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Abstract: Microaxial left ventricular assist devices (LVAD) are increasingly used to support patients
with cardiogenic shock; however, outcome results are limited to single-center studies, registry data
and select reviews. We conducted a systematic review and meta-analysis, searching three databases
for relevant studies reporting on microaxial LVAD use in adults with cardiogenic shock. We conducted
a random-effects meta-analysis (DerSimonian and Laird) based on short-term mortality (primary
outcome), long-term mortality and device complications (secondary outcomes). We assessed the
risk of bias and certainty of evidence using the Joanna Briggs Institute and the GRADE approaches,
respectively. A total of 63 observational studies (3896 patients), 6 propensity-score matched (PSM)
studies and 2 randomized controlled trials (RCTs) were included (384 patients). The pooled short-
term mortality from observational studies was 46.5% (95%-CI: 42.7–50.3%); this was 48.9% (95%-CI:
43.8–54.1%) amongst PSM studies and RCTs. The pooled mortality at 90 days, 6 months and 1 year
was 41.8%, 51.1% and 54.3%, respectively. Hemolysis and access-site bleeding were the most common
complications, each with a pooled incidence of around 20%. The reported mortality rate of microaxial
LVADs was not significantly lower than extracorporeal membrane oxygenation (ECMO) or intra-aortic
balloon pumps (IABP). Current evidence does not suggest any mortality benefit when compared to
ECMO or IABP.

Keywords: Impella; cardiogenic shock; ventricular assist device; meta-analysis

1. Introduction

The incidence of cardiogenic shock (CS) has increased in recent years, yet long-term
mortality has not substantially improved in the last 20 years [1]. It is associated with signifi-
cant multi-organ failure and in-hospital mortality reaching in excess of 60% [2,3]. Amongst
survivors, up to 20% are re-admitted within 30 days [1]. Acute myocardial infarction is
the most common cause of CS and accounts for 10% of patients with CS [1,4]. A spectrum
of disease exists in cardiogenic shock—the Society of Cardiovascular Angiography and
Interventions (SCAI) classifies CS from Stages A (at-risk) to E (in extremis). Within Stage
C (classic) CS, patients typically present with hypoperfusion requiring either inotropes or
temporary circulatory support devices [5]. Various temporary circulatory support devices
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are available for these patients—this ranges from counterpulsation devices such as the
intra-aortic balloon pump (IABP), percutaneously inserted left ventricular assist devices
(pLVADs, including microaxial and centrifugal), paracorporeal VADs and extracorporeal
membrane oxygenation [6,7].

Despite the wide range of options for temporary circulatory support, outcomes remain
variable [7–13]. Microaxial LVADs placed retrogradely across the aortic or pulmonary
valves [7,14] are increasingly being used to support patients with cardiogenic shock of
various etiologies [14–18], or as a “bridge to decision” in end-stage heart failure [19]. They
reduce the ventricular afterload and ventricular end-diastolic pressure, and increase the
mean arterial pressure [20] and cardiac output [21]. Smaller percutaneous devices have
been authorized for use for up to 4 days, [22] whereas larger surgically inserted devices are
authorized for use for up to 14 days [23].

In addition to the multiple device options, existing studies and reviews investigating
its use report favorable survival outcomes and safety outcomes in patients with CS [9,24].
However, the outcomes of microaxial LVADs based on the various types and different
etiologies of CS have not been elucidated in detail [24]. In addition, potential predictors
of mortality have yet to be explored. We conducted this systematic review and meta-
analysis to investigate the short- and long-term mortality outcomes and device-related
complications of microaxial LVADs in all etiologies of CS, and to explore the potential risk
factors associated with mortality.

2. Methodology
2.1. Search Strategy and Selection Criteria

This review was registered on PROSPERO (CRD42020202807) and conducted in ac-
cordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) statement (Table S1) [25]. We searched MEDLINE, Embase and Scopus databases
from 1 January 2003 to 13 July 2022 using the keywords ‘Impella’ and ‘cardiogenic shock’
(Table S2). We included studies published in English, reporting on ≥10 non-overlapping
adult patients (>18 years) receiving microaxial LVADs for CS. In cases of overlapping
patient data, we included the larger study. We excluded studies reporting on animals and
where device was inserted prophylactically or electively during percutaneous coronary
intervention. We also excluded those studies where outcomes were not stratified by device
option in CS, and national or international registry databases that could contribute to
duplication of patient data.

2.2. Data Extraction

Data collection included study design (author and study name, year of publication,
country, setting, number of patients), patient demographics (age, gender, comorbidities),
pre-LVAD clinical characteristics (body mass index, left ventricular ejection fraction [LVEF],
comorbidities), etiology of CS (acute myocardial infarction cardiogenic shock [AMICS] or
non-myocardial infarction cardiogenic shock [NMICS]), device characteristics (mode of
insertion, cannulation access, concomitant extracorporeal membrane oxygenation [ECMO]
use, duration of support) and outcomes of interest (in-hospital mortality, 30 days, 90 days,
6 months, 1 year and device-related complications).

2.3. Risk of Bias and Certainty Assessment

Risk of bias in individual studies was assessed using the appropriate Joanna Briggs
Institute (JBI) checklists. Egger’s test was used to assess the possibility of publication bias.
As inter-study heterogeneity can be misleadingly large when assessed using I2 statistics
for observational studies [26], we used the Grading of Recommendations, Assessment,
Development, and Evaluations (GRADE) approach to rate the certainty of evidence [27,28].
The screening of articles, data collection and risk of bias assessment were conducted
independently by two reviewers (TSR and NWL), and any conflicts were resolved by a
third reviewer (KR).
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2.4. Outcomes

The primary outcome was short-term mortality, defined as 30-day mortality or in-
hospital mortality, whichever was longer. Secondary outcomes include long-term mortality
at 90 days, 6 months and 1 year, and device-related complications (device malfunction,
access-site bleeding, hemolysis, limb ischemia and stroke). Tables S3 and S4 summarize the
definitions of CS, device-related complications and severity of LVEF [29].

2.5. Statistical Analysis

For continuous variables, we pooled the means and standard deviations (SDs) in
accordance with Wan et al. [30]. Categorical data are reported as pooled proportions
with 95% confidence intervals (CIs), whereas continuous outcomes are reported as pooled
means with 95% CIs. All analyses were conducted in R4.0.1. Random effects meta-analyses
(DerSimonian and Laird) were conducted using the Freeman–Tukey double arcsine trans-
formation, and 95% CIs were computed using the Clopper–Pearson method [31–33]. We
pooled the results of the propensity-score matched (PSM) studies and RCTs together as
previous studies have shown that the estimates obtained from PSM studies are similar
and as robust as RCTs [34–36]. Sensitivity analysis was conducted by excluding studies
with higher risks of bias (defined as <7). Planned subgroup analyses were conducted
with continuity correction of 0.5 to allow for inclusion of studies with zero events, and
included the geographical region (Europe, North America or Asia), etiology of CS (AMICS
or NMICS), the mode of insertion (percutaneous (which comprises Impella 2.5 and CP) or
surgical (which comprises Impella 5.0 and Impella 5.5)), cannulation access for insertion
(axillary or femoral), duration of support (more or less than 4 days), concomitant use of
ECMO, IABP prior to microaxial LVAD use and pre-LVAD LVEF (above or below 20%).
Summary-level meta-regression was conducted if there was a minimum of 6 data points in
order to explore sources of heterogeneity and to identify potential prognostically relevant
study-level covariates [37].

2.6. Role of the Funding Source

This study had no funding source.

3. Results

From 4173 articles, we reviewed 206 full-text articles. In total, we included 71 studies
(63 observational, 8 PSM/RCTs) detailing 4280 adult patients that reported on the use of
microaxial LVADs in CS (Figure 1) [16,38–106]. The findings of the one-armed observational
studies and the findings of the PSM/RCTs are reported separately. Of the observational
studies, 34 were reported by centers from Europe, 25 from North America, 3 from Asia
and 1 from South America, whereas all of the RCTs and PSMs were reported by centers
from Europe. Percutaneously inserted devices were more commonly used than surgically
inserted devices.

3.1. Demographics of Included Studies

Table 1 presents the baseline demographics of the observational studies. Among the
63 studies, 14 studies reported on patients with AMICS, 4 studies reported on patients
with NMICS, and 38 studies reported on both patients with NMICS and patients with
AMICS. The etiology of cardiogenic shock was not reported in 8 studies. Patients were
predominantly male (75.0%, 95%-CI: 70.9% to 78.8%), and were supported for an average
of 6.2 days (95%-CI: 4.7 to 7.7). The pooled intensive care unit (ICU) stay was 13.7 days
(95%-CI: 10.2 to 17.2), and the pooled hospital length of stay was 20.6 days (95%-CI: 13.0
to 28.2).
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Figure 1. Flow diagram of selection of articles based on PRISMA statement. Abbre-
viations: PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses;
pVAD = percutaneous ventricular assist device; RCT = randomized controlled trial.

Table 1. Demographics of included studies.

Demographics Study Type Studies Pooled Estimate 95%CI

Patient Demographics

Age (years)
Observational 59 61.6 60.1–63.0

RCT/PSM 8 62.2 58.8–65.6

Male (%)
Observational 59 75.0% 70.9–78.8%

RCT/PSM 8 82.2% 70.5–90.0%
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Table 1. Cont.

Demographics Study Type Studies Pooled Estimate 95%CI

Pre-Impella Characteristics

Body Mass Index (kg/m2)
Observational 18 27.4 26.8–28.0

RCT/PSM 2 25.7 23.1–28.2

LVEF (%)
Observational 32 25.3 22.8–27.9

RCT/PSM 3 33.8 31.8–35.8

Hypertension (%)
Observational 41 53.5% 45.7–61.3%

RCT/PSM 6 55.6% 38.1–71.8%

Hyperlipidemia (%)
Observational 34 35.4% 25.2–46.4%

RCT/PSM 2 35.1% 10.9–70.7%

Diabetes Mellitus (%)
Observational 48 30.6% 27.2–34.1%

RCT/PSM 7 28.8% 20.1–39.4%

Smoking (%)
Observational 40 26.8% 18.6–35.8%

RCT/PSM 3 46.2% 33.2–59.7%

Heart Failure (%)
Observational 24 20.3% 10.0–32.7%

RCT/PSM Was not reported in any of the studies

Previous AMI (%)
Observational 26 20.7% 14.3–27.9%

RCT/PSM 5 32.5% 15.6–55.5%

Cerebrovascular Accident (%)
Observational 29 7.5% 5.0–10.2%

RCT/PSM 3 1.3% 0.4–4.0%

Post-device Characteristics

Duration of device
support (days)

Observational 38 6.2 4.7–7.7

RCT/PSM 7 2.9 1.5–4.3

Length of ICU stay (days)
Observational 13 13.7 10.2–17.2

RCT/PSM 2 8.6 6.5–10.8

Length of hospital stay (days)
Observational 6 20.6 13.0–28.2

RCT/PSM 3 15.3 12.0–18.7
Abbreviations: AMI: acute myocardial infarction, AMICS: Acute myocardial infarction cardiogenic shock, CI:
confidence interval, ICU: intensive care unit, LVEF: left ventricular ejection fraction, PSM: propensity-score
matched study, RCT: randomized controlled trial.

Table 1 refers to pooled demographics of 384 patients across the PSM studies and
RCTs. The pooled age was 62.2 years, and the majority (82.2%) were male. The pooled
duration of microaxial LVAD support was 2.9 days, and the pooled ICU stay was 8.6 days.
The pooled hospital stay was 15.3 days.

3.2. Primary Meta-Analysis

Amongst the observational studies (63 studies, 3896 patients), the pooled short-term
mortality was 46.5% (95%-CI: 42.7% to 50.3%, Figure 2). As all studies had a JBI score of
≥7, sensitivity analysis excluding studies with higher risks of bias was not possible. We
excluded studies with a JBI score of <10 as an exploratory analysis, and this yielded similar
pooled estimates for the short-term mortality (44.7%, 95%-CI: 40.2% to 49.2%).
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Figure 2. Short-term mortality in observational studies. Forest plot summarizing the short-term
mortality of patients receiving microaxial LVAD for cardiogenic shock amongst observational studies.
Abbreviations: CI = confidence interval.

There were no significant differences in short-term mortality with respect to the
etiology of CS, mode of insertion and concomitant use of ECMO. Patients who presented
with AMICS (52.1%, 95%-CI: 46.8% to 57.3%, 14 studies) had a comparatively higher
short-term mortality than patients who presented with NMICS (42.0%, 95%-CI: 33.5 to
50.8%, 5 studies, p = 0.085). Mortality was significantly higher among patients receiving
concomitant ECMO (51.5%, 95%-CI: 47.1% to 55.9%, 8 studies) than patients receiving
microaxial LVADs only (44.6%, 95%-CI: 39.6% to 49.6%, 40 studies, p = 0.043).
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No significant differences were found in short-term mortality when considering the
geographical location (North America, South America, Europe or Asia), patient demo-
graphic factors (pre-LVAD LVEF (≤20% or >20%)) or device factors (duration of microaxial
LVAD support (≤4 days or >4 days) and cannulation site (axillary or femoral)). Table S5
summarizes the results of the subgroup analysis.

Univariate meta-regression found significant associations between mortality and
previous cerebrovascular accidents (regression coefficient (B): 0.29, 95%-CI: 0.15 to 0.56,
p = 0.038) and hyperlipidemia (B: 0.68, 95%-CI: 0.02 to 0.32, p = 0.030), and an inverse
association with the duration of the device support (B: −0.015, 95%-CI: −0.015, 95%-CI:
−0.022 to −0.009, p < 0.0001). However, there was no significant association between
mortality and patient demographics, including age, other comorbidities (hypertension,
diabetes mellitus, previous acute myocardial infarction, heart failure, smoking) and pre-
LVAD LVEF. Table S6 summarizes the meta-regression analysis.

Among the PSM studies and RCTs, the pooled short-term mortality (Figure 3) was
48.9% (95%-CI: 43.8% to 54.1%) From one study that compared microaxial LVADs to IABP
alone, microaxial LVADs did not significantly reduce the risk of mortality (RR: 0.94, 95%-
CI: 0.58–1.53, p = 0.81). Five studies provided a comparison between microaxial LVADs
and other devices; we report these findings qualitatively. From two studies comparing
microaxial LVADs with IABP, one study found approximately 46% of patients expired in
both cohorts [87], and similar findings were reported in the other (hazard ratio for mortality:
0.96, p = 0.92 [77]. One study found that microaxial LVADs (49.4%) were associated with
a trend to lower mortality compared to ECMO (61.4%, p = 0.16) [64], which was echoed
by another PSM study (55% vs. 67.5%, p = 0.36) [105], while another study found that
concurrent microaxial LVAD with ECMO (47%) significantly reduced mortality compared
to ECMO alone (80%, p < 0.001) [79]. Finally, microaxial LVAD was shown to improve
mortality (20%) compared to patients without any mechanical circulatory support (47%,
p = 0.0024) [88].
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Figure 3. Short-term mortality in propensity-score matched studies and randomized controlled
trials. Forest plot summarizing the short-term mortality of patients receiving microaxial LVAD
for cardiogenic shock amongst propensity-score matched studies and randomized controlled trials.
Abbreviations: CI = confidence interval.

3.3. Secondary Outcomes
3.3.1. Long-Term Mortality

The pooled 90-day, 6-month and 1-year mortality was 41.8% (95%-CI: 34.4% to 49.3%,
5 studies, 448 patients), 51.1% (95%-CI: 45.2% to 57.0%, 9 studies, 676 patients) and 54.3%
(95%-CI: 48.9% to 59.7%, 10 studies, 881 patients), respectively, amongst the observational
studies (Figure 4). Two PSM studies reported a mortality at the 6-month follow up that
ranged between 36.6% (12/33) and 75% (45/60) [58,74]. One PSM study reported a 1-year
mortality rate of 60%.
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3.3.2. Complications

Table 2 shows the top five device-related complications (hemolysis, access-site bleeding
device malfunction, limb ischemia, stroke) reported amongst 50 observational studies
(3101 patients). Hemolysis (24.9%, 95%-CI: 14.9% to 36.4%, 1708 patients, 23 studies),
access-site bleeding (25.8%, 95%-CI: 14.7% to 38.5%, 1679 patients, 23 studies) and device
malfunction (6.0%, 95%-CI: 3.1% to 9.3%, 690 patients, 17 studies) were the three most
common complications in this patient cohort. From the PSM studies and RCTs, the pooled
incidence of stroke (three studies) was 0.4% (95%-CI: 0.0% to 2.4%), whereas hemolysis
occurred in 40.8% (95%-CI: 4.4% to 84.4%, four studies) of patients. Bleeding was reported
among four studies (6.4%, 95%-CI: 3.3% to 10.4%), and three studies reported on device
malfunction (3.2%, 95%-CI: 0.0% to 26.9%). Finally, 6.8% (95-CI: 0.0% to 21.6%) of patients
(six studies) suffered from limb ischemia.

Table 2. Complications of Observational Studies.

Complication Studies Pooled Proportion (%) 95% CI I2

Hemolysis 32 24.9 14.9 to 36.4 94.8%

Access-site Bleeding 23 25.8 14.7 to 38.5 94.9%

Device Malfunction 17 5.9 3.1 to 9.3 58.8%

Limb Ischemia 32 6.1 3.7 to 8.9 76.1%

Stroke 32 5.5 2.9 to 8.5 77.6%

3.4. Risk of Bias and Certainty of Evidence Assessment

Using appropriate JBI checklists, all studies were of high quality (score of ≥7, Table S7).
We assessed the certainty of evidence for all primary and secondary outcome measures
using the GRADE approach (Table S8). For both observational studies and RCTs, the
certainty of evidence was high according to the GRADE evaluation for our primary out-
come of short-term mortality and that of long-term mortality, whereas the complications
were deemed to be of moderate-to-high certainty. Egger’s test found that Pegger was 0.96,
indicating that publication bias is unlikely.

4. Discussion

This review comprising 71 studies and 4280 patients demonstrated that microaxial
LVAD in CS was associated with mortality rates approaching 50%. Patients were pre-
dominantly middle-aged males. The 90-day, 6-month and 1-year mortality (observational
studies) was 41.8%, 51.1% and 54.3%, respectively. Short-term mortality was relatively
higher in patients with surgical insertion compared to percutaneous insertion. Comorbi-
tidies including previous cerebrovascular accidents and hyperlipidemia were associated
with mortality, whereas longer durations of device support were associated with survival.

Our study provides further insights into the characteristics of microaxial LVAD devices
that may affect mortality. We found that patients receiving surgically inserted devices had
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a relatively higher mortality rate than percutaneously inserted devices. This is likely to
be because multifactorial-percutaneously inserted devices generate a maximum of 2.5 to
4.0 L/min of blood flow, [107] whereas surgically inserted devices generate up to 5.0 and
6.0 L/min [107,108]. Patients with more severe cardiogenic shock may have higher support
requirements and intrinsically higher mortality rates due to their clinical presentation. In
addition, the surgical insertion of devices might increase the rates of surgical site infection
and bleeding. Finally, higher flows generated by surgically inserted devices may lead to
higher rates of hemolysis. We also found that the duration of the device support was not
associated with a higher mortality. This is contrary to previous studies that have shown
that the use of microaxial LVADs for >4 days led to an increased mortality and duration
of hospital and coronary care unit stay [109]. Nonetheless, this could be attributed to
immortal time bias, which has been described in observational studies [110] and in patients
on life-saving devices [111,112], where patients in the treated group have to survive and be
event-free until the treatment definition is fulfilled [113].

Mortality rates for CS remain high despite timely goal-directed medical management [7,114,115].
The variable survival rates of CS between the use of mechanical cardiac support devices is
evident from the IABP-SHOCK I and II trials that showed that IABP did not significantly
improve 30-day survival [10,116], whereas the international Extracorporeal Life Support
Organization registry found that 42% of patients receiving venoarterial ECMO survived to
discharge [117]. This contrasts with the 51% survival rate of patients receiving microaxial
LVADs in the United States [18]. Similarly, in our observational cohort of patients with
microaxial LVAD support, we observed short-term survival rates of 53%. However, sur-
vival rates of 70% have been reported in advanced cardiac centers with robust protocols
comprising the stringent selection criteria team-based management of CS [118,119]. The
concomitant use of microaxial LVADs and ECMO is an area of increasing interest to im-
prove outcomes. Microaxial LVADs unload the left ventricle (LV) and may help offset the
LV distension secondary to retrograde aortic blood flow in patients on peripheral venoar-
terial ECMO [120]. Our study found that patients receiving concomitant ECMO had a
significantly higher mortality rate than those receiving microaxial LVADs alone (51.5% vs.
44.6%, p = 0.04). However, this can be confounded by the severity of cardiogenic shock,
and VA-ECMO may only be initiated in the context of cardiogenic shock refractory to other
therapies. As such, it is unclear whether VA-ECMO causes an increase in mortality, or if it
is simply initiated in patients with more severe cardiogenic shock.

The long-term mortality reported in our review was higher compared to those reported
in major trials on microaxial LVADs [17,121]. The reasons may be multifactorial: both
RCTs had fewer patients with a smaller range of etiologies of CS, and robust patient
selection criteria and management protocols. On the other hand, patients recruited in
the observational studies were heterogenous in selection and management. The higher
incidence of complication rates could also have impacted the long-term outcomes. The
most frequently reported device-related complication was hemolysis, which was higher
than those reported in previous registry reviews [24,122,123]. There was also a discrepancy
between RCTs and PSM studies, and observational studies in the incidence of hemolysis
(40.8% vs. 23.8%) and access site bleeding (6.4% vs. 25.8%). Possible reasons include
a longer pooled duration of device support in observational studies compared to RCTs,
varying definitions of hemolysis and the predominant use of percutaneous devices with
a smaller pump design. Access-site bleeding was reported in 15 studies with a pooled
prevalence of 19.4%, similar to the USpella cohort [122] but lower than the EUROSHOCK
cohort [108,123,124]. Notably, our study found that the pooled incidence of limb ischemia
was comparable between the observational studies and RCTs (6.3% vs. 8.2%), and was
lower compared to ECMO and IABP, whereas the incidence of access-site bleeding was
higher compared to ECMO and IABP [37,125,126]. Nonetheless, the incidence of limb
ischemia and bleeding may have been affected by multiple factors, such as the use of
anticoagulants or presence of peripheral vascular disease, for which, adequate data were
not clearly available [7].
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The strengths of this review include a comprehensive search strategy and robust
inclusion criteria that encompassed all etiologies of CS and types of devices used. It also
included a detailed analysis of various patient and intervention factors and their impact on
mortality outcomes. Nonetheless, we recognize several limitations. First, there is significant
heterogeneity in patient demographics, definitions, variations in patient selection, practices
and reporting patterns and the observational nature of the included studies, which we
tried to account for by using subgroup and meta-regression analyses. Meta-regression
analyses are also inherently constrained by a lack of power, resulting in an increased risk
of type II errors. Almost all of the analyses have also been limited to North America
and Europe, whereas studies from Asia remain scarce. Hence, the results might not be
generalizable to other parts of the world where healthcare systems and workflows are
different. Nonetheless, our subgroup analysis on geographical location did not find any
significant difference in short-term mortality. Moreover, the GRADE assessment suggested
a high certainty in the evidence for the primary outcome and long-term mortality, whereas
complications were of moderate to high certainty. With scores of 7 or higher, JBI critical
appraisal also deemed all 71 articles as high quality and suitable for inclusion.

5. Conclusions

This review summarizes the mortality outcomes and complications of microaxial
LVADs in patients with CS. Short-term mortality was 46.5% whereas 6-month and 1-year
mortalities were 51% and 54%, respectively. Complications such as hemolysis and access
site bleeding were high as reported in the observational studies. Nonetheless, the use
of temporary circulatory support in cardiogenic shock remains inherently challenging
as patients are usually critically ill with multi-organ pathologies, and patient care is het-
erogenous. In addition, the current evidence base is limited in concluding whether or not
microaxial LVADs confer a survival benefit in patients with CS. Further RCTs are warranted
to better assess the effectiveness and role of microaxial LVADs in CS.
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