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*e time-series data generated by turbofan engines has a great degree of complexity and dynamics. At present, recurrent neural
networks are commonly used to model and forecast the remaining useful life (RUL). *e relationship of the sample data is not
taken into account, and there are issues such as gradient explosion. In view of this, a spatio-temporal attention model is proposed,
which comprehensively relates to the temporal association of data features and the hidden state of data features in space. At the
same time, position coding is performed on the temporal relationship, avoiding the use of recurrent neural networks. Ex-
perimental results show that by combining the two dimensions, the predictive performance of the model is significantly improved.
Compared with different methods on the four data sets of the commercial modular aerospace propulsion system simulation (C-
MAPSS), the stability and prediction accuracy of the spatio-temporal attention model are better than that of alternative methods.

1. Introduction

Among the functions of failure prediction and health
management, RUL prediction is the core function. *e
turbofan engine is one of the key power equipment of the
aircraft, and its safe and stable work is extremely crucial.
When the accuracy of the turbofan engine RUL prediction
reaches a certain level, the original regular maintenance can
be turned into predictive maintenance, which will increase
the overall use time of the equipment, avoid irreparable
deterioration of the equipment, and reduce the expenditure
of human and material resources. *erefore, it is extremely
essential to improve the RUL prediction accuracy of tur-
bofan engines.

At present, as a data-driven method, deep learning is
widely used for RUL prediction. Regarding the research on
RUL prediction of turbofan engines, deep learning methods
can be divided into methods based on recurrent neural
networks [1], convolutional neural networks [2], and hybrid
model methods.

*e methods based on the recurrent neural network are
to use the recurrent neural network to process the time

relationship of the sequence data and predict the RUL of the
turbofan engine. In order to improve the accuracy of RUL
prediction, Heimes [3] proposed a prediction method based
on recurrent neural network (RNN), which uses time gra-
dient calculation and extends Kalman filter for training, and
predicts the RUL of turbofan engines. However, RNN has
the problem of gradient disappearance. In order to predict
RUL stably in an environment of complex operation, mixed
faults, and strong noise, Yuan et al. [4] established a long
short-term memory (LSTM) neural network model for fault
diagnosis and RUL prediction of turbofan engines. But
LSTM can only infer the feature relationship from one
direction of the time series. In order to discover the long-
term dependence relationship of sensor time series signals,
Wu et al. [5] designed an RUL prediction method based on
deep long short-term memory (DLSTM) network using
multiple sensor time series signals. However, DLSTM has
the problem of long calculation time. In order to solve the
problem, the generated vector contribution of each time step
pair of RNN on the autoencoder is equal, Duan et al. [6]
adopted a method of assigning weight to each time step
through an attention mechanism to improve the prediction
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ability of BiGRU. However, the model does not consider the
relationship between the sensor’s positions in space. Aiming
at the problem of complex features of sensor data in RUL
prediction, Muneer et al. [7] applied an LSTM model based
on the attention mechanism to achieve accurate RUL pre-
diction. But recurrent neural networks cannot achieve
parallel computing. A compromise in performance against
computational efficiency is found to be unfavorable to eeting
practical needs [8].

*e methods based on the convolutional neural network
are to use the convolutional neural network to extract the
local features of the sequence data and then predict the RUL.
Wen et al. [9] established a new residual convolutional
neural network (ResCNN) to solve the problem of gradient
disappearance and predict the RUL of turbofan engines but
did not consider the relationship between the sensors at each
time step. In order to solve the problem of model adaptation
to different data sources, Li et al. [10] proposed a domain
adaptive RUL prediction by integrating adaptive batch
normalization (AdaBN) into a deep convolutional neural
network (DCNN) model, but mapping the features of dif-
ferent data sources to the same feature relationship space is
still a problem. In view of the limited ability of traditional
data-driven methods in extracting complex features, Li et al.
[11] designed a multiscale convolutional neural network
(MSCNN) to directly establish the relationship between
monitoring data and RUL, but the size of the multiscale
convolution kernel is determined empirically.

*e hybrid model method combines the advantages of
several methods. In order to make full use of the advantages
of CNN and LSTM models, Borst [12] proposed a method
combining LSTM and CNN to predict the RUL of turbine
engines. Remadna et al. [13] use CNN with bi-directional
long short-term memory (BDLSTM) networks where CNN
extract spatial features while BDLSTM extracts temporal
features. Chen et al. [14] combines the DCNN and the
BDLSTM was used to train the source domain and target
domain data simultaneously to extract the common features
of the equipment under the condition of sufficient samples.
Jiang et al. [15] propose a data-driven method based on
BDLSTM and multiscale convolutional neural network
(MSCNN) for RUL estimation. But how to effectively splice
CNN and LSTMmodels is currently a problem that needs to
be resolved.

In conclusion, a lot of research hasmade great progress on
the RUL prediction of turbofan engines. However, the neural
network still has the following problems in RUL prediction.
Firstly, the recurrent neural network can only infer the in-
ternal information of the time series from one direction or
two directions, but does not consider the relationship between
each time tick, and cannot achieve parallel operations. Sec-
ondly, for observational data, most studies only consider how
to predict RUL in terms of time while ignoring the spatial
connection of data features that also assists in the prediction
of RUL. Last but not least, for long-term sequences, the re-
current neural network has the problem of gradient disap-
pearance or gradient explosion. *erefore, how to avoid the
gradient problem while also taking into account the position
of the time series is also a problem.

In view of the aforementioned shortcomings, this paper
proposes a spatio-temporal attention model to predict RUL.
*e main contributions are as follows. First, from the
perspective of time relationships, a time position coding
method is designed to code the position of the time series
and actively apply the time series relationship to the model.
Secondly, in order to overcome the problem of incomplete
information on the time dimension and the inability of
parallel computing of recurrent neural network, an attention
mechanism is used to extract the state relationship of fea-
tures in the two dimensions of time and space, respectively.
Finally, a convolution module is designed, which combines
the time feature map and the space feature map, and uses
two fully connected layers to predict the RUL of the turbofan
engine. All in all, the attention mechanism solves the
problem that recurrent neural networks cannot perform
parallel computation, and the model does not take into
account the spatial relationship of features or the different
weights of each timestamp. In order to verify the effec-
tiveness of the method, we made predictions on 4 datasets of
NASA’s C-MAPSS.

*e rest of the paper is organized as follows. *e second
part introduces the methodology of spatio-temporal atten-
tion, including data preprocessing, and spatio-temporal
attention models; the third part analyzes the experimental
results.

2. Materials and Methods

2.1. $e Procedure of Remaining Useful Life Prediction. It is
shown in Figure 1 that the procedure of RUL prediction
includes the following 4 steps.

(1) Data preprocessing: the data in the original data set
contains redundant features, and the unit scales
between the data are inconsistent, so it is necessary to
preprocess the data and then standardize it.

(2) Data set division: the whole training set is divided
into a training set and verification set by early stop
strategy. *e training set is used to adjust the pa-
rameters of the model during model training; the
verification set is used to train the early stop model.
*at is, in 8 training cycles, if the overall RMSE of the
verification set does not decline, the training will be
terminated.

(3) Model Construction: build a spatio-temporal at-
tention mechanism model, and in the processing
time dimension, first encode the input data, and then
use it as the input of the model.

(4) RUL prediction: use the trained model to predict the
remaining life on the test set and evaluate the cor-
responding indicators.

*e structure of the spatial-temporal attention mecha-
nism model is shown in Figure 2. As can be seen from the
diagram, the whole structure can be divided into spatial
attention mechanism, temporal attention mechanism,
convolution layer fusion, and full connection layer. Spatial
attention mechanism and temporal attention mechanism
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modules obtain the spatial and temporal characteristics of
the sequence data mainly through the multi-head self-at-
tention mechanism [16]. Convolution layer fusion further
extracts features, fuses the feature map into a vector, and
reduces the feature dimension. *e fully connected layer
predicts RUL by eigenvectors. *e process and principles of
this approach are described in detail below.

2.2. Data Preprocessing. *e C-MAPSS dataset contains
three operational settings and 21 sensor data. Figures 3–6
show the standardized 24 index data of Engine Unit 1 of the
FD001, FD002, FD003, and FD004 sub-datasets. In these
figures, each color represents a feature; RUL stands for the
numerical value of abscissa; the ordinate value indicates the
magnitude of the characteristic value. *e model is able to
learn the functional relationship between RUL and char-
acteristic value.

However, some of the data features do not change much
over the entire time period, which is not helpful for the
prediction of the model. *erefore, it is necessary to select
data features that vary over time to predict RUL. A large
number of studies have shown that the prognosability
method can be used to represent the variability of features.
*is paper uses the prognosability [17] method to select
features. As in the following formula:

prognosability� exp −
stdj xj Nj  

meanj xj(1) − xj Nj 




⎛⎝ ⎞⎠, j �1,···, M.

(1)

If a feature’s prognosability is equal to 0 or NaN, it is not
preserved. Conversely, the autonomy of the model has been
improved, and the problem of relying on human experts for
feature selection has been addressed [8].

After selecting features, the data needs to be standard-
ized and scaled to the same scale. Z-score [18] can unify data
of different magnitudes into the same magnitude, and the
conversion process can easily extend to more complex
datasets, so the Z-score method is used to standardize the
data. As in the following formula:

z �
x − u

σ
. (2)
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u is the mean of the selected feature, the standard de-
viation of the selected feature, and x represents the feature
value at a given time.

*e health state of a turbofan engine is generally divided
into health state and deterioration state. In a healthy state,
the RUL of a turbofan engine is in a constant state. In the
degenerate state, its RUL is in a descending state. *erefore,
a health threshold needs to be set for turbo engine equip-
ment.*e results show that when the initial RUL value in the
C-MAPSS dataset is in the range 120–130, the output is
stable. *erefore, we set the RUL threshold to 125. See
Figure 7 for details.

After these processes, the data also needs to be divided
into time windows as input to the model. *e input of the
model� [x1, x2, . . ., xf], where,

xi �

x
widoow start
i

x
widoow start+1
i

⋮

x
widoow en d
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � 1, · · · , f . (3)

f is the number of time feature selected, (window_end-
window_start) is the size of the time window, and the time
step is set to 1 for more training samples.

2.3. Spatial-Temporal Feature Extraction. Most current
studies only consider how to predict RUL in terms of
temporal relationships, ignoring the spatial relationships of
data.*is paper considers the internal relationships between
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extracting data in both temporal and spatial directions.
However, data may have multiple relationships in the same
direction. In this paper, multi-head attention [16] is used to
extract multiple connections of data in both time and space
dimensions while avoiding the problem of gradient disap-
pearance or gradient explosion of circulating nerves and

improving the speed of parallel computing. *e multi-head
attention structure is shown in Figure 8.

Where X represents input data; A represents the re-
lationship weight between the row vectors in the input
data x, which is derived from the matrices Q and K; V

represents the specific real value characteristics of the row

X
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Figure 8: Multi-head attention structure.
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Table 1: Data set introduction.

Sub-datasets FD001 FD002 FD003 FD004
Engine units in the training
dataset 100 260 100 249

Engine units in the test
dataset 100 259 100 248

Fault modes One (HPC
degradation)

One (HPC
degradation)

Two (HPC degradation, fan
degradation)

Two (HPC degradation, fan
degradation)

Conditions One (sea level) Six One (sea level) Six
Training samples 17731 48819 21820 57522
Test samples 100 259 100 248
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vector in the input data X; h represents the number of
relationships. *e calculation formula of multi-head at-
tention is as follows.

Q � XW
q
,

V � XWv,

K � XWk,

A � softmax
QK

T

��
dk

 ,

Attention(Q, K, V) � AV.

(4)

When using the attention mechanism method, some
current studies usually use the attention mechanism to
extract the relationship between the time of the vector, such
as the relationship between t1 time vector and t2 time vector.
*en the time relationship is input into the recurrent neural
network to predict RUL, but the recurrent neural network is
prone to the problem of gradient disappearance or gradient
explosion. If only the attention mechanism is used, the
model may ignore the position of the time series. For ex-
ample, it does not consider that the vector at t1 is before the
vector at t2. *erefore, this paper encodes the position of the
original data to solve the problem that the attention
mechanism does not consider the time sequence.

Position coding is a method of quadratic represen-
tation of each time slot in the sequence with the position
information of different time slots. As mentioned above,
the self-attention mechanism is to extract the relationship
between vectors at different times. It does not have the
ability to learn time series information like recurrent
neural network, so it needs to encode the position and
actively input the time series information to the model.

Location coding is a new representation vector that
combines the information of time and the original time
series. In this way, the model can learn the time position
information of the original time series. *e proposed
position coding formula is as follows.

encoding �

e1

e2

e3

⋮

eh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ei � e
1
i · · · e

f
i

 ,

e
1
i � e

j
i , j � 1, 2, · · · , f ,

e
1
i �

i − μ
σ

,

μ �
1
h



h

i�1
i,

σ �

�����������

1
h



h

i�1
(i − μ)

2




.

(5)

Encoding represents the coding information of the
whole input time window, H represents the length of the
time series, and f represents the number of selected features;
ei represents the coding information vector at the i-th time in

Table 2: Sensor introduction.

Index Description Symbol
1 Total temperature at fan inlet °R
2 Total temperature at LPC outlet °R
3 Total temperature at HPC outlet °R
4 Total temperature at LPT outlet °R
5 Pressure at fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure at HPC outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm
10 Engine pressure ratio (P50/P2) —
11 Static pressure at HPC outlet psia
12 Ratio of fuel flow to Ps30 Pps/psi
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio —
16 Burner fuel-air ratio —
17 Bleed enthalpy —
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 HPT coolant bleed lbm/s
21 LPT coolant bleed lbm/s
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Table 3: Experimental results of different training strategies.

Method
FD001 training set FD001 test set

RMSE Score RMSE Score
Early stopping 10.89 371.14 11.07 312.55
200 epcohs 8.44 202.26 13.151 374.93

Table 4: Comparison of experimental results.

Method
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score
Spatio-temporal attention 11.07 312.55 18.10 1339.5 10.73 329.95 17.00 2476.90
BiGRU-AS [6] 13.68 284 20.81 2454 15.53 428 27.31 4708
Ensemble ResCNN [9] 12.16 212.48 20.85 2087.77 12.01 180.76 24.97 3400.44
AdaBN-DCNN [10] 13.17 279 20.87 2020 14.97 817 24.57 3690
MS-DCNN [11] 11.44 196.22 19.35 3747 11.67 241.89 22.22 4844
Semi-supervised [23] 12.56 231 22.73 3366 12.1 251 22.66 2840
DCNN [24] 12.61 273.7 22.36 10412 12.64 284.1 23.31 12466
MODBNE [25] 15.04 334.23 25.05 5585.34 12.51 421.91 28.66 6557.62
DBN [26] 15.21 417.59 27.12 9031.64 14.71 442.43 29.88 7954.51
LSTM [25] 16.14 338 24.49 4450 16.18 852 28.17 5550
MLP [26] 16.78 560.59 28.78 14026.72 18.47 479.85 30.96 10444.35
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the input time window, μ represents the expectation of the
length of the time series, and σ represents the standard
deviation of the length of the time series.

2.4. Convolution Fusion. After the original data is pro-
cessed by the attention mechanism, the characteristic
diagram of the data in time and space is obtained, as
shown in Figure 9. Each line vector on the spatial feature
graph represents the spatial state relationship between the
original input line feature and all features; each line vector
on the time feature graph represents the correlation be-
tween the features of each time moment and the features
in the whole-time window. For the feature map, the
convolution neural network is used to reduce the di-
mension and further extract the internal information of
the data. *en RUL is predicted by two-layer fully con-
nected neural network.

In this paper, the feature map is convoluted in only one
direction, so the feature vector can be fused into a specific

value. *erefore, the high h of the feature map is reduced to
1, which plays a role in reducing the dimension. We call this
convolution fusion, and Figure 10 shows the structure of the
convolution fusion model.

3. Results and Discussion

3.1. Data Set Introduction. *e data set used in the exper-
iment is the C-MAPSS data set of NASA [19].*is data set is
generated by the simulation software simulating the aero-
engine. *e schematic diagram of the simulated engine is
shown in Figure 11, including high-pressure turbofan, high-
pressure compressor, fan, nozzle, and burner. See Table 1 for
a detailed description of the data set.

Table 1 shows that the data set is divided into four sub-
data sets FD001, FD002, FD003, and FD004 according to
different operating conditions and fault modes. Each sub-
data is divided into training data set and test data set, which
records three operation settings and 21 sensor data of scroll
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engine unit at each time. We use these indicators to divide
spatio-temporal data. FD001 and FD002 sub-datasets con-
tain one failure mode (HPC degradation), and FD003 and
FD004 contain two degradation modes (HPC degradation
and fan degradation); FD001 and FD003 have only one
operating condition, and FD002 and FD004 have six op-
erating conditions. Because the operation environment of
FD002 and FD004 sub-dataset engine unit is complex and
changeable, the prediction of RUL of FD002 and FD004 sub-
dataset is more difficult. Table 2 [20] lists the 21 sensors that
monitor engine conditions.

3.2. Evaluating Indicator. In terms of remaining life pre-
diction of the turbofan engine, many important journals
[3, 7] references and the International Conference on fault
prediction and health management [19] take score and
root mean square error (RMSE) as the evaluation indexes
of RUL prediction results. In order to enhance compa-
rability, these two evaluation indexes are also used in this
paper. *e scoring function will have a larger penalty
score for the predicted value with larger deviation; the
root mean square error considers the real deviation

between the predicted value and the actual value. *e
specific formula is as follows.

s � 
N

i�1
si, si �

e
−
di

13 − 1, for di < 0

e

di

10 − 1, for di ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

,

di � predicti − RULi,

RMSE �

�������

1
N



N

i�1
d
2
i




.

(6)

predicti represents the predicted value, RULi represents the
real RUL value, andN represents the number of sample data.

In Figure 12 shows the relationship between RMSE and
score; the abscissa value is the difference between the pre-
dicted value and the real value, and the ordinate is the
specific value of RMSE and score. It can be seen that when
the deviation between the predicted value and the real value
is large, the value of score increases exponentially.
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3.3. ExperimentandResultAnalysis. In order to prevent over
fitting of the model, we use dropout [21, 22] technology and
verification set early stop strategy. *e loss value in the
training process is shown in Figure 13.

From Figure 13, it can be seen that the training of more
than 40 epochs stopped after the model training. Because the
use of early stop strategy avoids the data characteristics in
the model over learning training set. At the same time, it can
also be seen that during the training process, the RMSE of
the verification set is less than that of the training set. Be-
cause the dropout technology is added to the full-connection
layer. During training, some neural units of the full-con-
nection layer will be inactivated, and when solving the RMSE
of the verification set, all the inactivated neural units will be
activated. In order to verify the impact of adopting the early
stop strategy, we also trained 200 epochs for the model. *e
experimental results are shown in Table 3.

Table 3 shows that with the early stop strategy, the
deviation between the RMSE of the FD001 training set and
the FD001 test set is not large, and there is no fitting

phenomenon. However, after 200 cycles of training the
model directly, there is a large deviation between the RMSE
of the FD001 training set and the FD001 test set, and there is
a problem of overfitting. At the same time, the RMSE of the
training model with early stop strategy is 10.89 on the FD001
training set, and the RMSE of the model with 200 training
cycles is 8.44. *e difference is in a reasonable range, and
there is no obvious underfitting phenomenon. *e predic-
tion effect of the test set of the remaining three sub-data sets
is shown in Table 4.

After the model is trained, we test it on the test set of four
sub-data sets. *is paper selects some engine units with two
health stages for display. *e FD001 sub-data set selects
engine units 20, 24, 62, and 76; FD002 sub-data set selects 44,
62, 70 and 236 engine units; the FD003 sub-data set selects
engine units 24, 78, 94 and 99; the FD004 sub-data set selects
213, 235, 244 and 248 engine units. Figures 11–14 show the
prediction results of these engine units.

It can be seen from Figures 14 to 17 that the predicted
RUL curve presents a piecewise linear state, which truly
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Figure 16: RUL curve of sub-dataset FD003 prediction.
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reflects the degradation state of the real RUL. However, since
FD001 and FD002 sub-datasets contain one failure mode
(HPC degradation), FD003 and FD004 contain two deg-
radation modes (HPC degradation and fan degradation);
FD001 and FD003 have only one operating condition, and
FD002 and FD004 have six operating conditions. *e data
distribution of FD001 and FD003 sub-datasets will be rel-
atively regular. See Figures 3–6 for details. *erefore, the
prediction accuracy of the model in the FD0001 and FD003
sub-datasets is higher than that in FD0002 and FD004 sub-
datasets.

In order to verify the stable prediction accuracy of our
proposed method, this paper tests the proposed model on
the test set on each sub-data set, and compares the results
with the prediction RUL method related to deep learning in
recent years. See Table 4 for detailed comparison data.

As shown in Table 4, the spatio-temporal attention
method proposed in this paper is superior to most methods
in terms of RMSE and score. In the sub-data sets FD002 and
FD004 under six different flight conditions, the spatio-
temporal attention method reduces the RMSE to 18.10 and
17.00, and the score to 1339.59 and 2476.906, respectively.

*is reflects that the proposed spatio-temporal attention
method still performs well and has strong robustness in the
multi-traffic environment. Compared to the BiGRU-AS
method, the spatio-temporal attention takes into account
not only the relationship between time series but also the
hidden states between sensors in spatial locations, which
makes full-use of the data. At the same time, our method
actively applies time series weights to the model, which can
reduce the effect of data noise. Generally speaking, the
spatio-temporal attention method has certain advantages
over other methods in the table.

4. Conclusion

In this paper, the proposed attention mechanism model is
used to learn the relationship between time series and the
relationship between sensors in spatial position, and the
RUL of a turbofan engine is predicted by convolution neural
network fusion. All in all, this model addresses the problem
of relying on human experts for feature selection and im-
proves autonomy. At the same time, the attention mecha-
nism can fill the gap between laboratory results and
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Figure 17: RUL prediction data set FD004 curve.
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industrial practice, which can be an excellent parallel
computing feature and improve the speed of model pre-
diction in industrial practice. Finally, the proposed method
can be fully embedded into the control and optimization
integration framework to provide critical information about
the system [8]. *rough comparative analysis, the spatio-
temporal attention mechanism method is superior to other
methods in the evaluation indexes of RMSE and score.
Especially in the multi-operation environment, the perfor-
mance of this method is more stable than other methods. Of
course, there are still some problems that need to be further
explored. First, the potential harm caused by the situation
that the predicted value is greater than the real value is
relatively large, but at present, there is no good method to
balance the relationship between reducing the predicted
value and improving the prediction accuracy; second, there
are many types of industrial data, but there may be some
potential common features between degraded data. How to
extract and use these common features to predict RUL and
migrate to different scenarios is also a difficult problem;
third, there are uncertainties and inaccuracies in available
data, and how to eliminate these problems is also a difficulty
in current research. At present, fuzzy logic [27] can generate
the best fuzzy rule base in the learning process, which is a
solution.

Data Availability

*e data set used in the experiment is the C-MAPSS dataset
of NASA. *is dataset was generated with the C-MAPSS
simulator. C-MAPSS stands for “Commercial Modular
Aero-Propulsion System Simulation”,and it is a tool for the
simulation of realistic large commercial turbofan engine
data. For more information, please visit: https://github.com/
uuuuf9/CMAPSSData.
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