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ABSTRACT Chlamydiales bacterium STE3 and Neochlamydia sp. strain AcF84 are ob-
ligate intracellular symbionts of Acanthamoeba spp. isolated from the biofilm of a lit-
toral cave wall and gills from striped tiger leaf fish, respectively. We report the draft
genome sequences of these two environmental chlamydiae affiliated with the family
Parachlamydiaceae.

Members of the Parachlamydiaceae are related to the well-known human and
animal pathogens Chlamydia trachomatis and Chlamydia pneumoniae. Parachla-

mydiaceae show the obligate intracellular lifestyle of chlamydiae but thrive as symbi-
onts of free-living amoebae in the environment (1, 2). The effect of these environmental
chlamydiae on their amoeba hosts ranges from beneficial to adverse depending on the
bacterial strain, host organism, and environmental conditions (3–5). Their analysis helps
to understand better the basic biology and evolution of all chlamydiae (2, 6). Here, we
provide draft genome sequences of two amoeba symbionts affiliated with the Parachla-
mydiaceae.

Chlamydiales bacterium STE3 resides in Acanthamoeba sp. strain STE3, which was
isolated from the biofilm of a littoral cave wall in Hawaii. Acanthamoeba sp. strain
AcF84, harboring Neochlamydia sp. strain AcF84, was obtained from gill samples of
Pristolepis fasciatus (striped tiger leaf fish) in Thailand. After axenization (7), amoebae
were cultivated in peptone-yeast-glucose medium at 20°C (8). Prior to symbiont DNA
isolation, amoeba cells were lysed, and host DNA was digested as described previously
(9). Bacterial DNA was purified using chloroform-isoamyl alcohol extraction with iso-
propanol precipitation (9, 10) (STE3) and the DNeasy blood and tissue kit (Qiagen) as
recommended by the manufacturer (AcF84). Sequencing libraries were prepared using
the Nextera XT kit (Illumina) and sequenced on an Illumina HiSeq 2000 platform.
Trimming and quality control of reads were conducted with BBMap v35.43 (https://
sourceforge.net/projects/bbmap/) (bbduk minlen � 50, qtrim � rl, trimq � 25, ktrim �

r, k � 25, mink � 11, hdist � 1) and FastQC v0.11.4 (11). Assemblies were performed
with SPAdes v3.x.0 (Table 1) (12), screened for contamination with CheckM (13), and
annotated with ConsPred v1.10 and v1.21 (Table 1) (14). Default parameters were used
unless noted otherwise.

The draft genome sizes and detailed information for both genomes are listed in
Table 1. Both genomes show hallmarks of chlamydial genomes, e.g., a reduction in
genes for metabolic pathways, but encode ATP/ADP translocases, and, among other
virulence factors, a type III secretion apparatus including many potential effectors.

Chlamydiales bacterium STE3 and the amoeba symbiont HS-T3 (15, 16) (tentatively
classified as a Thermochlamydia sp. [17]) form a separate lineage affiliated with the
Parachlamydiaceae in 16S rRNA-based phylogenetic trees. In contrast to strain HS-T3,
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STE3 seems unable to infect mammalian or insect cell lines (15, 16). Based on an
analysis of groups of orthologs using OrthoFinder (18), Chlamydiales bacterium STE3
shares 1,838 coding DNA sequences (CDSs) (91.5%) with other chlamydiae; 81 of these
are unique to STE3 and HS-T3.

Neochlamydia sp. AcF84 and its closest relative, Neochlamydia sp. EPS4, share 1,579
CDSs (80.2%), including genes of the large effector gene families NEX1 and NEX2 (19).
As seen in other Neochlamydia genomes, AcF84 encodes many transposases and
noncoding RNAs (ncRNAs), in particular, group II introns associated with reverse
transcriptase/maturase proteins.

These two genome sequences will enable a better understanding of the biology and
evolution of ubiquitous protist-associated chlamydiae.

Data availability. The draft genome sequences of the two chlamydial symbionts
have been deposited in GenBank under the accession numbers VKHO00000000 and
VJOT00000000. Reads are available at the SRA database under the accession numbers
PRJNA492197 and PRJNA489593. The versions described in this paper are the first
versions.
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