distance from the same antisera that is, on average, ,1.0 antigenic

units (a two-fold dilution) larger than that of A/Stockholm/20/91.

Note that, in general, even though neuraminidase may influence

the HI titers, the WHO recommends application of the HI assay

under conditions where its influence is negligible [28]. To

incorporate a possible influence of neuraminidase activity one

may use concatenated viral sequences (hemagglutinin and

neuraminidase) and fit antigenic distances on a tree topology

inferred from these sequences. If doing so, one should first ensure

that reassortment events have not resulted in larger topological

changes between the HA and NA genealogies during the analyzed

time period [6,29]. In case of larger topopological changes due to

segment reassortment, a joint tree is inferred for data which

cannot be described by a tree-like evolutionary history, overall,

and the results are likely to be only partially informative.

On average, internal branches without amino acid changes have

weights of 0.30 (up) and 0.21 (down), respectively. Less noise

Author Summary

The molecular evolution of any organism is described by
changes in the genotype resulting from genetic drift or
selection to maintain or establish fitness under the given
environmental conditions. Identification of phenotype-
defining changes and their distinction from (near-) neutral
(‘hitchhikers’) ones is a fundamental challenge in genome
research. The standard approach involves time- and cost-
intensive mutation experiments, which are typically low
throughput, due to their experimental nature. We have
developed a computational method for the inference of
phenotypic impact of genotypic changes that is applicable
to any system, within or across species, where homolo-
gous genetic sequences and associated pairwise pheno-
type distances are available. We demonstrate the accuracy
of our method by application to the human influenza A
(H3N2) virus. This exemplary system is of particular
interest, as recognizing changes in the antigenic pheno-
type and a viral strains’ capability to evade pre-existing
host immunity is important for the production of efficient
vaccines. We accurately identified known sites and amino
acid changes with antigenic impact over 35 years of
evolution, and provide further details on individual
antigenically relevant changes in the evolution of influenza
A (H3N2) viruses.

Genotype-Phenotype Relationships of Influenza A
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occurs on the tree trunk, which represents the viral lineage

surviving over time, with 0.19 (up-weight) and 0.19 (down-weight)

assigned, on average. Interestingly, the average antigenic weight of

branches with amino acid changes is higher on the tree trunk than

for all internal branches (up = 0.52, down = 0.61 vs. up = 0.44,

down = 0.46). This is in agreement with an expected fitness

advantage for viral isolates with larger antigenic changes, and

therefore preferential fixation and establishment appear as

changes on the tree trunk.

Antigenic types resolved in the tree
Antigenic types are clearly distinguished by high average

weights ($1.0 antigenic units) in the antigenic tree (see Materials

& Methods). Exclusion of branches leading to subtrees with three

or less isolates, representing undersampled groups, identified nine

branches defining type transitions (Table 1) and ten antigenic

types. Abbreviations for these (HK68, EN72, VI75, TX77, SI87,

BE89, BE92, WU95, SY97 and FU02) are used as in Smith et al.

(2004) [5]. SY97, for instance, denotes antigenically similar A/

Sydney/5/1997-like strains. The average antigenic distances of

these branches range from 1.0 (SI87–BE89) to 2.6 antigenic units

(WU95–SY97; Table 1, Figure 1A). Eight of the nine type

transition branches are on the trunk of the tree, which represents

the influenza A (H3N2) lineage surviving over time. An exception

is BE89, which is located in a subtree that has become extinct.

The setting of the threshold parameter for identification of

antigenic types in the tree influences the performance of our

method (Table S5). The selected threshold of 1.0 antigenic unit

identified nine of ten antigenic type transitions found by antigenic

cartography [5]. The TX77–BA79 transition was not predicted

with our method in this setting, as the weights of the corresponding

branch were slightly below the threshold (up-weight 1.4, down-

weight 0.0). Our method resolves antigenically relevant changes

between successive antigenic types in several cases to several

successive branches. Therefore, a higher threshold of 2.0 antigenic

units for individual branches (a four-fold dilution), as suggested to

distinguish antigenically diverse viral strains [11], does not allow

distinction between different antigenic groups (only if the

transition is not well resolved in the data and the antigenic impact

of multiple changes is summarized on a single branch). On the

other hand, choosing a lower threshold of 0.5 antigenic units

selects twelve additional type-defining branches (Table S5,

Figure S3). Among these is the TX77-BA79 type-defining branch

that corresponds to an antigenic cluster transition according to

antigenic cartography [5]. Furthermore, four of these additional

branches define antigenic subtypes that were distinct enough to

warrant a vaccine update. A more detailed discussion of type-

defining branches at the threshold of 0.5 antigenic units can be

found in the supporting material (Text S1). Note, that the choice

of the threshold distance is equivalent to find a minimal antigenic

distance to distinguish groups of antigenically and genetically

similar viral isolates. This is different from the question whether

two specific viral isolates are antigenically similar or not, although

both tasks are related to each other.

For the nine jointly identified type transitions, seven agree 100%

in terms of the assigned viral isolates. For the BE89–BE92

transition, the isolate A/Netherlands/938/1992 is placed within

BE92 using antigenic cartography and as preceding BE92 by our

technique. Isolate assignment differs the most for the BE92–WU95

transition. This is likely to be caused by multiple occurrences of

Figure 1. Antigenic tree for influenza A (H3N2) viruses. Branch lengths represent antigenic distances (maximum of up- and down-weights for
each branch) inferred from a maximum likelihood tree of 258 hemagglutinin sequences of seasonal influenza A (H3N2) virus isolates and serological
data. (A) Colored edges show antigenic type transitions, with internal branches with high average antigenic weights ($1.0 antigenic units). Gray-blue
edges represent high weight branches leading to a subtree with three isolates or less, representing low abundance types. (B) Isolates are color-coded
by antigenic clusters according to Smith et al. (2004). Three isolates (A/Christchurch/4/85, A/Hong Kong/34/90 and A/Netherlands/172/96) are only
present as antisera and were not assigned a cluster label.
doi:10.1371/journal.pcbi.1002492.g001
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N145K, which is, according to Smith et al. (2004) [5], the change

that defines the BE92–WU95 transition and has a major antigenic

impact in that context (2.6 antigenic units). It was already noted by

Smith et al. that isolates classified by antigenic cartography within

WU95 are placed in the vicinity of BE92 in a tree. Our analysis

agrees with these findings (Figure 1B). We found that for each

branch adjacent to these disagreeing placements, N145K is

present (isolates of the antigenic type WU95 located in the area

of BE92), with large branch-associated antigenic weights (an

average up-weight of 1.3), similar to the type-defining branch of

WU95 (up-weight 1.5). This indicates that N145K has a large

antigenic impact for all these isolates and, interestingly, was

evolutionary volatile during that period.

Analysis of up- and down-weights for type-defining branches

allows us to determine a direction for antigenic impact. For

example, the branch separating HK68 and EN72 has a weight of

2.6 (up)/0.4 (down), which means that isolates of HK68 are

antigenically more similar to sera raised against EN72 than vice

versa. The opposite example represents the SY97–FU02 transi-

tion, where the corresponding branch weight is 1.8 (up)/3.2

(down), which means that SY97 isolates are more distant from

antisera raised against FU02 than vice versa. Both examples are in

agreement with results published by the WHO [30,31].

As influenza A evolution in the analyzed data set is characterized

by an underlying cluster structure, both antigenic types and antigenic

clusters allow determination of cluster-difference or antigenic type

associated substitutions. However, antigenic types (inferred by our

method) and antigenic clusters (inferred by antigenic cartography)

have different interpretations. Antigenic types represent sets of viral

isolates showing similar evolutionary (defined by the phylogenetic

tree) and antigenic (defined by the antigenic branch lengths) patterns.

Antigenic cluster are solely defined by antigenic patterns and are

determined by a k-means clustering approach. In datasets with less

well-defined cluster structure, the k-means approach would hardly

result in robust clusters and identification of phenotype-associated

changes would be more difficult, whereas our method would likely be

able to resolve phenotype-genotype relationships up to the level of

resolution supported by the data.

Substitutions in antigenic type transitions
Amino acid changes from eight of nine type transitions

identified by both antigenic cartography and the antigenic tree

include the cluster difference substitutions described in Smith et al.

(2004) [5] (Table 1). Smith et al. define ‘cluster difference

substitutions’ as changes in conserved residues between two

consecutive antigenic clusters (conserved meaning present in at

least n21 isolates within a cluster of size n). For five transitions, all

cluster difference substitutions are on the type-defining branch

(BA79–SI87, SI87–BE89, BE92–WU95, WU95–SY97 and SY97–

FU02). For three transitions (EN72–VI75, VI75–TX77 and

HK68–EN72), the substitutions were resolved to several branches

with different antigenic branch weights, which allows a more fine-

grained distinction. The 12 substitutions of the EN72–VI75

transition were assigned to two consecutive branches, one with

high and one with moderate antigenic weights. The branch with

S145N, Q189K, I217V and I278S has a high antigenic weight,

indicating that one or several of these have a very large antigenic

impact. For the HK68–EN72 and the VI75–TX77 transitions, the

substitutions were resolved to two consecutive branches with high

and moderate antigenic weights, too.

For BE89–BE92, the amino acid changes differ from cluster

difference substitutions. Here, the cluster difference substitutions

Table 1. Internal branches with high average antigenic weights ($1.0 antigenic units) and according antigenic types in
comparison to antigenic clusters identified by antigenic cartography (branches leading to three or less isolates are excluded).

Type
transition

Branch amino
acid changes

Weights
(up/down/avg) Trunk

Additional amino
acid changes

Weights
(up/down/avg) Trunk

Smith
et al.

HK68–EN72 T122N, G144D, T155Y, R207K 2.6/0.4/1.5 x L3F, N188D 0.9/0.2/0.5 x 3.4

EN72–VI75 S145N, Q189K, I217V, I278S 0.6/2.4/1.5 x N53D, N137S, L164Q, F174S,
N193D, R201K, I213V, I230V

0.0/1.0/0.5 4.4

VI75–TX77 K50R, N137Y, G158E, M260I 0.6/2.8/1.7 x E82K 1.0/-/0.5 3.4

TX77–BA79 N133S, P143S, G146S, K156E,
T160K, Q197R, V217I

1.4/0.0/0.7 x 3.3

D2N, N53D, N54S, I62K, D172G, V244L 0.0/0.3/0.2 x

BA79–SI87 G124D, Y155H, K189R 0.2/3.3/1.7 x 4.9

SI87–BE89 G135E, N145K 2.0/0.0/1.0 4.6

BE89–BE92 I214T 1.4/1.1/1.3 x E156K, E190D, N193S, L226Q, T262N 1.0/0.0/0.5 x 7.8

S133D 0.0/0.4/0.2 x

BE92–WU95 K135T, N145K, N262S 1.5/1.1/1.3 x 4.6

WU95–SY97 K62E, V144I, K156Q, E158K,
V196A, N276K

2.5/2.6/2.6 x 4.7

SY97–FU02 L25I, R50G, H75Q, E83K, A131T,
H155T, Q156H, S186G, V202I,
W222R, G225D

1.8/3.2/2.5 x 3.5

Branch amino acid changes indicate the corresponding branches, where changes in bold were also found by Smith et al. (2004), and weights give the respective up,
down and average branch weights. Multiple branches that can be mapped to a single antigenic type are separated by dashed lines. Additional amino acid changes
indicate branches that carry further mutations found to be cluster transition substitutions by Smith et al. (2004). For some branches, the down-weight was not defined,
as no antiserum was in the respective subtree. Branches that can be mapped to multiple type transitions are shown at the first mapping only. Smith et al. (2004) present
average distances between consecutive antigenic clusters, whereas average antigenic branch weights give a minimum distance between consecutive antigenic types.
Note that on branches with multiple changes not all changes have to contribute to the antigenic weight, though their individual impacts could not be resolved with the
dataset (unsampled viral isolates).
doi:10.1371/journal.pcbi.1002492.t001
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are found on branches that precede the type-defining branch. The

type-defining branch carries the change I214T, while the cluster

difference substitutions map to two preceding branches with lower

antigenic weights. I214T has not been mentioned in the literature

before and is reversed downwards in the tree on a branch without

any assigned antigenic weight. Thus, either the measurements here

were too noisy to resolve the correct branch, or this position has an

antigenic impact as an epistatic effect, allowing for the preceding

changes to become antigenically effective. Support for a potential

epistatic effect of this change can be found by detailed analysis of

individual HI measurements for two isolates (A/Hong Kong/34/

1990 and A/Netherlands/938/1992), which already have the

preceding branch changes for BE92 but not the I214T change. On

average, all antigens labeled BE92 by Smith et al. have a large

antigenic distance (greater 4.7 antigenic units) from the antiserum

A/Hong Kong/34/1990. A/Netherlands/938/1992 is similar to

A/Hong Kong/34/1990, with an antigenic distance of 0.7 to this

antiserum.

Four branches with type transitions (SI87–BE89, BE92–WU95,

WU95–SY97 and SY97–FU02) include additional changes besides

the cluster difference substitutions. For SI87–BE89, the change

G135E is present, in addition to N145K. G135E appears twice

more in the tree, with an average up-weight of 0.64. This indicates

that it may also have an antigenic effect in SI87–BE89. For BE92–

WU95, the changes K135T and N262S are present on the type-

defining branch, in addition to N145K. Both are located in the

antibody binding sites [32] and became fixed following their

appearance on this trunk branch.

In a recent (unpublished) study, Koel et al. (Koel et al.; Antigenic

evolution of influenza A (H3N2) virus is dictated by 7 residues in the

hemagglutinin protein; 2nd International Influenza Meeting, Münster; 2011)

determined by site-directed mutagenesis changes at seven positions

in the HA protein (145, 155, 156, 158, 159, 189 and 193)

responsible for significant phenotypic diversity in the evolution of

influenza A (H3N2). We also find that for eight of the nine

identified type-defining branches changes occur at five of these

positions (no changes at positions 159 and 193 are involved in

antigenic type transitions), which further confirm the relevance of

these sites for antigenic evolution (Table 1). Note that, besides

these five residues changes at 23 other positions map to the type-

defining branches which not all have to contribute to the antigenic

weight, though their individual impacts could not be further

resolved with the dataset (unsampled viral isolates).

Antigenic impact of individual amino acid changes and
sites

We examined amino acid changes with strong antigenic

relevance according to (i) the impact of all changes at a specific

site and (ii) the impact of a specific change. In the first case, we

determined all positions where at least three changes occurred,

and the mean and median of the branch weights (up- or down-

weight) were not less than one antigenic unit. Missing weights, e.g.

where down-weights were not defined because no antiserum was

raised for the corresponding subtree, were excluded from the

calculations. Seven positions, 112, 137, 144, 155, 156, 189 and

208, satisfy these criteria (Table S2 and S3). All except position

112 are part of the antibody binding sites of HA1 [32]. Positions

137, 155 and 156 are also part of the receptor binding site [33].

Positions 155 and 189 may be particularly important, as all

changes occur on the tree trunk and are part of type transitions.

The importance of H155T and Q156H was also verified for the

FU02 transition [34]. For positions 137, 144, and 156, several

changes map to the tree trunk (three of six, four of nine, and one of

three, respectively), indicating their antigenic relevance. Changes

at position 112 explain single isolate variations, as all occur on tips.

The antigenic impact of these changes may be due to hitchhiking

effects, as they occur only in combination with other changes.

Next, we identified changes occurring at least three times in the

tree with a mean and median antigenic weight (up- or down-

weight) of more than one unit (Table S4). Again, missing weights

were excluded from the calculations. Five changes satisfy these

conditions. Four of these (K62E, N145K, L226Q and T248I)

occur at positions in antibody binding sites [32]. N145K was

experimentally verified to have a large antigenic impact [5]. K62E

is part of the WU95–SY97 transition and has a high weight

assigned on two further tips. Finally, of the eight occurrences of

L226Q, seven appear between 1990 and 1996 for isolates of the

BE92 type, indicative of a fitness effect for this antigenic type in

particular. Interestingly, the reverse change, Q226L, is known to

play a role in receptor binding specificity for the adaptation of bird

viruses to the human host [35–38]. T248I had a high weight only

in combination with other changes, indicating a potential epistatic

effect. Besides these four changes, we identified V112I, which only

appeared on tips and explains single isolate variations.

We searched for changes with moderate antigenic impact (more

than 0.5 antigenic units) which identified seven further changes

(Table S2). G135E is part of the SI87–BE89 transition (see above)

and E156K was shown to impact immune escape in mice [39].

Both are located in the antibody binding sites [32]. For several

additional changes, the importance was not immediately obvious,

as they (i) occurred only in combination with other changes, (ii)

exhibited a high weight only in combination with other changes

(Q80K), (iii) only appeared on tips (S186I, S199P and V226I) or

(iv) had high weights assigned only on tips and low weights on

internal branches (A138T). In cases (i) and (ii), this may be the

result of epistatic or hitchhiking effects, where epistasis may be

more likely for (ii). Case (iii) changes are rare and explain single

isolate sequence variations. This also seems to be likely in case (iv),

where the effect on the tips is amplified due to other effects or

amino acid changes. Notably, all case (iii) changes are also

categorized as case (i) changes. Of all changes, E156K occurs once

on the tree trunk. All changes appear at several points in time for

different antigenic types, which indicates a potential antigenic

influence. Furthermore, for five changes (G135E, A138T, E156K,

S186I and V226I), the respective site was identified as being under

positive selection [17].

In a recent (unpublished) study, Koel et al. (Koel et al.; Antigenic

evolution of influenza A (H3N2) virus is dictated by 7 residues in the

hemagglutinin protein; 2nd International Influenza Meeting, Münster; 2011)

showed by site-directed mutagenesis that changes at seven

positions in the HA protein (145, 155, 156, 158, 159, 189 and

193) are responsible for large antigenic changes, all except two are

part of antigenic cluster transitions, over the 35 year time period.

Of these, 155, 156 and 189 are also identified as generally

important by our default method. If single isolate variations are

excluded from the analysis, position 158 is also identified. For the

other two positions (145 and 159) we identified changes with high

antigenic weights (e.g. N145K and S159Y; Table S2). For

position 193, evidence of antigenic importance could be found in

our analysis if using ancestral character state reconstruction with

maximum parsimony (see Supplement). Thus, our results also

support the relevance of the sites proposed by Koel et al. (2011),

even though they are not entirely comparable due to differences in

experimental set up. Koel et al. analyzed prototype viruses with the

amino acid consensus sequences of antigenic clusters and

introduced only the specific changes between these prototype

viruses, while our method also considers genetic and antigenic

variations between other viral strains of the dataset.
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Discussion

The antigenic impact of amino acid substitutions in the

antigenic evolution of influenza A viruses can reliably be

determined by time- and cost-intensive experimental analysis. As

an alternative, we present a computational technique for inferring

the antigenic impact of amino acid changes. Our method

determines antigenic branch lengths for a given tree topology by

fitting pairwise antigenic distances between isolates onto the tree

with LSO. For inference of the tree, any state-of-the-art method

can be used. A comparison between maximum likelihood,

maximum parsimony and neighbor-joining trees showed that all

resulted in similar prediction errors (leave-one-out absolute

prediction error: 0.86, 0.87 and 0.87 antigenic units, respectively;

correlation between predicted and measured by Pearson’s

correlation coefficient was 0.86 for all three methods). The

antigenic impact of the branch-associated amino acid changes is

determined by reconstructing the branch-associated amino acid

changes with maximum likelihood [40]; other techniques, such as

maximum parsimony or Bayesian reconstruction, could also be

used [41,42]. A comparison between maximum likelihood and

maximum parsimony ancestral character state reconstruction

showed that these differed only in minor aspects, with the

maximum likelihood reconstruction being an intermediate be-

tween accelerated and delayed transition in case of ties with

maximum parsimony reconstruction. However, we did observe

that more trunk branches were not assigned changes based on

maximum likelihood reconstruction, which decreased the inter-

pretability of antigenic weights in some cases.

We studied the antigenic evolution of the influenza A (H3N2)

virus from 1968 to 2003 with antigenic trees inferred from data

described in Smith et al. (2004) [5]. This allowed us to identify

areas and branches in the tree corresponding to known antigenic

types and transitions between these types. Analysis of antigenic

weights identified seven sites in the HA1 domain of HA that were

repeatedly associated with high antigenic impact. Additionally, our

method identified five amino acid changes with high antigenic

weights at several places in the antigenic tree. The sites and

substitutions identified by our method may be of particular

relevance for influenza A (H3N2) virus antigenic evolution, which

has not been described before. For six of the seven positions found

by site-directed mutagenesis to defining antigenic clusters for the

35 year time period (Koel et al.; Antigenic evolution of influenza A

(H3N2) virus is dictated by 7 residues in the hemagglutinin protein; 2nd

International Influenza Meeting, Münster; 2011), changes with high

antigenic weights were identified with our technique, thus further

supporting their relevance for influenza A (H3N2) evolution. The

additional sites detected by our method could be more relevant for

genetic and antigenic variations between viral strains in our data

set not resulting in antigenic cluster transitions. These were not

analyzed by Koel et al., who characterized antigenic differences of

prototype viruses with the amino acid consensus sequences of the

antigenic clusters.

As the dataset covers 35 years of viral evolution with a relatively

small number of isolates, not all substitutions could be resolved to

individual branches and their individual antigenic impacts

inferred. A denser sampling of data points would allow a more

precise decoding of the genotype–antigenicity relationships, as

viral isolates were unevenly sampled across the 35 years. The

median number of viral isolates available per year between 1989

and 1997 was 15, whereas for the remaining years only three

isolates per year were sampled (median). This unequal sampling is

reflected in resolution of mutations to specific branches. Between

1989 and 1997, 19% of the branches with assigned changes carry

three or more changes, whereas for the other years this is the case

for 37% of the branches.

Our method allows inference of genotype to phenotype

relationships from genetic sequences and associated pairwise

phenotypic distances between individuals of a population or

different taxa. We demonstrated the usefulness of this technique

for analyzing the antigenic impact of amino acid changes in the

evolution of human influenza A. An application of our method

could be in influenza A virus surveillance. Here, it could be used to

identify isolates and associated changes with large antigenic

impact, which need to be identified for vaccine strain updates

prior to an antigenic type transitions [43]. However, our method is

not restricted to the analysis of influenza viruses or antigenic

distance information but can be applied to the study of any system,

be it within or across species, where homologous genetic sequences

and associated pairwise phenotype distances are available. The

software is available upon request from the authors.

Materials and Methods

Inferring the phenotypic impact of amino acid changes
in protein evolution

Our idea is to adapt the least-squares optimization (LSO)

technique of Cavalli-Sforza and Edwards [44] for phylogenetic

inference to the problem of identifying the phenotypic impact of

amino acid changes in protein evolution. The original method of

Cavalli-Sforza and Edwards [44] identifies branch weights

representing genetic distances according to the least-squares

criterion for a tree topology. We applied this technique to infer

‘antigenic trees’, representing the antigenic evolution of the major

surface protein of human influenza A virus (H3N2) over a 35-year

period. In our adaptation, branch lengths represent antigenic

distances inferred from HI assay data for human influenza A

viruses and a maximum likelihood tree of the HA1 domain of

hemagglutinin. Reconstruction of the amino acid changes

associated with the branches of the tree allows us to infer the

antigenic impact of the branch-associated amino acid changes. If

sufficient data is available to resolve individual changes to

individual branches, our method returns an estimate of the

antigenic impact of the individual exchanges.

In LSO, one minimizes the sum of squares between the given

distances D and predicted distances d:

Q~
Xn

i~1

X
j:j=i

wi,j Di,j{di,j

� �2
,

where W is the weight matrix for the different error terms, which

were set to one here. The predicted distances di,j are the sum of the

branch weights on the path between leaf i and leaf j. Here,

di,j~
P
k

xi,j,kvk, where xi,j,k equals one if branch k is on the path

between leaves i and j in the phylogenetic tree and zero otherwise.

Thus, we search for the best setting for the branch weights vk.

While evolutionary distances are usually used in this approach,

here, we map antigenic distances to represent branch-specific

weights. To restrict the branch weights to positive values, we used

the Lawson–Hanson algorithm for non-negative LSO [45].

Because the antigenic distances here are asymmetric (i.e. di,j=dj,i)

and because the antigen and antiserum raised against the same

viral strain do not necessarily have the same position in the

antigenic space [13], we introduce the concept of up–down trees.

In up–down trees, viral strains are mapped to the leaves

representing the corresponding antigen as well as the antiserum,

and every branch is assigned two independent weights, the up- and
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the down-weight. Every path between two taxa i and j in the tree

can be separated into the set of branches from taxon i to the least

common ancestor (LCA) of i and j, and the branches from taxon j

to the LCA. Now, the path between antigen i and antiserum j

involves only the up-weights on branches from taxon i to the LCA

and only the down-weights on branches from taxon j to the LCA

(Figure 2).

Performance measures
To evaluate how accurately antigenic distances were fitted onto

the tree, we used four performance measures in leave-one-out

cross validation experiments: mean absolute error (MAE), root

mean squared error (RMSE), standard deviation (SD) and

Pearson’s correlation coefficient (CC). In leave-one-out cross

validation, an antigenic tree is inferred from all but one antigenic

distances and then is applied to predict the left out distance. A

predicted distance corresponds to the antigenic path length

between the two respective isolates in the tree (see above). This

was repeated for every antigenic distance. Given n observed

distances Di,j and predicted distances di,j the performance measures

are defined as follows:

MAE~
1

n

X
i,j

Di,j{di,j

�� ��,

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i,j

(Di,j{di,j)
2

s
,

SD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

(xi{m)2

s
with m~

1

n

X
i

xi and xi~ Di,j{di,j

�� ��,

CC~

P
i,j

Di,j{mD

� �
di,j{md

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,j

Di,j{mD

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i,j

di,j{md

� �2
r

with mD~
1

n

X
i,j

Di,j and md~
1

n

X
i,j

di,j :

Up-weights and down-weights in the tree
Antigenic branch lengths are realized as two independent

weights, allowing for a detailed analysis of the underlying structure

of the antigenic data. Up-weights represent the antigenic distance

from isolates below this branch to every other isolate outside of this

subtree, whereas down-weights represent distances from isolates

outside of the subtree to the isolates below this branch. Thus, the

branch weight types reveal different properties of the subtree. Let e

be the branch going upwards from the least common ancestor of

an antigenically homogenous group of viruses (a type) in the tree.

The up-weight of e defines the degree to which the antigenic type

is separated from other antigenic types according to antisera in

other parts of the tree, i.e. how well antigens of this type are

neutralized by antisera raised against other types. The down-

weight of e defines the degree to which the antigenic type is

separated from other types based on antisera within this part of the

tree, i.e. how well other antigenic types are neutralized by antisera

of this type. The antigenic weights of two types often differ, which

is not surprising, as antigenic distances are not symmetric. For tip

branches, the two weights define the different behavior of the

antiserum and antigen of a viral strain. The up-weight reflects the

antigenic properties of the isolate, whereas the down-weight

reflects the antigenic weight of the antiserum raised against the

viral isolate.

In case no antiserum is present in a subtree, down-weights are

undefined and assignment of up-weights becomes ambiguous as

they form linear combinations. To resolve this, optimization is

done only on the up-weights leading to leaves in the according

subtree. Afterwards, up-weights of the internal branches are set to

the minimum of the up-weights on the branches leading to the

respective child nodes (these up-weights are accordingly reduced

by the minimum) in a bottom-up traversal. The rationale behind

this is that if no additional information is present antigenic weights

should rather be a common feature of a subgroup of taxa rather

than single isolate variation for every taxon in the subgroup.

Phylogenetic inference
Hemagglutinin (HA) sequences from 258 seasonal human

influenza A (H3N2) virus isolates from 1968 to 2003 and that

were used by Smith et al. (2004) [5] were downloaded from the

Influenza Virus Resource (IVR) [46] (Table S1). Alignments of

DNA and protein sequences, restricted to positions 1 to 363 (sites

without missing data that appeared in more than 80% of the

sequences), were created with Muscle [47] and manually curated.

Trees were inferred with PhyML v3.0 [48] under the general time

reversal GTR+I+C4 model, with the frequency of each substitution

type, the proportion of invariant sites (I) and the Gamma

distribution of among-site rate variation, with four rate categories

Figure 2. Schematic drawing demonstrating the up/down tree
concept. For the two taxa t2 and t4, no antiserum is present, and thus,
b3 and b6 only have up-weights. A path from t1 to t3 would use the up-
weights of branch b1 and b2, and the down-weights of branch b4 and
b5. Similarly, the path from t2 to t1 would use the up-weight of branch
b3 and the down-weight of branch b2. Notably, the path from t1 to t1,
namely the antigenic distance from antigen t1 to the antiserum raised
against strain t1, would use the up-weight and the down-weight of
branch b1.
doi:10.1371/journal.pcbi.1002492.g002
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(C4), estimated from the data. Subsequently, the tree topology and

branch lengths of the maximum likelihood tree inferred with

PhyML were optimized for 200,000 generations with Garli

v0.96b8 [49]. Isolate A/duck/33/1980 was used as outgroup to

root the tree and subsequently removed from the further analysis.

For placement of amino acid changes on the tree branches,

protein sequences for the HA1 domain of HA (excluding the

additional sites used for a higher resolution of the tree during the

tree inference step) were assigned to the leaves of the tree inferred

from nucleotide sequences. Ancestral character states were

reconstructed under the maximum likelihood criterion using

PAML v4.5 [50] under the JTT+C4+F model [51], with the

frequency of each amino acid and the Gamma distribution of

among-site rate variation, with four rate categories (C4), estimated

from the data. Based on the reconstructed ancestral sequences for

the internal nodes and leaf node sequences, amino acid changes

were assigned to the individual tree branches.

Antigenic data
HI assay data from Smith et al. (2004) was used and normalized

according to these researchers’ methods [5]. For each antigen i,

antiserum j and the corresponding HI titer hi,j, the distance was set

as di,j = log2(max(hj)/hi,j), where max(hj) is the maximum entry for

antiserum j. The dataset comprises 4,215 measured values

between 273 antigens and 79 reference sera. As not all strains

were available in the IVR, 18 antigens and 9 reference sera could

not be mapped to a genetic sequence and were excluded from the

analysis. Additionally, threshold values (e.g. ,10, indicating the

lower bound in the HI assay below which dilutions are not

measured) were excluded from the analysis, as these values define

only long-distance relationships and we did not want to introduce

a potential bias by setting these entries to fixed values. In case of

multiple antisera raised to the same viral strain, median values of

the distances were used.

Definition of antigenic types
Antigenic types in the antigenic tree can be distinguished by

selecting type-defining branches according to a threshold distance.

The threshold was set to 1.0 antigenic units for average weights

(average of up- and down-weights), such that all branches are

selected whose average weights are at least twice as high as the

average weights of all internal branches. To exclude undersampled

groups, all branches leading to subtrees with three or less isolates

were excluded.

Supporting Information

Figure S1 Antigenic tree with branch lengths representing

antigenic distances (maximum of up- and down weights for each

branch) inferred from a maximum likelihood tree of 258

hemagglutinin sequences of seasonal influenza A (H3N2) virus

isolates and serological data. Isolates are color-coded by antigenic

clusters according to Smith et al. (2004). Three isolates (A/

Christchurch/4/85, A/Hong Kong/34/90 and A/Netherlands/

172/96) are only present as antiserum and were not assigned a

cluster label. Changes on terminal branches are colored in black,

whereas changes on internal branches are colored in blue.

(PDF)

Figure S2 Antigenic tree with branch lengths representing

antigenic distances (maximum of up- and down weights for each

branch) inferred from a maximum likelihood tree of 258

hemagglutinin sequences of seasonal influenza A (H3N2) virus

isolates and serological data. Isolates are color-coded by antigenic

clusters according to Smith et al. (2004). Three isolates (A/

Christchurch/4/85, A/Hong Kong/34/90 and A/Netherlands/

172/96) are only present as antiserum and were not assigned a

cluster label. Branch labels depict assigned weights (up/down).

(PDF)

Figure S3 Antigenic tree for influenza A (H3N2) viruses. Branch

lengths represent antigenic distances (maximum of up- and down-

weights for each branch) inferred from a maximum likelihood tree

of 258 hemagglutinin sequences of seasonal influenza A (H3N2)

virus isolates and serological data. Colored edges show antigenic

type transitions, with internal branches with high average

antigenic weights ($1.0 antigenic units, coloring according to

Figure 1A) or moderate antigenic weights $0.5 antigenic units

(coloring as gradient from the higher order antigenic type).

Subscript 2 indicates that a branch was a direct successor of the

according type-defining branch (except of branch (i), who is a

predecessor of the according type-defining branch). Subscript sub

indicates a subdivision of an antigenic type without a direct

matching of a reference strain.

(TIF)

Table S1 GenBank accession numbers of the used hemagglu-

tinin sequences.

(DOC)

Table S2 Summary of changes in the phylogenetic tree. Branch

amino acid changes refer to the set of changes mapped to a specific

branch. For some branches, the down-weight was not defined, as

no antiserum was in the respective subtree.

(DOC)

Table S3 Positions with multiple changes in the phylogenetic

tree and high antigenic weights (mean and median $1 antigenic

unit, highlighted in bold). ‘Tip’ indicates leaf branches.

(DOC)

Table S4 Changes with multiple occurrences in the phylogenetic

tree and high antigenic weights (mean and median $1 antigenic

unit). ‘Tip’ indicates leaf branches. Down-weights are omitted, as

all changes were identified using up-weights.

(DOC)

Table S5 Type-defining branches selected by different thresh-

olds for average branch weights. Branches (1)–(9) were selected as

type-defining branches at a threshold distance of 1.0 antigenic

units. Branches (i)–(xii) reveal further subdivision of antigenic types

at a threshold distance of 0.5 antigenic units. Asterisks mark

branches whose sibling branch leads to a single isolate. Subscript 2

indicates that a branch is a direct successor of a type-defining

branch (except for branch (i), which is a predecessor of the type-

defining branch). Subscript sub indicates a subdivision of an

antigenic type without a directly known reference strain.

(DOC)

Text S1 Influence of threshold distance on type-defining

branches.

(DOC)
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