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A B S T R A C T T h e  voltage dependence o f  c a r b a c h o l - i n d u c e d  d e s e n s i t i z a t i o n  h a s  

been analyzed in potassium-depolarized frog sartorius muscle preparations with 
voltage clamp techniques over a wide voltage range (-120 to +40 mV). 
Desensitization developed exponentially at all voltages with % the time constant 
of desensitization onset, varying as a logarithmic function of membrane voltage. 
The voltage dependence of r remained in calcium-deficient solutions and was 
not altered by elevating either the level of extraeellular or intracellular calcium. 
We have analyzed our results according to a simple sequential kinetic scheme in 
which the rate-limiting step in the development of desensitization is a transition 
of the receptor channel complex from the activated conducting state to a 
desensitized, nonconducting state. We conclude (a) that the observed voltage 
sensitivity of desensitization primarily resides in the voltage dependence of this 
transition, and (b) the kinetics of activation appear to have a greater influence 
on the observed rate of desensitization than on its voltage dependence. The 
magnitude of the voltage dependence suggests that a greater change in free 
energy is required for the transition to the desensitized state than for the 
transition between the open and closed states of the receptor channel complex. 

I N T R O D U C T I O N  

When acetylcholine or other agonists are applied to the endplate region of  
skeletal muscle fibers, the ionic conductance of the postjunctional membrane 
increases rapidly as endplate receptors are activated. During prolonged appli- 
cation of  agonist, the endplate conductance stays elevated for only a short 
t ime and then decreases. This gradual decrease of  the endplate response to 
agonist has been described as desensitization (Thesleff, 1955). Factors such as 
agonist concentration, extracellular ions, and membrane voltage influence 
desensitization (Katz and Thesleff, 1957; Manthey,  1966; Magazanik and 
Vyskocil, 1970; Nastuk and Parsons, 1970; Parsons et al. 1974; Adams, 1975; 
Lamber t  et al. 1977; Scubon-Mulieri  and Parsons, 1977, 1978). 
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Magazanik and Vyskocil (1970) initially reported that the time-course of 
development of  desensitization is voltage dependent.  In their experiments the 
voltage dependence was studied over a limited range of membrane potentials 
and without  voltage clamp techniques. More recently, Lambert  et al. (1977) 
and Scubon-Mulieri  and Parsons (1978) confirmed in voltage-clamped fibers 
that this process is voltage dependent;  desensitization occurs more rapidly at 
hyperpolarized membrane  potentials. Calcium ions similarly increase the rate 
of desensitization, which suggests that the observed voltage dependence reflects 
a voltage dependence of  calcium action on desensitization. We have investi- 
gated the interaction of these two factors on desensitization. Our  results 
suggest that the voltage dependence of  desensitization is independent of  
calcium and represents a direct influence of  membrane voltage on the intrinsic 
rate-determining step of this process. 

M E T H O D S  

General Methods 
All experiments were performed in vitro on voltage-clamped, potassium-depolarized 
sartorius muscle fibers of the frog (Rana pipiens) (Scubon-Mulieri and Parsons, 1978). 
The potassium-depolarized preparation offers distinct advantages for these studies 
because (a) the contraction normally associated with end-plate activation is elimi- 
nated, (b) these fibers can be voltage-clamped over a wide range of membrane 
potentials (-120 to +60 mV), and (c) the inhibition of desensitization onset by Na + 
is avoided (Parsons et al., 1974). 

The muscle preparations were equilibrated in an isotonic potassium solution 
(millimolar: K propionate, 122.5; CaCl2 1.29; Ca propionate, 0.51) buffered to pH 
7.0-7.25 with either 1 mM Tris or 1 mM HEPES. There was no noticeable difference 
in results with the two different buffers. All experiments were performed at room 
temperature (18-22~ In some experiments a calcium-deficient solution was used. 
In this instance, magnesium (2 mM) was substituted for calcium and 1 mM EGTA 
was added to the solution to chelate any residual extraceUular calcium. When desired, 
the external calcium concentration was increased by addition of solid calcium chloride 
to the bathing solution without compensation for the slight increase in solution 
osmolarity. For the ionophore experiments, X537A (Hoffman-LaRoche, Inc., Nutley, 
N.J.) was prepared as a solution in dimethylsulfoxide (DMSO, Fisher Scientific Co., 
Fairlawn, N.J.). An appropriate dilution was made such that the solution bathing the 
muscle contained 20/IM X537A and 0.5% DMSO. Most experiments were done after 
at least 15 rain of equilibration and within 120 rain of placing the muscle in the 
solution. Exposure to the ionophore, however, was limited to 30 rain. Resting 
membrane potentials ranged from +5 to - 5  inV. 

Endplate Localization and Drug Application 
Junctional regions of individual fibers were localized with a compound microscope 
(• by following nerve fibers to the last node of Ranvier. Scubon-Mulieri and 
Parsons (1978) have verified the accuracy of this technique. 

Carbachol (Sigma Chemical Co., St. Louis, Mo.), dissolved in the isotonic potassium 
solution, was microperfused onto the endplate region of individual fibers by hydro- 
static pressure from a ~ 100/xM diameter perfusion pipette placed within 50/iM of 
the intraeellular electrodes (Manthey, 1966; Scubon-Mulieri and Parsons, 1978). 
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Voltage Clamp Measurement of Agonist-Induced Currents and Statistical Analysis 
Carbachol-induced endplate currents (EPC~eo) were measured with point voltage 
clamp techniques (Takeuchi and Takeuchi, 1959; Scubon-Mulieri and Parsons, 1978). 
Because of the large currents recorded under our experimental conditions, membrane 
voltage was monitored differentially relative to an independent bath reference dec- 
trode. In some experiments we measured the currents as the voltage drop across a 1 
M~ resistor in series with the current-passing electrode rather than by the virtual 
bath-ground current measuring system. No significant difference in the time-course of 
the carbachol-induced currents was observed with these two systems. 

During sustained drug perfusion, carbachol-induced currents developed with a 
time-to-peak equal to or less than 4 s and then declined towards the preagonist level. 
The time constant of current decay was determined using a computerized least squares 
exponential fitting program (Wright, 1977). In the initial experiments the raw data 
were measured from photographic records and then analyzed. In later experiments 
the currents were recorded on a Hewlett-Packard (Palo Alto, Calif.) FM tape recorder 
and then digitized by a DEC PDP 8e (Digital Equipment Corp., Maynard, Mass.) 
computer. No difference was obtained with these two different methods of analysis. 
To determine the decay time constant, data points closest to the peak were eliminated 
and the remainder of current was fitted as a single exponential function of time 
(Scubon-Mulieri and Parsons, 1978). 

All values are expressed as mean :1: standard error of the mean (SEM). Semiloga- 
rithmic plots of the decay time constant as a function of membrane voltage were 
analyzed by a least squares linear regression. 

Estimate of Mean Channel Lifetime in Isotonic Potassium Propionate Solution 
Miniature endplate current (MEPC) decay rates (a MEPC) were analyzed in the 
isotonic potassium solution to estimate the voltage dependence of mean channel 
lifetime. MEPCs could be recorded from individual fibers for variable lengths of time 
after placement in the isotonic potassium solution, but after 30-60 minutes, the 
MEPCs of most preparations were either absent or too small to be accurately measured 
(see Gennaro et al., 1978). MEPCs were recorded at different membrane potentials 
ranging between -80 and +60 inV. At each potential, 10-20 MEPCs were collected, 
averaged, and analyzed with the aid of a digital computer. At all voltages, MEPCs 
decayed with a single exponential time-course. The decay rate constant was deter- 
mined by confining the analyzed portion to between 20 and 80% of the peak value. 

R E S U L T S  

Peak Carbachol-Induced Current and Time-Course of Current Decay Depend on 
Membrane Voltage 

Microperfusion of  carbachol onto the endplate region of  voltage-clamped 
muscle fibers induced a transient EPCc~b superimposed on the steady-state 
holding current. This current developed with a time-to-peak of a few seconds 
and then slowly decayed towards the base line even though agonist application 
was continued. A typical response, obtained with 250/~M carbachol in a fiber 
voltage clamped to - I 0 0  mV, is illustrated in Fig. 1 A. The decay phase of  
the carbachol-induced EPC was exponential over most of its time-course and 
could be adequately described by the following equation: 

EPC(t)  = Ae -q" + B, (1) 
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where A is a constant, B is a constant representing the value of the final 
"plateau" current reached in the presence of carbachol, and �9 is the time 
constant of  current decay. The exponential nature of the decay time-course is 
shown in Fig. 1 B. The  carbachol-induced currents did not always return to 
the original value of the holding current when desensitization reached its 
equilibrium level. The  level of  the plateau current was generally less than 10% 
of  the peak current value. 

Large holding currents are required to voltage clamp potassium-depolarized 
fibers to negative membrane  potentials (Katz, 1949; Scubon-Mulieri and 
Parsons, 1978). Furthermore, the voltage level is not constant but falls with 
distance from the site of current injection, the extent of  the decay depending 
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FIOuRE 1. A typical EPCaab during microperfusion of 250 #M carbachol in a 
fiber voltage clamped at - 1 0 0  mV. (A) Estimate of the voltage deviation during 
the peak EPC~-b at - 100 mV. Trace I is the EPC~teo response. Traces V1 and V~ 
show the membrane voltage recorded from the primary voltage electrode and 
104 ~M away, respectively. The vertical arrow indicates the onset of carbachol 
perfusion. (B) The decline of the EPC~b expressed in arbitrary units is plotted 
as a function of time. The circles represent the data points (taken from trace I 
in A), and the solid line is drawn as a single exponential with a decay time 
constant of 3.5 s. Vertical calibration bar: 0.5 #A for trace I and 20 mV for 
traces V1 and Vz. Horizontal calibration bar: 15 s. 

on the space constant of the fiber (1.0-1.5 mm in potassium-depolarized 
fibers) (Jack et al., 1975). Loss of voltage control along the fiber may be 
accentuated during agonist application when the endplate membrane  con- 
ductance is increased, especially if the chemosensitive membrane  extends a 
considerable distance along the fiber (Rang, 1975). In fact, Scubon-Mulieri 
and Parsons (1978) have shown that some additional loss of  voltage control 
along the fiber did occur when 1,000/~M carbachol was applied to voltage- 
clamped endplates in potassium-depolarized fibers. However, the voltage 
deviation was similar at - 4 0  and +40 mV even though the holding current 
values were very different at the positive and negative values of  membrane 
voltage. In the present study we wanted to use a concentration of agonist 
which desensitized the endplate membrane  to equilibrium levels rapidly 
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enough so that stable voltage clamp recordings could be obtained over a wide 
range of  membrane voltages. Also, we felt it important that the voltage 
deviation during endplate activation be maintained at an acceptable level. 
Consequently, experiments were done to estimate the voltage deviation during 
application of 250 pM carbachol. The spatial uniformity of voltage control 
was estimated with a second voltage electrode inserted approximately 100/~m 
from the primary voltage and current electrodes (Scubon-Mulieri and Parsons, 
1978). These experiments were done in fibers voltage-clamped to -100  mV. 
An example of the voltage deviation during carbachol application is shown in 
the lower portion of Fig. 1 A. The middle and lower traces indicate membrane 
voltage measured adjacent to the current-passing electrode (V1) and 104/~m 
(V2) from the current-passing electrode, respectively. The peak inward car- 
bachol-induced EPC was 1.2 p.A. No discernible deviation occurred at the 
primary voltage electrode, but a measurable depolarization, " 4  mV, occurred 
at the second electrode, 112. The results of four similar experiments indicated 
that the voltage deviation 100 pm from the current-passing electrode during 
carbachol activation was <5% of the driving force (Edamp -En) .  Because 
desensitization produced by 250 ~tM carbachol reached its equilibrium level 
rapidly enough to maintain stable voltage clamp conditions in the range of 
voltages desired (Lambert et al., 1977), this concentration of carbachol was 
used. 

PEAK CARBACHOL-INDUCED CURRENT-VOLTAGE RELATIONSHIP I$ NON- 

LINEAR The magnitude of the peak E P C ~  was not a linear function of 
membrane potential in the range of +40 to - 120 mV (Fig. 2). In this figure, 
each point represents the average value obtained from at least five different 
fibers voltage-clamped at the designated voltage. 
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FtGUgE 2. Peak EPC=wo plotted as a function of membrane potential. Each 
point represents the mean peak current :k SEM of at least five fibers perfused 
with 250 /~M carbacho[ in isotonic potassium solution. The initial holding 
current has been subtracted in each case. (O) Responses obtained in 1.8 mM 
Ca++; (0) responses obtained in the Ca-deficient solution containing 2 mM 
Mg § and I mM EGTA. Lines through the data points were drawn by eye. 
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An estimate of the voltage dependence of peak EPCca~b, A, was determined 
from the slope of a plot of In [EPCcarb/( V - Vr)] vs. V. The value of A was 
0.0049 mV- . This value is similar to that reported for carbachol by others 
using muscles in sodium Ringer solution (Dionne and Stevens, 1975; Neher 
and Sakmann, 1975; Adams, 1976). However, because the rate of desensiti- 
zation increases with hyperpolarization, the amount of curvature in the 
current-voltage relationship in our experiments may be decreasd. Adams and 
Sakmann (1978) demonstrated that the voltage dependence is decreased with 
increasing concentrations of agonist. Hence we believe that the curvature in 
the peak EPCcarb-voltage relation may be underestimated. Nevertheless, the 
nonlinearity suggests that the influence of voltage-dependent channel gating 
observed in normal sodium Ringer solution (Dionne and Stevens, 1975) is 
also present in the isotonic potassium solution. The value of ER, determined 
by interpolation, was ~ - 5  mV in the isotonic potassium solution. 

T I M E - C O U R S E  O F  C A R B A C H O L - I N D U C E D  C U R R E N T  D E C A Y  IS  V O L T A G E  S E N S I -  

T I V E  Scubon-Mulieri and Parsons (1978) observed that the time constant of 
EPCcarb decay ('r) of voltage-clamped potassium-depolarized fibers was smaller 
at - 40  mV than at + 40 mV. We have confirmed this voltage dependence for 
250 pM carbachol over a much wider voltage range, - 120 to +40 mV. Results 
that demonstrate the exponential decay and the voltage dependence of �9 are 
presented in Fig. 3. This figure shows the time-course of carbachol-induced 
currents in three different muscle fibers voltage-clamped to +40, -40,  and 
-100 mV, respectively. The time constants of decay determined from the 
exponential fits shown in Fig. 3 B were 38 s for the fiber voltage clamped at 
+40 mV, 13 s at -40  mV, and 5 s at -100 mV. The voltage dependence of 
"r is adequately described by an exponential relationship. This is illustrated by 
the semilogarithmic plot of 1" as a function of membrane potential in Fig. 4 
(O). Each data point on this graph is the average value of 'r from at least three 
fibers and the line is a least squares regression line drawn using all the 
individual values at each voltage. We conclude that at least over the voltage 
range o f -  120 to +40 mV the time constant 1"(IT) may be described by 

v) = Dv, (2) 

where D is the coefficient of voltage sensitivity of I" and I"(0) is the value of ~" 
at zero voltage. For these experiments in potassium propionate solution 
containing 1.8 mM calcium the estimated value of D was -0.012 mV -1. 

250 #M C A R B A C H O L  P R O D U C E S  C O M P L E T E  D E S E N S I T I Z A T I O N  Scubon-Mu- 
lieri and Parsons (1978) reported that the equilibrium level of desensitization 
was similar in fibers microperfused with 1,000 pM carbachol either at - 40  or 
+40 mV. A similar result was obtained in the present study with 250 pM 
carbachol. We used a double perfusion procedure similar to that described 
previously (Scubon-Mulieri and Parsons, 1978). The 250 pM carbachol ap- 
plication was maintained until the current reached a plateau (after ~ 2 min). 
Application of 1,000 pM carbachol at this time produced no obvious alteration 
in the current level in fibers voltage clamped either at -40  or +40 mV. We 
concluded, therefore, that no activable receptors existed when desensitization 
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had reached its equilibrium level with 250 #M carbachol, and that desensiti- 
zation is equally complete at both - 4 0  and + 40 mV. 

Voltage Dependence of Desensitization Onset Does Not Require External Calcium 

Calcium accelerates the rate of  carbachol-induced desensitization (Manthey, 
1966; Parsons, 1978). Further, Nastuk and Parsons (1970) suggested that the 
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FIGURE 3. (A) Examples of EPCcarb measured in three voltage-clamped po- 
tassium depolarized muscle fibers during microperfusion of 250 #M carbachol. 
Holding voltage of individual records was +40 mV (upper), -40  mV (middle), 
and -100 mV (lower). Vertical arrows indicate the onset and termination of 
carbachol perfusion. Outwardly directed current is indicated by an upward 
deflection and inward current by a downward deflection. (B) The decline of the 
respective EPCc~b records shown in A expressed in arbitrary units and plotted 
as a function of time. The time constants of decay arc +40 mV, 38 s; -40  mV, 
13 s; .and -100 mV, 5 s. Vertical calibration bar: 0.05 #A for the upper, 0.1 #A 
for the middle, and 0.5 pA for the lower traces, respectively. Horizontal 
calibration bar: 15 s. 

site of calcium action is located on the internal surface of  the postjunctional 
membrane.  Normally the level of  intracellular ionized calcium is low so that 
there is a large inward electrochemical gradient for calcium. The electrochem- 
ical driving force (Eca-EM) should increase with hyperpolarization. There- 
fore, the acceleration of  desensitization with hyperpolarization may reflect an 
acceleration of  the process caused by increased calcium entry through agonist- 
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activated endplate channels as the membrane potential is made more negative 
(Parsons, 1978). We have addressed this possibility in a series of  experiments 
in which activation-desensitization was studied using muscles maintained in 
a calcium-deficient, isotonic potassium solution containing 1 m M  EGTA and 
2 m M  magnesium. Different fibers were voltage clamped to - I 0 0 ,  -50 ,  or 
+40 inV. Endplate currents produced by 250/~M carbachol in the calcium- 
deficient solution were similar to those observed in the presence of calcium. 
The EPC~eo rose rapidly to a peak and then decayed exponentially to a 
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The decay time c o n s t a n t  for EPC_,~ (r is plotted semilogarithmi- 
cally as a function of membrane voltage for calcium-containing (1.8 mM) (0) 
and calcium-deficient (&) isotonic potassium solution. Each point represents the 
mean • SEM of at least three fibers voltage clamped at the designated 
potentials. The data were fit using Eq. 2 with values indicated in the text. 

plateau level. The peak EPC~b values obtained in the calcium-deficient 
solution were slightly smaller at comparable voltages than those observed in 
the presence of calcium; however, the curvature of the EPCearb-voltage rela- 
tionship was similar (Fig. 2). At -100  mV we observed a progressive increase 
in the amount  of current required to voltage clamp some fibers maintained in 
the calcium-deficient solution. Consequently, the final plateau current during 
carbachol application did not always return to the initial base-line and plateau 
currents between 10 and 15% of the peak current value were frequently 
observed. However, inspite of this difficulty, it was readily apparent that 
desensitization remained voltage dependent in the calcium-deficient solution. 
The  coefficient of voltage dependence, D, for the fibers maintained in the 
calcium-deficient solution was -0.0092 mV-1; a value not markedly different 
from that obtained in the presence of calcium (-0.012 mV -1, Fig. 4,O). Our  
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results indicate that the voltage dependence of desensitization does not require 
external calcium and does not result from an enhanced calcium influx during 
endplate activation at hyperpolarized values of membrane potential. 

Elevation of the External or Internal Calcium Concentration Does Not Modify the 
Voltage Dependence of Desensitization 

Calcium and voltage each independently change the intrinsic rate of desen- 
sitization. Consequently, we have investigated the interaction of these two 
factors on desensitization. Two series of experiments were done. In the first, 
the external calcium concentration was raised to 9.0 m M  and the voltage 
dependence of EPCc~b decay was estimated over a voltage range o f - 8 0  to 
+40 inV. In the second group of experiments, muscles were pretreated with 
the calcium ionophore X537A (Pressman, 1972; Scarpa et al., 1972). DeBassio 
et al. (1976) demonstrated that X537A accelerates desensitization, presumably 
because the ionophore raises internal calcium (Mobley, 1977). We determined 
the voltage dependence of EPCc,~eo decay in the ionophore-treated muscles 
over a voltage range o f - 8 0  to +40 inV. In preliminary experiments we 
determined that DMSO, the solvent used for the ionophore, had no influence 
on the rate of desensitization (see also DeBassio et al., 1976). The results with 
elevated external calcium and ionophore treatment were compared to those 
obtained in muscles maintained in 1.8 m M  calcium. 

Raising external calcium and treatment with X537A each increased the 
rate of desensitization over that observed in the presence of 1.8 m M  calcium. 
In all three solutions, the time-course of EPC~b  decay was adequately 
described by a single exponential function of time at all voltages. The average 
values of "r obtained at each voltage in elevated calcium and in the ionophore 
solution were consistently smaller than values in the control 1.8 m M  calcium 
group. However, the differences were small and variability such that only the 
values at - 4 0  mV in the ionophore and elevated calcium solutions were 
significantly different (P < 0.05) from the control values (1.8 mM calcium). 
In all three cases, ~" was an exponential function of voltage. The slope of the 
In ," vs. voltage relationship (Fig. 5) was determined by a least squares 
regression line drawn through each set of data points. The coefficient of 
voltage dependence of desensitization, D (Eq. 2), was -0.0109 mV -t  for 
muscles maintained in 1.8 m M  calcium, -0.0109 mV -1 for fibers maintained 
in 9.0 m M  calcium, and -0.0098 mV -x for those preparations pretreated with 
the ionophore. These results demonstrate that elevating external calcium or 
treatment with X537 increased the rate of desensitization without changing 
the voltage dependence of this process. 

Voltage-Dependent Channel Gating May Contribute to the Observed Voltage De- 
pendence of Desensitization Onset 

The cyclic model of desensitization, proposed by Katz and Thesleff (1957) 
adequately describes the desensitization onset-recovery process (Rang and 
Ritter, 1970; Gage, 1976; Steinbach and Stevens, 1976; Scubon-Mulieri and 
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Parsons, 1977, 1978): 

T H E  J O U R N A L  OF G E N E R A L  P H Y S I O L O G Y  * V O L U M E  7 5  o 1 9 8 0  

(3) 
nA + R., "A,~R. "AnR* 

nA + R'~ A ' 

In this cyclic scheme n molecules of agonist A bind to the postsynaptic 
membrane  receptor, R, with a dissociation constant for the binding of  agonist, 
KD. The inactive agonist-receptor complex, AnR, is presumed to undergo a 
conformational change from the nonconducting state to the conducting state, 
AnR*, with the rate constant, ft. The lifetime of  AnR* is determined by the 

3 0  

2O 

,~ ~o 

! 
,, 5 

! I I , | 

-BO -40 0 40 

MEMBRANE VOLTAGE (mV) 

FtouRE 5. The decay time constant of E P C ~  (~) is plotted semilogarithmi- 
cally as a function of membrane voltage. Each point represents the mean of at 
least five fibers. (0) "r values obtained in control 1.8 mM calcium propionate 
solution; values of �9 represented by �9 were obtained in 9.0 mM calcium 
propionate solution and O in ionophore-treated fibers. The solid lines were 
drawn according to Eq. 2 with values given in the text. Bars for standard error 
were omitted for clarity. All of these experiments were performed in HEPES- 
buffered solution. 

closing rate constant, a. In the continued presence of  agonist, the activated 
receptor-channel complex, A,,R* can be slowly converted to a desensitized 
nonconducting state A,,R', at a rate determined by 8; 8 being considerably 
smaller than 0t. Recovery of  sensitivity from desensitization would occur as 
AnR' dissociates and the desensitized form, R' ,  reverts to its original activatable 
state, R. 

Katz and Thesleff (1957) reported that depending on the concentration of  
agonist the rate of development of desensitization could be either faster or 
slower than the rate of recovery from the desensitized state. However,  Scubon- 
Mulieri and Parsons (1977, 1978) observed that the recovery of desensitization 
proceeds considerably slower than the onset of desensitization, i.e., p << & 
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Further, these authors observed that at equilibrium with sustained agonist 
exposure no activable receptors remained. We have used procedures similar to 
those of Scubon-Mulieri and Parsons (1978) in the present study and no 
appreciable recovery was evident when desensitization had developed to its 
equilibrium level. Since no significant recovery occurred under our experi- 
mental conditions the kinetics of development of desensitization can be 
described by the following sequential scheme. 

r . . . . . . . . . . . . . .  " 7  

12A + R_ K~ , A  + ARe  .fl A2R*] 8 ,A2R' (4) 
I Ol ! 
L -  I 

We have modified Eq. 4 to account for recent evidence which suggests that 
the channel opens as the receptor binds the second in a sequence of two 
agonist molecules with each binding step having equal equilibrium affinities 
(Dionne et al., 1978). This model assumes that (a) the desensitized noncon- 
ducting state, A2R', develops only from the activated conducting state, A2R*; 
(b) additional agonist binding steps are not required for this transition; and 
(c) the enclosed portions of the kinetic scheme occur rapidly relative to the 
onset of desensitization. We have chosen to analyze this simple sequential 
scheme because, to our knowledge, there is no experimental evidence to 
suggest that alternative, more complex, schemes are more appropriate. Con- 
sequently, under the conditions of our experiments, the transition from the 
activated to the desensitized state represents the rate-limiting step for the 
development of desensitization. The voltage dependence of desensitization 
would reflect a voltage dependence of 8 as described by 8(V) ffi 8(o)e Ixv, 
where D' represents the coefficient of voltage dependence for desensitization. 

The sequential model described by Eq. 4 predicts that the experimentally 
observed onset rate of desensitization,/fob,, and its voltage dependence reflect 
a contribution from both activation and desensitization kinetic parameters 
according to the following relationship (Pallotta, 1978): 

8(0)e -~'v 

ko~(V) = l+~a(0)eaV [ 1 r~.j + ~7] IKD]' (5) 

where 8(O)e -l~v represents the voltage-dependent rate constant of desensiti- 
zation onset; a(0)e av describes the voltage-dependent channel open time; fl is 
the rate constant of channel opening; [c] is the agonist concentration; and KD 
is the dissociation constant for the agonist-receptor complex. 

In the present study the time constant of agonist-induced current decay has 
been measured experimentally (Fig. 1). With sustained agonist application, 
the magnitude of the EPC~b is some function of the number of conducting 
AnR* complexes at any defined time. Anderson and Stevens (1973) have 
reported previously that the kinetic properties of individual channels are not 
altered as desensitization develops. Therefore, the gradual decline of the 
EPCc,~b after the peak reflects the time-dependent transition of conducting 
receptor channel complexes, AnR*, into the nonconducting desensitized state, 
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AnR'. Given that recovery from the desensitized state proceeds considerately 
slower than its onset, then the operationally defined Ko~ for desensitization 
should be approximated by ,,-1 the reciprocal of the time constant of decay 
of agonist-induced currents. 

Numerical analysis of Eq. 5 was used to estimate the possible contribution 
of voltage-dependent channel gating of Ko~ and its observed voltage depen- 
dence. 

Each of the single-channel parameters, Ko, a, and ~ may be voltage sensitive 
and could contribute to the observed voltage dependence of desensitization. 
Since ~8 has been reported to have little voltage sensitivity relative to a at the 
frog endplate (Magleby and Stevens, 1972 a, b; Dionne and Stevens, 1975) 
and in the electroplaque (Sheridan and Lester, 1977), we would not expect 
/~ to contribute significantly to our observed voltage dependence. The voltage 
dependence of Ko is unknown and we have assumed that the voltage depen- 
dence of gating is primarily reflected in the voltage dependence of a (Anderson 
and Stevens, 1973). 

We felt it necessary to estimate the voltage dependence of mean channel 
lifetime under the conditions of our experiments, i.e., in the isotonic potassium 
propionate solution, because Van Helden et al. (1977) and Gage and Van 
Helden (1979) observed quantitative differences in endplate channel lifetime 
and conductance when external sodium was replaced by other monovalent 
cations. Therefore, MEPC decay rates (a MEPCs) were analyzed to estimate 
mean channel lifetime (Anderson and Stevens, 1973). The relationship be- 
tween a MEPCs and membrane potential was exponential and yielded a 
value for the coefficient of voltage dependence, A, of 0.0041 + 0.0005 mV -~ 
(mean + SE) at temperatures ranging between 18 and 21.5~ This value is 
slightly less than that reported previously for muscles in normal sodium 
solution at 18~ (Anderson and Stevens, 1973; Dionne and Stevens, 1975; 
Adams and Sakmann, 1978). The MEPC decay at identical voltages was 
faster in the potassium solution than in sodium solution. Similar results in 
potassium solutions have been reported (Linder and Quastel, 1978; Gage and 
Van Helden, 1979). The value of a(0) obtained from MEPCI decay in muscles 
maintained in the isotonic potassium solution was 1.57 ms -1. 

Mean channel lifetime differs with different agonists but its coefficient of 
voltage dependence does not (Katz and Miledi, 1973). The value of ~" for 
carbachol is -0.75 that for acetylcholine in the normal sodium containing 
solution. We assumed that the duration of channel lifetime with carbachol 
also is 0.75 of that for acetylcholine in the isotonic potassium solution. 
Therefore, the value of Oq~rb~0~ used in our analysis was 2.1 ms -i with the 
coefficient of voltage dependence, A, equal to 0.0041 mV -1. 

Fig. 6 illustrates the contribution of voltage-dependent activation to the 
voltage dependence of desensitization. Predicted values of 8 (O) are plotted as 
a function of voltage according to Eq. 5, which includes a term for the voltage 
dependence of activation. For comparison values of 8 are plotted at compa- 
rable voltages assuming that all of the voltage depoevendence resides in the 
transition to the desensitized state: 8(v) ~ ko~(O)e- . It# this analysis the 
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following experimentally obtained values were substituted into Eq. 5; #(0) =, 
0.067 s-~; D ffi 0.0109 mV-1; a(0) ,= 2.1 ms-X; A ,= 0.0041 mV-1; c "- 250 #M. 
The values of  KD (250 #hi,  Dionne et ai. 1978) and fl (2 • 107M-is -1) were 
obtained from the literature with the assumption that they are not altered in 
the isotonicpotassium solution. The value used for the opening rate constant 
was 5.0 ms, ~. This was obtained from Sakmann and Adams (1978) assuming 
a Q10 for fl of 3.0. 

This analysis (Fig. 6) demonstrates that under our experimental conditions 
the observed rate of desensitization but not its voltage dependence is markedly 

0.3 

~" 0O6 

0.03 " ~-  

' ' ' 2 ' o  ' ' ' 0.0t .40 *20 0 - -40 - -80 -IO0 

MEMBRANE VOLTAGE (mV) 

FIGURE 6. A n  es t imate  o f  the  c o n t r i b u t i o n  o f  t he  vo l tage  dependence  o f  
activation to the voltage dependence of desensitization. Solid line is drawn 
through data points calculated based on the assumption that 8(V) - ko~, which 
assumes that all the voltage dependence resides in the transition to the desensi- 
tized state. The line through the open circles is drawn according to Eq. 2 and is 
a theoretical plot describing the simple sequential scheme discussed in the text. 
See text for specific values. 

altered by the influence of activation kinetics. Our  k ~  overestimated 8 by 
.-.46% at 0 mV membrane potential. This difference increased with hyperpo- 
larization such that at -100  mV kob, differed from the predicted value by 
56%. Values of the coefficient of voltage dependence obtained from the slope 
were -0.010 mV -1 for ko~ and -0.009 mV -1 obtained from the kinetic 
analysis. These values indicate that the voltage dependence of activation 
contributes "-' 10% to the observed voltage dependence of desensitization. 

The channel opening rate constant, ~, has been reported to have concen- 
tration dependence, but little voltage dependence (Dionne and Stevens, 1975). 
If ~ is concentration dependent, then according to Eq. 5, the contribution of 
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a(O)eaV/fl to kob~ would be a function of agonist concentration. We tested this 
prediction experimentally by comparing the voltage dependence of 'r at two 
carbachol concentrations (250 and 1,000/xM). These experiments were done 
at membrane  voltages o f - 4 0  and +40 mV and are depicted in Fig. 7. 
Although the r was significantly decreased with 1,000 pM carbachol, the 
voltage dependence of 'r was not significantly different at the two concentra- 
tions of carbachol. These results suggest that a concentration dependence of 
channel gating does not contribute to the observed voltage dependence of 
desensitization onset. 
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FIOURE 7. The affect of agonist concentration on the time constant of EPCc~b 
decay (~') and its relation to the observed voltage sensitivity. The decay time 
constant of EPCc~b is plotted semilogarithmically as a function of membrane 
potential for fibers voltage clamped at +40 and -40 mV in isotonic potassium 
solution. EPC~Arb responses were obtained from fibers microperfused with either 
250 pM (0) or 1,000 pM (&) carbachol. Each point represents the mean • SEM 
of at least seven fibers. 

D I S C U S S I O N  

Our  results demonstrate that desensitization onset exhibits a marked voltage 
dependence when analyzed over a wide range of membrane  potentials. The 
voltage dependence of desensitization does not require external calcium and 
appears independent  of elevated calcium levels or agonist concentration, both 
of which affect the rate of development of desensitization. Our  kinetic analysis, 
however, suggests that voltage-dependent receptor channel activation contrib- 
utes to the experimentally observed rate of desensitization and its estimated 
voltage sensitivity. According to the sequential model this contribution to the 
voltage dependence is small and the major component of the voltage depen- 
dence resides in the voltage sensitive transition step from the activated A,,R* 
state to the desensitized, AnR' state. 
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These experiments were done using potassium-depolarized frog sartorius 
muscle fibers. Kuno et al. (1971) and MeMahon et al. (1972) reported that 
the endplate region of this preparation extends hundreds of micrometers along 
the fibers. Our  estimates were less (Scubon-Mulieri and Parsons, 1978). If the 
endplate regions are long, some degree of nonuniformity of agonist concentra- 
tions as well as some additional loss of voltage control may have occurred, 
and this could introduce errors in our estimates of the time-course of desensi- 
tization. However, we doubt that such problems markedly influenced our 
results. We have observed a similar voltage dependence of desensitization 
when carbachol is applied to snake fast muscle fibers maintained in an isotonic 
potassium propionate solution, x Neuromuscular junctions in the snake prep- 
aration are 50-70/~M long--much shorter than the fiber space constant (-1 
ram) (Ridge, 1971). Agonist concentration during microperfusion is therefore 
uniform over the entire endplate region and effective voltage control is 
maintained. 

Elevation of external calcium increased the rate of desensitization without 
altering the voltage dependence (Fig. 5). We did not observe as marked an 
acceleration of desensitization by calcium as reported previously for the 
potassium-depolarized preparation (Manthey, 1972; Scubon-Mulieri and Par- 
sons, 1977). Several major differences in experimental conditions may account 
for this discrepancy. In the previous work the agonist concentration was 
considerably higher (1-3 raM) than the concentration used in our experiments. 
In addition, the previous studies were not done on voltage-clamped muscle 
fibers. Manthey (1972) observed that the slope of the relationship between 
calcium concentration and desensitization half-time was similar at three 
concentrations of external potassium. Rearranging Manthey's data (1972; see 
Fig. 4) and plotting half-time vs. membrane potential (using values of mem- 
brane potential stated in the paper for the three external potassium concen- 
trations), we obtained a relationship similar to that seen in (Fig. 5). Elevation 
of external calcium accelerated desensitization without changing its voltage 
dependence. Our  results do not rule out the possibility of a calcium-potassium 
competition as suggested by Manthey (1972); however, we suggest that these 
previous studies may be better interpreted in terms of the marked influence of 
membrane potential on the rate of desensitization. 

The receptor-channel complex resides within the membrane and is therefore 
sensitive to the existing membrane field. Consequently, different conforma- 
tional states would be expected to appear and disappear with rates dependent 
on the value of the membrane potential. We propose that the transition of the 
receptor-channel complex from the activated, conducting state to the desen- 
sitized state, A,,R* n. A,,R', reflects the kinetics of a conformational change 
in the receptor channel complex, and that this conversion is governed by the 
orientation of voltage-sensitive macromolecules in the membrane. Our  treat- 
ment  of the transition rates between states is therefore formulated in terms of 
protein-membrane field interaction as used previously to describe the kinetics 
of receptor channel activation (Magleby and Stevens, 1972 b, Anderson and 

a Fiekers, J. F., and R. L. Parsons. Unpublished observations. 
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Stevens, 1973; Stevens, 1978). A basic assumption is that each individual 
complex is inactivated in an "all or none" fashion as desensitization develops 
so that current decay reflects the progressive decrease in the number  of 
activated complexes rather than a continuum of change in a or -/of individual 
complexes. Evidence in support of this assumption is derived from the 
observation that acetylcholine-induced current fluctuations do not change in 
form as desensitization progresses (Anderson and Stevens, 1973). In addition, 
ion selectivity is not altered at partially desensitized endplates (Koester, 1971; 
Lambert et al., 1977; Katz and Miledi, 1977). 

With the assumption of distinct conformational states, it is reasonable to 
suggest that an energy barrier must be overcome to complete the transition 
between states. Further, if each state has a dipole moment,  then a voltage- 
sensitive component of the free energy is expected. The change in dipole 
moment  between the receptor molecule in its open and transition state will 
result in unequal changes in the difference in free energy, #, with voltage. 
This would lead to a voltage-sensitive reaction rate (Magleby and Stevens, 
1972 b; Stevens, 1978). With the assumptions outlined by Magleby and 
Stevens (1972 b) and Stevens (1978), we estimate the value of p, the difference 
between the two states in dipole moment  normal to the field strength, for the 
transition ofAnR* ~ AnR' to be 72.7 D. Since this value is ~1.5 times that 
estimated for the transition between the open and closed states of the receptor 
channel complex, (Magleby and Stevens, 1972 b), it suggests that a greater 
difference in free energy exists for the transition of this complex to a desensi- 
tized state. 

Our  results predict that a small component of the experimentally derived 
voltage dependence of desensitization is contributed by voltage-dependent 
activation. This conclusion is based on an analysis of a sequential kinetic 
scheme. We realize that the accuracy of this analysis and further quantitation 
depend on the validity of the assumptions made in the development of this 
scheme as well as the substituted values. This analysis indicates, however, that 
the voltage dependence of activation could contribute to the overall voltage 
dependence of desensitization and must be considered in any appropriate 
scheme. 

Even at the most hyperpolarized values of membrane potential used in this 
study, the molecular transition to the desensitized state occurred very slowly 
relative to channel gating. Therefore, we do not consider desensitization to be 
a major factor in normal synaptic functioning at the neuromuscular junction 
and expect that it can only be observed under conditions of prolonged agonist 
application. 
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