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Abstract: Herein, we have fabricated starch–borax double cross-linked network (DC) hydrogels
with tough and self-healing properties using a one-pot method. The addition of borax significantly
increased the storage modulus and loss modulus of these starch–borax DC hydrogels. The maximum
compression stress (~288 kPa) of starch–borax DC hydrogels containing 5% borax was about ten
times greater than that of a pure-starch hydrogel. The texture profile analysis values of the DC
hydrogels—including hardness, springiness, cohesiveness, and adhesiveness—increased compared
to pure-starch hydrogels. In addition, starch–borax DC hydrogels exhibited excellent self-healing and
shape-recovery properties. These DC hydrogels, with a variety of excellent properties, have potential
applications in agricultural, biomedical, and industrial fields.

Keywords: starch; double cross-linked network hydrogels; dynamic covalent bonds; self-healing

1. Introduction

Hydrogels are three-dimensionally (3D) cross-linked polymeric networks formed by
hydrophilic polymer chains [1–3], and they have wide applications in the fields of food [4],
drug delivery [5], actuation [6], and tissue engineering [7]. Due to the nontoxicity and
biocompatibility of natural polymers, natural hydrogels based on starch [8], alginate [9],
cellulose [10], chitosan [11], carrageenan [12], and protein [13–15] have wide applications
in food, biomaterials, drug delivery, etc. Starch, due to its low cost, abundance, and high
cross-linking ability, is an ideal material for preparing hydrogels [16–18]. At low tempera-
tures, amylose chains form double helices due to the physical cross-linking of the hydroxyl
groups in each side chain, thereby forming a 3D hydrogel network [19,20]. Our previous
study reported that corn starch can form physically cross-linked hydrogels via amylose
hydrogen bonding [19]. However, these starch hydrogels exhibited weak mechanical
properties because of the single network with its low-density physical cross-link [21]. In
addition, their mechanical properties and structure were destroyed and were irreparable
when the hydrogels suffered some cracks [22], which limits their lifespan, as well as their
applications in agricultural and biotechnological industries [16,23]. Thus, enhancing the
mechanical properties, as well as introducing self-healing into hydrogels, have emerged as
important ways to improve their durability, reliability, and maintain performance.

At present, a strategy for preparing chemically and physically double cross-linked
network hydrogels has been used to enhance mechanical properties with better self-healing
efficiency [22]. Borax, as a dynamic covalent cross-linking agent, has been applied in
multiple fields, such as agriculture [24], biomedicine [25,26], and water treatment [27]. It can
form dynamic boron ester bonds with hydroxyl functional groups of polysaccharides and
enhance the mechanical properties of hydrogels [28]. Spoljaric et al. (2014) demonstrated
that the addition of borax could significantly enhance the malleability of poly (vinyl
alcohol) hydrogels [29]. Liu et al. (2020) reported that fenugreek gum–borax hydrogels
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exhibited significant heat resistance, which was due to the reversible borate/didiol bond
between fenugreek gum and borax [24]. Furthermore, the addition of borax can improve
the mechanical properties of starch films. It was reported that the tensile strength of the
high-amylose, maize-starch film increased by about four times with the addition of 6 wt%
borax-modified nanocellulose [30]. Lu et al. reported that, compared with pure-starch film,
the tensile strength of the starch film with 10% borax-cross-linked starch nanoparticles
increased by about 45% [31]. Therefore, we hypothesized that the addition of borax could
enhance the mechanical properties of starch hydrogels by forming physical hydrogen bonds
and dynamic covalent boron ester bonds.

In the current study, we demonstrated a feasible one-pot method for creating starch–borax
DC hydrogels with excellent mechanical properties. The DC hydrogel networks were con-
structed by forming a hydrogen bond between starch chains and a dynamic boron ester
bond formed between the starch and the borax. The rheological, mechanical, microstruc-
tural, and self-healing properties of the DC hydrogels were systematically analyzed. With
excellent mechanical behaviors and self-healing properties, we believe that the applica-
tion of renewable and biocompatible starch hydrogels could be expanded in the fields of
agriculture, food, biomedicine, and tissue engineering.

2. Materials and Methods
2.1. Materials

Borax was obtained from Tianjin Guangcheng Chemical reagent Co., Ltd. (Tianjin,
China). Corn starch (amylose content: 28.0%) was obtained from Zhucheng Xingmao Corn
Development Co., Ltd. (Weifang, China).

2.2. Preparation of Starch–Borax DC Hydrogels

Starch–borax DC hydrogels were prepared via one-pot method. Corn starch (4.2 g)
was added to 23.8 mL distilled water with borax concentrations of 0%, 0.5%, 1.0%, 3%, and
5.0%. Afterward, the mixed slurries were heated for 30 min at 100 ◦C to ensure complete
starch gelatinization. Subsequently, the obtained starch pastes were stored for 6 h at 4 ◦C to
form starch–borax DC hydrogels.

2.3. Mechanical Properties

A texture analyzer with a P 0.5 probe (TA-XT plus, Stable Micro Systems, Surrey, UK)
was used to characterize the mechanical properties of the hydrogel samples at room condi-
tion according to the study of Ge et al. [32]. The compressive stress–strain measurements
were conducted at room temperature by using the P36R probe. The cylindrical hydrogel
samples with about 20.0 mm in diameter and 6.0 mm in height were measured.

2.4. Rheological Measurements

Rheological measurements of hydrogels were performed using a DHR-Hybrid Rheome-
ter (TA Instruments, Anton Paar, Graz, Austria) using a parallel plate system (PP50). The
linear viscoelastic region (LVE) was determined before the shear measurements through a
shear strain sweep test (0.01–1000%) at a constant frequency (1 Hz), at 25 ◦C, according to a
previously described method, with some modifications [32].

To ensure the dynamic viscoelasticity, the starch pastes were equilibrated to 50 ◦C and
subjected to frequency sweep experiments, employing angular frequency ranges from 0.1
to 100 rad/s a shear strain of 1.0%. The freshly prepared starch pastes were subsequently
cooled to 4 ◦C for 6 h to obtain starch–borax DC hydrogels. For the same-frequency sweep
test of the starch–borax DC hydrogels, the storage modulus (G′), loss modulus (G′′ ), and
loss tangent (tanδ = G′′ /G′) were obtained.

The time sweeps of DC hydrogels were performed by cooling the hydrogels to 4 ◦C at
the platform and maintaining that temperature for 120 min, with a frequency of 1 Hz and a
shear strain of 1%.
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The amplitude oscillatory strains were performed according to a study by Huang et al. [25].
The DC hydrogels were cooled from 25 ◦C to 4 ◦C, with a speed of 4 ◦C/min. Subsequently, shear
strains of 1.0% and 500% were applied every 5 min, alternately, at a fixed frequency (1 Hz).

2.5. Characterization

For the structural analysis, the starch hydrogels and starch–borax DC hydrogels
were frozen at −80 ◦C, vacuum-lyophilized, and then ground to obtain the freeze-dried
hydrogels. The X-ray diffraction (XRD) of the freeze-dried hydrogels was measured with Cu
Kα radiation using an XRD diffractometer (AxSD8 Advance, Bruker, Karlsruhe, Germany).
An FTIR spectrophotometer (NEXUS-760, Thermo Nicolet Corp., Madison, WI, USA) was
used to record the spectra of freeze-dried hydrogels. Prior to analysis, the freeze-dried
hydrogels were pressed into pellets with potassium bromide. The method was based
on previous studies, with minor modifications [19]. The morphology of the hydrogels
was evaluated using a scanning electron microscope (SEM, S-4800, Hitachi Instruments
Ltd., Tokyo, Japan). The samples were snap-frozen and then lyophilized for 3 days. The
freeze-dried hydrogels were coated with gold before being mounted onto the specimen
stage to observe their morphologies.

2.6. Self-Healing Assay

The starch–borax3.5% DC hydrogels were broken in half. Then, the cut interfaces were
placed together, without any stimulus, at 25 ◦C. After that, the samples were stretched from
both ends to confirm the healing ability. The method was based on previous studies, with
minor modifications [33].

The starch–borax DC hydrogels were molded into diverse shapes. Then, the hydrogels
were cut into smaller pieces and put into diverse shape molds. They were molded at 25 ◦C.
The self-healing process was observed by taking photographs.

2.7. Statistical Analysis

All the experiments were implemented in triplicate. Statistical analysis was con-
ducted with Tukey’s test using SPSS V.17 statistical software (SPSS Inc., Chicago, IL, US).
A significance level of p < 0.05 was used.

3. Results and Discussion
3.1. Rheological Properties

The variation in storage modulus (G′), loss modulus (G′′ ), and loss tangent (tan
δ) for starch hydrogels with different concentrations of borax at 50 ◦C (as a function of
frequency) are shown in Figure 1. The G′ values of the pure-starch hydrogel remained
unchanged within the test range, which indicated that the pure-starch sample strongly
exhibited typical gel behavior. In the test frequency range, the G′ for each sample was at
least one order of magnitude greater than G′′ , indicating that the elastic gel network had
been established (Figure 1A). At a low angular frequency (≤1.0 rad/s), the G′ value for the
lower-borax (0.5%) sample was higher than that of the higher-borax (2–5%) sample. With
increasing angular frequency (>2 rad/s), there was a significant increase in G′ values with
a 5% addition of borax.

As Figure 1B shows, the starch–borax hydrogels exhibited a typical gel network, in
which tanδ values are below 1. The tanδ values of the starch–borax hydrogels were in-
creased compared to the pure-corn-starch hydrogel, which suggested that the starch–borax
hydrogel structures were weaker than those of the pure-corn-starch hydrogels. These
results demonstrate that the covalent interactions between starch and borax can modify the
rheological behavior of starch hydrogels.
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Figure 1. Frequency dependence of the G′, G′′ (A) and tanδ (B) values of starch pastes with different
content levels of borax at 50 ◦C.

Figure 2 shows the G′, G′′ , and tanδ curves of the starch–borax DC hydrogels, with
various levels of borax content, prepared at 4 ◦C for 6 h, with varying angular frequencies.
In all the hydrogels, the G′ values were greater than the G′′ values for all angular frequencies
(Figure 2A), suggesting solid-like behavior. For pure-starch hydrogels, the tanδ increased
with increasing angular frequency. However, the tanδ values of all the starch–borax DC
hydrogels initially increased with increasing angular frequency (Figure 2B), reaching a
peak of 4 rad/s, and then decreased to the region of 4–100 rad/s. These results demonstrate
that the starch–borax DC hydrogels prepared at 4 ◦C for 6 h had solid-like characteristics.
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Figure 2. Frequency dependence of the G′ (solid), G′′ (hollow), (A) and tanδ (B) values of starch–borax
DC hydrogels with different content levels of borax, prepared at 4 ◦C for 6 h.

Figure 3 shows the time sweep of the starch−borax DC hydrogels, upon cooling
from 50 to 4 ◦C at a rate of 2 ◦C/min, and being maintained at 4 ◦C for 120 min. Upon
cooling, the G′ and G′′ values for all samples increased rapidly for 23 min. The values of G′

and G′′ remained almost constant during the process of 4 ◦C for 120 min, indicating that
starch–borax DC hydrogels were formed at 4 ◦C.

The G′ and G′′ of the hydrogels, when the alternate step strain was switched from a
small strain (γ = 1%) to a large strain (γ = 500%) at a fixed frequency (1 Hz), are presented
in Figure 4. When the strain was returned to 1%, the values of G′ and G′′ for the samples
(starch, starch–borax0.5%, and starch–borax2%) could not return to their initial values (data
not shown). These results confirmed that the network structure of corn starch hydrogels
(starch, starch–borax0.5%, and starch–borax2%) were destroyed. However, as the strain γ was
raised to 500%, the G′ and G′′ values of the starch–borax DC hydrogels (starch–borax3.5%
and starch–borax5%) also decreased sharply, and the G′ values were higher than the G′′

values. After 300 s, when the strain returned to 1%, G′ and G′′ quickly returned to their
initial values, which suggested the rapid recovery of the internal network and mechanical
properties of hydrogels. After three cycles, the starch–borax DC hydrogels (starch–borax3.5%
and starch–borax5%) could return to their original state. The results showed that the
starch–borax3.5% and starch–borax5% DC hydrogels returned to their starting state in 300 s
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after 500% shear strain for three cycles, confirming the recovery of the internal network
of the starch–borax DC hydrogels. The excellent self-recovery ability of starch–borax DC
hydrogels was likely because of the formation of dynamic boron ester bonds. Lu et al. (2017)
found that microfibrillated cellulose-poly (vinyl alcohol)-borax hydrogels could form
reversible covalent cross-links between the hydroxyl groups of poly (vinyl alcohol) or
microfibrillated cellulose and borate ions, as well as enhance the elastic response and
self-healing ability [34].
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3.2. Textural Properties

The textural parameters of starch hydrogels and starch–borax DC hydrogels are shown
in Table 1. Compared with pure-starch hydrogels, the hardness value of starch–borax DC
hydrogels with 5% borax increased from 342 to 650 g. The reason for a significant increase,
via starch–borax, in DC hydrogels’ hardness may be the formation of two interpenetrating
networks: a hydrogen bond cross-linked starch chain network and a covalently cross-linked
network between starch and borax [30,31]. These results suggest that the occurrence of
starch–borax interaction reinforces the starch hydrogels.

Table 1. Texture properties of normal starch hydrogels and starch–borax DC hydrogels.

Samples Hardness (g) Springiness Cohesiveness Adhesiveness (g s)

Starch 342.83 ± 18.75 d 0.857 ± 0.034 b 0.515 ± 0.021 d 176.58 ± 7.54 c

Starch–borax0.5% 611.26 ± 42.22 c 0.867 ± 0.023 b 0.523 ± 0.018 d 445.72 ± 12.93 b

Starch–borax2% 686.63 ± 65.26 a 0.925 ± 0.010 a 0.670 ± 0.009 c 459.89 ± 38.27 ab

Starch–borax3.5% 618.91 ± 30.64 c 0.931 ± 0.009 a 0.734 ± 0.009 b 454.02 ± 22.49 ab

Starch–borax5% 650.28 ± 29.97 b 0.929 ± 0.002 a 0.762 ± 0.006 a 495.60 ± 20.28 a

Mean± standard deviation values in the same column followed by different letters are significantly different (p < 0.05).

With the concentration of borax from 0% to 5%, the springiness, cohesiveness, and
adhesiveness of starch–borax DC hydrogels increased. In addition, the springiness values
in the range of 0.857–0.931 suggest their high elasticity. The cohesiveness of the tested gel
increased with the addition of borax, indicating stronger interactions between corn starch
and borax. Zhang et al. (2015) demonstrated that tea polysaccharide has the ability to
increase the cohesiveness of wheat starch gel via the interaction between tea polysaccharide
and wheat starch [35].

Figure 5 illustrates the compressive stress–strain curves of the corn starch hydrogels
and starch–borax DC hydrogels. The fracture stress of the pure-corn-starch hydrogels
was lower compared to the starch–borax hydrogels. When the borax content was 5%, the
fracture stress of the starch–borax DC hydrogel reached a maximum value of 288 kPa, which
increased ten times compared to the corn starch hydrogel (29 kPa). When the borax content
was 5%, the fracture strain of the starch–borax DC hydrogel was 94%, compared to the
pure-corn-starch hydrogels at 62%. This was caused by the double cross-linking, including
the hydrogen-bonded cross-linked starch network and the dynamic boron ester bonds. The
results further demonstrated the formation of a temporary starch–borax cross-linked the
second network via dynamic boron ester bonds because the dynamic network could serve
as a sacrificial network to dissipate the stress generated during deformation. Zhang et al.
(2018) reported that the poly(acrylamide)/poly(vinyl alcohol) hydrogel was strengthened
by the formation of the poly(vinyl alcohol)-borax boronate ester bonds [36].

3.3. SEM Analysis

The SEM observations of corn starch hydrogels and starch–borax DC hydrogels are pre-
sented in Figure 6 at the same magnification. All the corn starch hydrogels and starch–borax
DC hydrogels exhibited a porous interconnected network structure. As shown in Figure 6A,
the corn starch hydrogel had an interconnected network in its internal morphology, and
its pore sizes were 10−20 µm. With the addition of borax, the number of starch–borax DC
hydrogel pores increased, indicating an increase in cross-linking density (Figure 6B–E). As
the concentration of borax increased from 0.5% to 3.5%, the pore size of the starch–borax DC
hydrogels became smaller, and the pore distribution was more uniform within the range of
5–30, 5–20, and 1–10 µm (Figure 6D), suggesting the formation of a more compact structure.
This phenomenon may be due to the interaction between starch chains and borate ions,
leading to a double network formation. It has been reported that the average pore size
of the PVA/borax hydrogels decreased from 19.8 µm to 14.4 µm as the concentration of
borax increased from 0.4% to 1% [37]. A further increase in borax concentration to 5.0%
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resulted in a decreased number of cavities with thick-walled structures (Figure 6E). This is
possibly due to the increased cross-linking density of starch–borax DC hydrogels at higher
concentrations of borax. Li et al. (2019) found that borax–guar gum hydrogel had uniform
interconnected macroporous structures created through boron ester bonds and hydrogen
bonds [22].

Foods 2022, 11, x FOR PEER REVIEW 8 of 15 
 

 

Figure 5 illustrates the compressive stress–strain curves of the corn starch hydrogels 
and starch–borax DC hydrogels. The fracture stress of the pure-corn-starch hydrogels was 
lower compared to the starch–borax hydrogels. When the borax content was 5%, the frac-
ture stress of the starch–borax DC hydrogel reached a maximum value of 288 kPa, which 
increased ten times compared to the corn starch hydrogel (29 kPa). When the borax con-
tent was 5%, the fracture strain of the starch–borax DC hydrogel was 94%, compared to 
the pure-corn-starch hydrogels at 62%. This was caused by the double cross-linking, in-
cluding the hydrogen-bonded cross-linked starch network and the dynamic boron ester 
bonds. The results further demonstrated the formation of a temporary starch–borax cross-
linked the second network via dynamic boron ester bonds because the dynamic network 
could serve as a sacrificial network to dissipate the stress generated during deformation. 
Zhang et al. (2018) reported that the poly(acrylamide)/poly(vinyl alcohol) hydrogel was 
strengthened by the formation of the poly(vinyl alcohol)-borax boronate ester bonds [36]. 

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300
St

re
ss

 (K
Pa

)

Strain (%)

 Starch
 Starch-borax0.5% 

 Starch-borax2% 

 Starch-borax3.5% 

 Starch-borax5% 

 
Figure 5. Compressive stress–strain curves of normal corn starch hydrogel and starch–borax DC 
hydrogels with different content levels of borax. 

3.3. SEM Analysis 
The SEM observations of corn starch hydrogels and starch–borax DC hydrogels are 

presented in Figure 6 at the same magnification. All the corn starch hydrogels and starch–
borax DC hydrogels exhibited a porous interconnected network structure. As shown in 
Figure 6A, the corn starch hydrogel had an interconnected network in its internal mor-
phology, and its pore sizes were 10−20 µm. With the addition of borax, the number of 
starch–borax DC hydrogel pores increased, indicating an increase in cross-linking density 
(Figure 6B–E). As the concentration of borax increased from 0.5% to 3.5%, the pore size of 
the starch–borax DC hydrogels became smaller, and the pore distribution was more uni-
form within the range of 5–30, 5–20, and 1–10 µm (Figure 6D), suggesting the formation 
of a more compact structure. This phenomenon may be due to the interaction between 
starch chains and borate ions, leading to a double network formation. It has been reported 
that the average pore size of the PVA/borax hydrogels decreased from 19.8 µm to 14.4 µm 
as the concentration of borax increased from 0.4% to 1% [37]. A further increase in borax 
concentration to 5.0% resulted in a decreased number of cavities with thick-walled struc-
tures (Figure 6E). This is possibly due to the increased cross-linking density of starch–
borax DC hydrogels at higher concentrations of borax. Li et al. (2019) found that borax–

Figure 5. Compressive stress–strain curves of normal corn starch hydrogel and starch–borax DC
hydrogels with different content levels of borax.

3.4. X-ray Diffraction (XRD)

XRD patterns of hydrogels are presented in Figure 7A. The pure-corn-starch hydrogel
exhibited B-type crystalline structures, with peaks at 17◦, 18◦, 22◦, and 24◦, which corre-
spond to crystalline planes (031), (211), (231), and (132), respectively [38]. This was due
to amylopectin recrystallization by forming a double-helical structure. However, with the
concentration of borax from 0% to 5%, the X-ray patterns of the starch–borax DC hydrogels
changed from B-type to amorphous structures. The phenomenon indicated that corn starch
and borax interacted, thereby blocking the formation of hydrogen bonds in starch chains
and preventing amylopectin from creating the crystalline starch region. The interaction
between the hydroxyl groups of corn starch and the borate ions of borax could prevent
starch chain alignment and suppress the retrogradation of amylopectin, resulting in the
formation of an amorphous structure. Sethi et al. (2020) reported that the interaction
between xanthan gum and starch via covalent bonding can suppress starch recrystallization
and form an amorphous structure [39]. Li, Liu, Chen et al. (2019) found that guar gum
interacted with the borax, and its crystallinity decreased [22].

3.5. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR diffractograms of corn starch hydrogels and starch–borax DC hydrogels are
presented in Figure 7B. The FTIR spectrum of corn starch hydrogels had a characteristic
absorption peak at 3299 cm−1 because of the vibration of –OH. A peak at 2926 cm−1 was
observed because of the vibration of C–H. The peaks at 1645, 1454, and 1148 cm−1 belonged
to O–H bending vibration, C–H bending vibration, and C-O-C stretching vibration, respec-
tively [40]. In the FTIR spectra of starch–borax DC hydrogels, with the increase in borax
concentration, the peak was changed from 3299 cm−1 to 3278 cm−1. The red-shift phe-
nomenon was caused by the consumption of the hydroxyl groups of corn starch chains to
form boron ester bonds with borax. Lu et al. (2019) found that the decreased free hydroxyl
groups in the borax cross-linked starch nanoparticles could be attributed to the formation of
boron ester bonds via the interaction between starch and borax [31]. Thombare et al. (2017)
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found that the formation of borax cross-linked guar gum hydrogels was associated with
the covalent bonds between galactomannan and borax [41]. Lv et al. (2019) reported that
the O–H stretching peak of locust bean gum/gellan gum hydrogels shifted from 3384
to 3330 cm−1, which was ascribed to the borate ester bonds formed by locust bean gum
chains and borax [26]. For starch–borax DC hydrogels, the intensities at 1645 cm−1 and
1148 cm−1 decreased, and the band near 1454 cm−1 nearly disappeared. The band shapes
and intensities at 849, 759, and 704 cm−1 were changed after cross-linking via borate ions.
The results indicated that the OH groups in the corn starch chains could be cross-linked
via borax on the starch–borax DC hydrogels. Huang et al. (2019) found that the peak at
833 cm−1 was ascribed to the B−O stretching in B(OH)4−, demonstrating the presence
of borax [25]. Spoljaric et al. (2014) demonstrated that poly(vinyl alcohol)-borax hydro-
gels exhibited peaks in the range of 1333–1423 cm−1, which was due to the formation of
cross-links between hydroxyl groups in poly(vinyl alcohol) and borate ions in borax [29].
Thus, the FTIR results confirmed the interaction between starch and borax via the formation
of boron ester bonds in the DC hydrogel’s network.
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starch–borax DC hydrogels containing different amounts of borax.

3.6. Self-Healing Behaviors

The self-healing behavior of starch–borax3.5% DC hydrogels was studied, and the
results are shown in Figure 8A. The cylindrical hydrogels (Figure 8(Aa)) were sliced into
two halves (Figure 8(Ab)). The two pieces were placed back together without applying
any external force. The hydrogels quickly merged into a single piece of hydrogel, and
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visually notable changes occurred at the interface (Figure 8(Ac)). After that, the hydro-
gel was stretched without breaking to demonstrate the excellent self-healing properties
(Figure 8(Ad)). The starch hydrogel without borax did not exhibit self-healing characteris-
tics (data not shown). The self-healing mechanism of starch–borax DC hydrogel is shown
in Scheme 1. The destruction and reconstruction of boron ester bonds are in dynamic
balance [42,43]. When the two pieces of starch–borax DC hydrogel were put together, after
being cut into two halves, the unassociated groups, as well as the groups after dissociation
at the interface, could react with one another to form new boron ester bonds, and thus form
a single piece of hydrogel.
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The starch–borax DC hydrogels with excellent shape-recovery properties are shown in
Figure 8B. The starch–borax DC hydrogels were molded into diverse shapes (the letter “J”,
a flower shape, and a five-pointed star shape). After that, the hydrogels were divided into
smaller pieces and placed in diverse shape molds at 25 ◦C for 1 h. The starch–borax DC hy-
drogels could return to their initial shapes (the letter “J”, a flower shape, and a five-pointed
star shape). After two cycles, the original shapes were recovered, demonstrating good
recovery performance. The dynamic borax ester bonds could lead to the full recovery of
the original shapes.

4. Conclusions

In this paper, starch–borax DC hydrogels with excellent compression properties
and self-recovery capacity were designed and synthesized. The compression strength
of starch–borax DC hydrogels containing 5% borax reached 288 kPa at a 94% compression
strain, which was increased 10-fold compared to pure-starch hydrogels. Furthermore, the
starch–borax DC hydrogels showed remarkable self-healing properties at room temperature.
Because of their simple and efficient preparation process, starch–borax5% DC hydrogels
may have wide applications in agriculture, biomedicine, materials, and other fields.
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