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Genomewide phenotypic analysis of growth,
cell morphogenesis, and cell cycle events in
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Abstract

Cell size, cell growth, and cell cycle events are necessarily inter-
twined to achieve robust bacterial replication. Yet, a comprehen-
sive and integrated view of these fundamental processes is
lacking. Here, we describe an image-based quantitative screen of
the single-gene knockout collection of Escherichia coli and identify
many new genes involved in cell morphogenesis, population
growth, nucleoid (bulk chromosome) dynamics, and cell division.
Functional analyses, together with high-dimensional classification,
unveil new associations of morphological and cell cycle phenotypes
with specific functions and pathways. Additionally, correlation
analysis across ~4,000 genetic perturbations shows that growth
rate is surprisingly not predictive of cell size. Growth rate was also
uncorrelated with the relative timings of nucleoid separation and
cell constriction. Rather, our analysis identifies scaling relation-
ships between cell size and nucleoid size and between nucleoid
size and the relative timings of nucleoid separation and cell divi-
sion. These connections suggest that the nucleoid links cell
morphogenesis to the cell cycle.

Keywords cell shape; cell size; Keio library; nucleoid separation; nucleoid

size

Subject Categories Genome-Scale & Integrative Biology; Methods &

Resources; Microbiology, Virology & Host Pathogen Interaction

DOI 10.15252/msb.20177573 | Received 7 February 2017 | Revised 28 May

2018 | Accepted 29 May 2018

Mol Syst Biol. (2018) 14: e7573

Introduction

Cells must integrate a large variety of processes to achieve robust

multiplication. Bacteria, in particular, are remarkable at proliferating,

which has been key to their colonization success. During their fast-

paced replication, bacterial cells must uptake and process nutrients,

generate energy, build cellular components, duplicate and segregate

their genetic material, couple growth and division, and maintain their

shape and size, all while sensing their environment and repairing

cellular damages, just to name a few important tasks. These tasks

must be integrated to ensure successful cellular replication. Decades

of work have garnered extensive knowledge on specific processes,

genes, and pathways, but we still lack a comprehensive view of the

genetic determinants affecting cell morphogenesis and the cell cycle.

It is also unclear how cellular activities are integrated to ensure that

each division produces two viable daughter cells.

Systematic genomewide screens, rendered possible by the crea-

tion of arrayed single-gene knockout collections, have been success-

fully used to gain a more comprehensive perspective on cell

morphogenesis and the cell cycle in yeast (Jorgensen et al, 2002;

Ohya et al, 2005; Graml et al, 2014). Beyond the functional informa-

tion gained through the mapping of phenotypes associated with the

deletion of genes, genomewide screens also provide a unique oppor-

tunity to interrogate the relationship between phenotypic features

with thousands of independent genetic perturbations (Liberali et al,

2015). Here, we present a high-content, quantitative study that uses

the Keio collection of Escherichia coli gene deletion strains (Baba

et al, 2006) and combines microscopy with advanced statistical

and image analysis procedures to examine the impact of each non-

essential E. coli gene on cell morphology, cell size, growth, nucleoid

(bulk chromosome) dynamics, and cell constriction. In addition, we

provide insight into the connectivity and empirical relationships

between cell morphogenesis, growth, and late cell cycle events.
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Results

High-throughput imaging and growth measurements of the
E. coli Keio collection

To gain an understanding of the molecular relationship between

growth, cell size, cell shape, and specific cell cycle events, we

imaged 4,227 strains of the Keio collection. This set of single-gene

deletion strains represents 98% of the non-essential genome (87%

of the complete genome) of E. coli K12. The strains were grown in

96-well plates in M9 medium supplemented with 0.1% casamino

acids and 0.2% glucose at 30°C. The preferred carbon source

(glucose) and the casamino acids provide growth conditions that

give rise to overlapping DNA replication cycles (Appendix Fig S1A).

Live cells were stained with the DNA dye DAPI and spotted on large

custom-made agarose pads (48 strains per pad) prior to imaging by

phase-contrast and epifluorescence microscopy (Fig 1A). On aver-

age, about 360 (�165) cells were imaged for each strain. To provide

a reference, 240 replicates of the parental strain (BW25113, here

referred to as WT) were also grown and imaged under the same

conditions as the mutants. In parallel, using a microplate reader, we

recorded the growth curves of all the strains (Fig 1A) and estimated

two population-growth features. We fitted the Gompertz function to

estimate the maximal growth rate (amax) and used the last hour of

A B

C

D

Figure 1. Experimental approach and reproducibility.

A Experimental workflow. Single-gene knockout strains from the Keio collection were grown in M9-supplemented medium at 30°C in 96-well plates. DNA was stained
with DAPI prior to imaging, and nine images were taken in both phase-contrast and DAPI channels. The images were then processed with MicrobeTracker and Oufti
to identify the cell and nucleoid contours. In parallel, we recorded the growth curve of each imaged strain in order to extract growth parameters.

B A SVM model was trained via visual scoring of 43,774 cells.
C Confusion matrix of the SVM model based on a large validation dataset (102,137 cells), illustrating the distribution of the SVM classifier output in comparison with

the visual classification.
D Comparison of the average cell length of 178 strains obtained from two independent 96-well cultures of the 176 most phenotypically remarkable Keio strains and two

WT replicates.
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growth to calculate the saturating density (ODmax) of each culture

(Appendix Fig S1B). The goodness of fit is illustrated at the time of

maximal growth where the OD600 nm from the growth curve is

highly correlated with the OD600 nm predicted by the fit

(Appendix Fig S1C). The vast majority of strains were imaged in

exponential phase at an OD600 nm (ODimaging) 4–5 times smaller than

their ODmax (Appendix Fig S1D).

High-throughput dataset curation using a support
vector machine

Cells and their contours were detected in an automated fashion

(Sliusarenko et al, 2011). The large size (>1,500,000 detected cells) of

the dataset precluded the validation of each cell contour by visual

inspection. Therefore, we implemented an automated classification

method based on a support vector machine (SVM; Fan et al, 2005) to

identify and discard incorrectly detected cells (Fig 1B). To generate a

training dataset for the SVM model, we visually scored (positive or

negative) 43,774 cell contours from the parental strain and the 419

mutants displaying the greatest deviations in cellular dimensions

before data curation. The inclusion of the most aberrant mutants in

the training dataset allowed us to build a versatile model that

performed well on the wide range of cell sizes and shapes present in

our dataset. The quality of the fit of the SVM model to the training

dataset was evaluated by a 10-fold cross-validation (Hastie et al,

2009), which gave a misclassification error rate of 10%. The model

was further validated on an independent dataset of 102,137 visually

scored cell contours taken from the same group of WT and mutant

strains. We found that our SVM model performed very well on this

validation set, as shown by the high AUROC (area under the “receiver

operating characteristic” curve) value of 0.94 (Appendix Fig S1E). By

comparing the model classification with visual scoring (Fig 1C), we

found that only about 3% of cell contours in the validation set were

incorrectly identified as positive by the SVM model. Importantly,

these false-positive cells introduced no biases in the measurement of

the SVM predictor values (Appendix Fig S1F), even when considering

the 419 most aberrant strains (Appendix Fig S1G). This validated

SVM model was used to curate the entire dataset, retaining about

1,300,000 identified cells (291 � 116 cells/strain). In addition, we

verified the reproducibility of our experimental approach by sepa-

rately imaging two independent replicates of 178 strains that included

two copies of the parental (WT) strain and 176 mutants with severe

morphological defects. We observed a Pearson correlation (q) of 0.91
for cell length (Fig 1D), indicating high reproducibility.

Quantification of cell morphological features across the genome

With this high-quality dataset, we were able to obtain a wealth of

quantitative information using the software packages Microbe-

Tracker and Oufti (Sliusarenko et al, 2011; Paintdakhi et al, 2016).

From phase-contrast images, we measured cellular dimensions,

such as length, width, perimeter, cross-sectional area, aspect ratio

(width/length), and circularity (4p area/(perimeter)2). We also

measured the variability of these features by calculating their coeffi-

cient of variation (CV, the standard deviation divided by the mean).

From both series of measurements, we extracted the mean and CV

of additional morphological parameters, such as surface area,

volume, and surface-to-volume ratio. For constricted cells, we

determined the relative position of division along the cell length (di-

vision ratio). Note that since the identity of the cell poles (old versus

new) was unknown, randomization of cell pole identity would auto-

matically produce a mean division ratio of 0.5, even for an off-

center division. Therefore, measurements of mean division ratio

were meaningless and not included in our analysis. However, the

CV of the division ratio was included since a high CV indicated

either an asymmetric division or an imprecise division site selection.

In total, each strain was characterized by 19 morphological features

(see Dataset EV1 for raw data). The name and abbreviation for all

the features can be found in Appendix Table S1.

After taking into consideration experimental variability (see

Materials and Methods, Appendix Figs S2–S4), we calculated a

normalized score (s) for each feature and each strain (see Materials

and Methods). The corrected and normalized data (scores) can be

found in Dataset EV2. Even with a conservative threshold of 3 stan-

dard deviations (s ≤ �3 or ≥ 3, or absolute score |s| ≥ 3) away from

the WT, a large number (874) of single-gene deletion strains were

associated with one or more morphological defects (Fig 2 and

Dataset EV2). This result indicates that a large fraction of the non-

essential genome (i.e., ~20% of the unique deletion strains present

in the Keio collection) directly or indirectly affect cell size and

shape. Similar genomic commitment to cell size and shape was

observed in budding yeast (Jorgensen et al, 2002).

Quantification of growth and cell cycle features across
the genome

From the images, we also calculated the degree of constriction for

each cell and determined the fraction of constricting cells in the

population for each strain (see Materials and Methods). From the

latter, we inferred the timing of initiation of cell constriction relative

to the cell cycle (Powell, 1956; Collins & Richmond, 1962; Wold

et al, 1994). In addition, the analysis of DAPI-stained nucleoids with

the objectDetection module of Oufti (Paintdakhi et al, 2016)

provided additional parameters, such as the number of nucleoids

per cell and the fraction of cells with one versus two nucleoids.

From the fraction of cells with two nucleoids, we estimated the

relative timing of nucleoid separation (Powell, 1956; Collins &

Richmond, 1962; Wold et al, 1994). We also measured the degree of

nucleoid constriction in each cell for each strain and compared it to

the degree of cell constriction to obtain the Pearson correlation

between these two parameters, as well as the average degree of

nucleoid separation at the onset of cell constriction (Appendix Fig

S1H). As a result, each strain was associated with five cell cycle

features (Dataset EV2), in addition to the 19 morphological features

and two growth features mentioned above (see Appendix Table S1).

We found that 231 gene deletions were associated with at least

one dramatically altered (|s| ≥ 3) cell cycle feature (Fig 2, Dataset

EV2). From the growth curves, we identified over 263 mutants with

severe (|s| ≥ 3) growth phenotypes (Fig 2, Dataset EV2) despite the

growth medium being supplemented with amino acids.

Severe defects in growth, cell morphology, or the cell cycle are
associated with a wide variety of cellular functions

For each feature, the genes deleted in mutant strains with a |s| ≥ 3

encompassed a wide range of cellular functions based on a

ª 2018 The Authors Molecular Systems Biology 14: e7573 | 2018 3 of 21

Manuel Campos et al Genomewide phenotypic profiling in E. coli Molecular Systems Biology



distribution analysis of Clusters of Orthologous Groups (COGS) of

proteins (Fig 3 and Appendix Fig S5). This diversity highlights the

high degree of integration of the cell cycle and cell morphology in

overall cellular physiology.

Certain COGs were statistically enriched for some phenotypes

(Fig 3). We recovered expected associations, such as category D

(cell cycle control, cell division, and chromosome partitioning)

with high mean length (<L>) and high length variability (CVL)

and category M (cell wall/membrane/cell wall biogenesis) with

high mean width (<W>; Fig 3A). Indeed, defects in DNA partition-

ing and repair can lead to a cell division block (Mulder &

Woldringh, 1989), and impairment in cell envelope biogenesis has

been reported to cause cell widening (Bean et al, 2009; Lee et al,

2014). COG categories associated with translation or some aspect

of metabolism were, not surprisingly, enriched in mutants with

growth defects (Fig 3B). Category H was enriched among small

(s < �3) mutants. This category encompasses a number of path-

ways important for general aspects of metabolism (e.g., biosynthe-

sis of pantothenate, electron carriers, biotin, and chorismate),

suggesting that their impairment affects cell size in a manner simi-

lar to nutritional restriction.

Often, these COG enrichments were carried over to features

(area, volume, perimeter, circularity, etc.) that directly relate to

width and length (Fig 3). However, we also observed differential

COG enrichments even for highly related features, highlighting the

importance of considering features beyond mean and CV of length

Figure 2. Distribution of morphological, cell cycle, and growth phenotypes in the Escherichia coli Keio strain collection.

Bubble graphs representing, for each feature, the number of strains with a score value, s, beyond 3, 4, 5, or 6 times the interquartile range away from the median of

the WT distribution (240 replicates), corrected by a factor 1.35 to express the deviation in terms of standard deviations (iqr � 1.35 × r for a normal distribution). The

size of the circles (bubbles) reflects the number of strains with a score beyond a specific, color-coded threshold for s, as indicated. The “reference” bubble graph

illustrates the expectations from a dataset of the same size (4,227 strains), assuming a standardized normal distribution of scores (with a mean of 0 and a standard

deviation of 1).
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A

B

Figure 3. Feature-based COG enrichment analysis.

A Pie charts representing, on a feature-by-feature basis, the relative distribution of COG categories among the gene deletion strains associated with s ≥ 3. The enriched
COG categories are labeled and highlighted with an exploded pie sector. The under-represented COG categories are further highlighted by an asterisk. Enrichments
and under-representations with an associated (FDR-corrected) q-value < 0.05 were considered significant. Only morphological and growth features with at least one
enriched or under-represented COG category are represented.

B Same as in (A) but for s ≤ �3.
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and width. For example, category U (intracellular trafficking, secre-

tion, and vesicular transport) was enriched among mutant strains

with high mean area (<A>) and volume (<V>) but normal <L> or

<W> (Fig 3A), suggesting that small deviations in length and width

can combine to produce significant differences in area and volume.

On the other hand, deletions in category C genes (energy production

and conversion) were normally represented for most phenotypes,

but were conspicuously under-represented among mutants with

high mean shape factors, suggesting that deletion of these genes

was barely associated with a high aspect ratio (<Ar>; Fig 3). Thus,

deletion of genes involved in energy and conversion can influence

the size of the cell without affecting its shape (aspect ratio and circu-

larity), implying that a defect in length is often accompanied by a

defect in width in this category of mutants.

High-dimensional classification of the morphological mutants

While the gene deletion annotation of the Keio library is not perfect,

our large dataset provided a powerful platform to examine global

trends and to identify gene function enrichments in phenotypic

classes of mutants with |s| ≥ 3. First, we considered morphological

phenotypes. Instead of ranking strains on a feature-by-feature basis,

we sought to classify strains based on their combination of features,

or “phenoprints”, to better capture the phenotypic complexity of

morphology. In addition to the 19 morphological features, we

included the two growth-related features (ODmax and amax) in the

phenoprint because growth rate is often assumed to affect cell size.

This assumption stems from the early observation that bacterial cell

size (mean cell mass) scales with growth rate when the latter is

modulated by varying the composition of the culture medium

(Schaechter et al, 1958). This scaling relationship has historically

been referred to as the “growth law”.

The combination of the 21 scores was used to classify a dataset

composed of 240 wild-type replicates (controls) and 985 mutant

strains with a |s| ≥ 3 for at least one morphological or growth

feature. A principal component analysis (PCA) of this dataset was

not useful, as it identifies strong outliers with severe phenotypes but

failed to separate most strains (Appendix Fig S6). Therefore, to iden-

tify strains with similar phenoprints, we turned to the machine

learning “t-distributed stochastic neighbor embedding” (t-SNE) algo-

rithm (van der Maaten & Hinton, 2008). Unlike PCA, which identi-

fies the principal components that most explain the variance in a

dataset, the principle of t-SNE is to minimize distances between

datapoints with high mutual information. Thus, t-SNE can be used

to emphasize similarities, rather than dissimilarities. Taking advan-

tage of the stochastic nature of t-SNE, we generated 100 indepen-

dent maps and used the density-based clustering algorithm dbscan

(Ester et al, 1996) to identify strains that reproducibly (> 90% of

the time) clustered together in the t-SNE maps. Using this combined

t-SNE-dbscan approach, we found that the wild-type replicates clus-

tered together to form the “WT” island while the mutant strains

consistently separated in 22 islands (Fig 4A).

Each island of the “morpho-archipelago” was characterized by

an average phenoprint (Fig 4B), with a given feature often segregat-

ing in different islands. For example, slowly growing (low amax)

mutants were found in both islands 1 and 5, but mutants in island 1

were, on average, small whereas mutants in island 5 were morpho-

logically like WT (Fig 4B). Thus, island 5 illustrates a group of

strains that departs from the growth law, as they produce cells that

are as large as WT despite growing slower.

Genes, functions, and pathways associated with cell size
and shape

Our t-SNE classification identified many new genes associated with

specific phenotypes, even extreme ones. For example, island 22

grouped strains characterized by cells that were very long and

highly variable in length (and therefore area, volume, surface area,

perimeter, and aspect ratio), but had a comparatively normal width

(Fig 4B). Such a cell filamentation phenotype has been well studied,

and our classification recovers expected gene deletions, such as

ΔminC, ΔenvC, ΔtatC, Δhfq, and ΔdedD (Figs 4C and EV1A; Adler

et al, 1967; Rodolakis et al, 1973; Tsui et al, 1994; Stanley et al,

2001; Gerding et al, 2009). Island 22 also includes four gene dele-

tions (Δuup, ΔrdgB, ΔcroE, and ΔydaS) that were unknown for their

cell filamentation phenotype (Figs 4C and EV1A), suggesting new or

unappreciated functions connected to cell division. For example,

Uup is a DNA-related protein known to prevent the precise excision

of transposons (Hopkins et al, 1983). The working model postulates

that Uup interacts with the replisome to prevent replication forks

stalling at the repeated sequences flanking transposons, a step

required for the formation of a Holliday junction and excision

(Murat et al, 2006). Replisomes also frequently stop at other chro-

mosomal regions during replication, which can cause DNA lesions

(Cox et al, 2000). If DNA damages are left uncorrected, they lead to

inhibition of cell division. The cell filamentation phenotype associ-

ated with the deletion of uup may suggest that Uup plays a funda-

mental role in limiting replisome from stalling under normal growth

conditions, possibly at structured DNA sites such as inverted

repeats.

The ΔrdgB mutant suggests another underappreciated aspect of

cell division (Figs 4C and EV1A). RdgB is an enzyme that reduces

the levels of non-canonical purines deoxyinosine (dITP) and

deoxyxanthosine (dXTP) to prevent DNA damage associated with

their incorporation into the chromosome; rdgB is essential for viabil-

ity in a recA� background (Lukas & Kuzminov, 2006; Budke &

Kuzminov, 2010). The high frequency of cell filamentation among

DrdgB cells, despite the presence of functional recombination

machinery, underscores the importance of a tight control of dITP

and dXTP levels in the cell.

The two remaining mutants in island 22 were strains deleted

for the cryptic prophage genes croE and ydaS (Figs 4C and EV1).

They illustrate how this screen can identify functions for genes that

are not expressed under normal growth conditions. Genes in the

Keio collection were deleted by an in-frame replacement of a kana-

mycin-resistance cassette that has a constitutive promoter and no

transcriptional terminator to ensure expression of downstream

genes in operons (Baba et al, 2006). However, for repressed or

poorly expressed operons, the kanamycin cassette promoter can

lead to unregulated expression of downstream genes in operons.

This was the case for the croE and ydaS deletion strains, as cells

became normal in length when the kanamycin cassette was

excised (Fig EV1B and C). These results, together with the normal

CVL and <L> scores associated with the deletions of the down-

stream genes (Fig EV1B and C, Dataset EV2), suggest that it was

not the loss of croE and ydaS but rather the expression of the
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prophage genes located directly downstream (ymfL and ydaT,

respectively) that was responsible for the observed cell filamenta-

tion phenotype. Consistent with our hypothesis, it has been postu-

lated that ymfL is involved in cell division (Mehta et al, 2004;

Wang et al, 2010; Burke et al, 2013). While ymfL probably

encodes a cell division inhibitor, the prophage gene ydaT likely

inhibits cell division indirectly by acting on DNA replication or

segregation, given the absence of well-segregated DAPI-stained

nucleoids in filamentous DydaS cells still carrying the kanamycin

cassette (Fig EV1C).

Note that each island represented a continuum of phenotypes

dominated by the features that lead to their clustering into one

common island. Beyond the global segmentation of the morpho-space,

each island displayed some internal structure. This is illustrated in

Fig 4D, which shows the gradient of the dominating (<W>) and

secondary (CVW) features within island 16. This fine internal orga-

nization reflects the objective function of the t-SNE algorithm,

which seeks to minimize distances between similar phenoprints.

This property provided us with an excellent layout to consider

t-SNE maps as networks (e.g., Fig 4C), from which we could

perform local functional enrichment analyses based on gene ontol-

ogy (GO) terms. This approach enabled the functional annotation

of the t-SNE networks while taking into account the map topology

without explicit clustering (see Materials and Methods). This

analysis highlighted both expected and surprising functional

associations with specific morphological phenoprints (Fig 4E). For

A

C

D

E

B

Figure 4. The morpho-archipelago.

A Representative 2D t-SNE map of the 985 strains with at least one morphological or growth feature with a |s| > 3, plus the 240 independent WT replicates used as
controls. Color-coded islands resulting from the dbscan algorithm (e = 4.9, minPoints = 3) were defined by groups of strains clustering together with the same
dbscan parameters in more than 90% of the generated t-SNE maps. Dots in the scatter plot (left graph) represent strains color-coded based on their island affiliation
(right graph). Light gray dots represent strains that were not consistently (less than 90% of the time) associated with one of the islands.

B Heatmap showing, for each island, the average score of each morphological and growth feature used for the construction of the map.
C Network representation of island 22 grouping filamentous mutants. The weights were directly derived from the average distances between corresponding mutant

strains in the 2D t-SNE maps.
D Internal structure of the mean and CV of width in island 16. The average gradients of phenotypes over the area of the island 16 are represented with arrows.
E Shown are the enriched “biological process” GO terms associated with false discovery rate below 0.05. For a list of all enriched GO terms, see Appendix Table S2.
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example, the phenoprint dominated by a small cell size and

growth defects (island 1), which is a hallmark of starved cells, was

not surprisingly associated with an enrichment of strains deleted

for genes involved in sulfate assimilation and biotin metabolism

(Fig 4E).

Another example is the enrichment of genes in the enterobacte-

rial common antigen (ECA) biosynthesis pathway (Fig 4E) among

gene deletions that dramatically affected cell width control (island

21). ECA mutants tended to be wider and often lost their rod shape

to form rounder cells, as shown by their high aspect ratio score

(Fig EV2A, Dataset EV2). This phenotype is reminiscent of the cell

shape defects caused by drugs (e.g., fosfomycin) that inhibit pepti-

doglycan synthesis (Kahan et al, 1974; Marquardt et al, 1994).

Island 21 included other cell envelope mutants with a similar

phenotype, such as gene deletions related to colanic acid (CA)

biosynthesis (Dataset EV2). These results are consistent with recent

studies showing that misregulation of cell shape can be caused by a

competition between the ECA, CA, and peptidoglycan precursor

pathways for the same undecaprenyl phosphate lipid carrier

(Jorgenson & Young, 2016; Jorgenson et al, 2016). The cell width

phenotype of gene deletions in the neighboring island 20 could be

rationalized with a similar competition argument, as several of them

are related to central metabolism (Dataset EV2). The metabolic

genes may be essential for the production of key metabolites impor-

tant for the synthesis of cell envelope precursors. The DrapZ strain,

which had a severe cell width phenotype (Fig EV2B, island 20),

may be an example. RapZ post-transcriptionally regulates the

amount of GlmS (Gopel et al, 2013), which catalyzes the first

committed step away from the upper glycolysis pathway and toward

the synthesis of a central precursor (UDP-N-acetyl-a-D-glucosamine)

for the biogenesis of peptidoglycan and ECA.

We also identified pathways associated with phenotypes that

were not easy to rationalize. Deletion of genes encoding the high-

affinity phosphate transporter subunits (PstA, PstC, and PstS), the

associated histidine kinase (PhoR), and the adaptor protein (PhoU)

led to a thin phenotype (Fig EV2C), without significantly slowing

down growth (Dataset EV2). The absence of a growth defect is

expected, as the growth medium is rich in phosphate that can be

taken up by the low-affinity phosphate transporters. Thus, the cell

width reduction cannot be associated with phosphate starvation.

Deletion of several genes encoding subunits of ATP synthase,

which results in a metabolic switch to fermentation, led to a

decrease in average cell width (Fig EV2C). Cultures of these deletion

strains did not grow slower (s > 0 for amax) than WT (Dataset EV2).

Furthermore, they were imaged at an ODimaging at least 3 times

smaller than their ODmax, indicating the cell width phenotype could

not be linked to the inability of some of these strains to grow to high

cell density (s < �3 for ODmax). This result suggests that either the

ATP synthase itself or differences in metabolism alter cell shape and

size independently of growth rate.

Another surprise was the lack of clustering, and therefore the

absence of association, among mutants expected to affect fatty acid

metabolism; instead, fatty acid mutants displayed a variety of

phenotypes (Dataset EV2). Previous work has shown that a reduc-

tion in fatty acid synthesis through drug treatment or deletion of the

fatty acid biosynthetic gene fabH results in a thinner and shorter cell

phenotype (Yao et al, 2012). Conversely, an excess of fatty acids

through overexpression of the regulator fadR or by addition of

exogenous fatty acids leads to wider and longer cells (Vadia et al,

2017). These results have led to a simple model in which the

amount of fatty acids and, by extension, the level of lipid synthesis

determine cell size. Our data suggest a potentially more complex

relationship between phospholipids and cell morphology. This is

illustrated by the DfadR and DfabF strains, which were thinner

(s < �8), but also longer (s > 3.5), than the parental strain

(Fig EV2D). Remarkably, the width and length defects were

compensatory such that the DfadR and DfabF mutants retained a

normal cell area (Fig EV2D). FadR is a bifunctional transcriptional

factor that activates fatty acid synthesis and represses b-oxidation,
while FabF is a fatty acid chain elongation enzyme. Based on their

metabolic profiles, both DfadR and DfabF strains have significant

changes in the levels of phospholipids containing saturated versus

unsaturated acyl chains (Fig EV2D; Garwin et al, 1980; Nunn et al,

1983; Fuhrer et al, 2017). These results suggest that an altered phos-

pholipid composition, such as changes in the degree of fatty acid

saturation, may be another important factor that determines the

dimensions of the cell.

Identification of genes affecting nucleoid separation and cell
constriction dynamics

We applied the same t-SNE analysis to the seven cell cycle and

growth features of the 397 strains displaying a severe defect

(|s| ≥ 3) for at least one cell cycle or growth feature. The 240

independent wild-type replicates were included in the analysis as

controls. We robustly identified a WT island and 12 distinct

mutant islands in this cell cycle space (Fig 5A). Each island was

characterized by an average phenoprint (Fig 5B). Islands 6 and 7

were phenotypically close to WT. Islands 3 and 10 grouped

mutants with growth defects and little to no cell cycle phenotypes

(Fig 5B and C). The neighboring islands 1, 2, 9, and 11 were

dominated by cell growth features with some combination of

nucleoid separation and cell constriction defects. Three islands—

islands 4, 8, and 12—grouped interesting gene deletion strains

with cell cycle phenotypes and no significant growth defects

(Fig 5B and C).

Functional analysis on all strains identified GO term enrichments

with phenoprints that show strong growth phenotypes (Fig 5D). We

did not find any GO term enrichment associated with cell cycle

phenotypes independently of growth defects. Furthermore, the

proportion of genes of unknown function (so-called “y-genes”) was

the highest (~30%) for cell cycle-specific islands 8 and 12 (Fig 5E).

These observations highlight the limited extent of our knowledge

about the genetic basis of nucleoid and cell constriction dynamics,

compared to cell growth.

Our analysis of nucleoid separation and cell constriction

provided a genomewide perspective on the processes affecting

DNA segregation and cell division. While each event has been

investigated for years at the molecular level, we know little about

their coordination. We found that nucleoid separation is tightly

correlated with the initiation of cell constriction across the ~4,000

deletion strains (q = 0.65, 95% confidence interval [0.63, 0.66],

Fig 6A) and at the single-cell level (Appendix Fig S1H). A well-

known genetic factor involved in this coordination is MatP

(Mercier et al, 2008). This DNA-binding protein organizes and

connects the chromosomal terminal macrodomain (ter) to the
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division machinery (Espeli et al, 2012). Consistent with this func-

tion, we observed that the ΔmatP mutant, which segregated into

island 8, failed to coordinate nucleoid separation with cell

constriction and separated its nucleoid early while dividing at

about the same cell age as WT (Fig 6A–C). The early separation of

nucleoids is in agreement with the early segregation of sister loci

within the ter region in the ΔmatP mutant (Mercier et al, 2008;

Espeli et al, 2012) and with the proposed role of MatP in linking

DNA segregation to cell division (Mannik & Bailey, 2015). The

remaining 47 strains from island 8, which also displayed an early

A

C

D E

B

Figure 5. The cell cycle archipelago.

A Stable islands in the cell cycle archipelago. The cell cycle and growth phenoprints were used to map the 397 mutant strains with at least one cell cycle or growth
feature with a |s| > 3, as well as the 240 independent WT replicates, in 2D using t-SNE. As for the morpho-archipelago, the data were clustered using the dbscan
algorithm. The groups of strains clustering (dbscan parameters e = 4.28, minPoints = 3) together in more than 90% of the maps defined an island. Dots in the scatter
plot on the left represent strains and are colored with the same color code as for the island on the right graph. Light gray dots represent strains that were not
consistently (less than 90% of the time) associated with one of the islands.

B Heatmap showing, for each island, the average score of each cell cycle and growth feature used for the construction of the map.
C Islands shown in panel (A) were colored according to their average score for each listed feature.
D Shown are the enriched “biological process” GO terms associated with false discovery rate below 0.05. For a list of all enriched GO terms, see Appendix Table S2.
E The islands in the cell cycle archipelago were colored according to the proportion of “y-genes” (genes of unknown function).
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nucleoid separation phenotype (Fig 6B), were deleted for genes

that had either uncharacterized functions or functions unrelated to

nucleoid dynamics (Dataset EV2). Deletion mutants that clustered

closely to the ΔmatP mutant within island 8 displayed a WT-like

cell constriction profile as well (Fig 6B). Examples include mutants

that lack the lysophospholipase L2, PldB, the DNA repair poly-

merase, PolA, or the poorly characterized protein, YfjK (Fig 6B

and D). YfjK is a predicted helicase that has been associated with

sensitivity to ionizing radiations (Byrne et al, 2014). On the other

side of the island, mutants were characterized by not only an early

nucleoid separation, but also an early initiation of cell constriction

(Fig 6A, B and E), to the point that the timing of cell constriction

and nucleoid separation was virtually the same. This is illustrated

with ΔycjV and ΔhlsU (Fig 6E). YcjV is a predicted ABC trans-

porter ATPase. HslU has two functions in the cell, one as a

subunit in a protease complex with HslV, and the other as a chap-

erone (Seong et al, 2000; Slominska et al, 2003). Since we did not

observe any significant defect in cell constriction timing for the

ΔhslV mutant, the ΔhlsU phenotype is more likely linked to the

chaperone activity.

Identification of cell size control mutants

How cells achieve size homeostasis has been a long-standing ques-

tion in biology. While the control mechanism at play remains under

debate (Amir, 2014; Campos et al, 2014; Iyer-Biswas et al, 2014; Ho

& Amir, 2015; Taheri-Araghi, 2015; Taheri-Araghi et al, 2015;

Tanouchi et al, 2015; Harris & Theriot, 2016; Wallden et al, 2016),

we and others have shown that under the growth conditions consid-

ered in this study, E. coli follows an adder principle in which cells

grow a constant length (DL) before dividing (Campos et al, 2014;

Taheri-Araghi et al, 2015). We sought to use this screen to survey

the role of genes in cell length control. We first explored the rela-

tionship between mean length (<L>) and length variability (CVL)

among mutants. On average, short mutants (s ≤ �3, n = 68) had a

normal CVL (P-value = 0.98), while long mutants (s ≥ 3, n = 106)

displayed a greater CVL (P-value = 8.18 × 10�11, Fig 7A).

The observation that short mutants displayed, on average, a

normal CVL indicates that most of them regulate their length distri-

bution as precisely as WT. These results suggest that the adder prin-

ciple, and therefore the relative timing of cell division, is just as

precise in short mutants as in WT cells. This result is interesting

because short mutants have traditionally received a lot of attention

in cell size control studies. A well-known short mutant in E. coli is

the ftsA* strain (WM1659), which is thought to misregulate size

control by triggering division prematurely (Geissler et al, 2007; Hill

et al, 2012). However, when we imaged the ftsA* mutant

(n = 2,198 WM1659 cells), we found that, similar to the trend

shown by short mutants in our screen, ftsA* cells constrict at a simi-

lar cell age as WT (Fig 7B). In hindsight, this result makes sense

since the WT and ftsA* strains have a similar doubling time

(72.3 � 2.2 min versus 69.0 � 3.2 min, mean � standard devia-

tion, n = 4), consistent with Geissler et al (2007), and therefore take

the same amount of time to divide. Perhaps a more appropriate way

to consider short mutants with normal CVL is not as mutants that

have a premature division, but as “small-adder” mutants since they

add an abnormally small cell length increment DL between

divisions.

Long mutants, on the other hand, tended to lose their ability to

maintain a narrow size distribution, as CVL increased with <L>

(Fig 7A). The origin for an increase in CVL may signify a loss of

precision in the timing of division, but it may alternatively originate

from an aberrant positioning of the division site (or both). The

DminC mutant is an example of aberrantly large CVL (Fig 7C) due to

the mispositioning of the division site, and not due to a defective

adder (Campos et al, 2014). This class of mutants can easily be

identified in our dataset by their large variability in division ratios

(CVDR). Conversely, a high CVL associated with a normal variability

in division ratios points to a mutant that has a more variable DL
between divisions.

We suspected that interesting cell size control mutants might be

missed by only considering CVL. The distribution of cell lengths in a

population is a convolution of cell length distributions at specific

cell cycle stages. Since there is significant overlap in length distribu-

tions between cell cycle stages, a substantial change in CVL at a

specific cell cycle stage (e.g., cell constriction) does not necessarily

translate into obvious changes in CVL of the whole population, as

shown in simulations (Fig EV3). Our screen allowed us to identify

constricting cells and hence to determine the cell length variability

for the stage of cell constriction. This cell cycle stage-specific

analysis identified DmraZ as a potential gain-of-function cell size

homeostasis mutant (Fig 7C). For this mutant, division (CVDR,

Dataset EV2) and growth rate (Eraso et al, 2014) were normal, but

the length distribution of its constricted cells (CVL = 0.05) was

remarkably narrower than that of WT constricted cells (CVL = 0.12).

MraZ is a highly conserved transcriptional regulator that downregu-

lates the expression of the dcw cluster (Eraso et al, 2014), which

includes cell wall synthesis and cell division genes (Ayala et al,

1994). Our data suggest that MraZ and the regulation of the dcw

cluster affect the balance between cell growth and division.

Dependencies between cellular dimensions and cell
cycle progression

A fundamental question in biology is how cells integrate cellular

processes. A common approach to address this question is to look at

covariation between processes or phenotypes following a perturba-

tion (e.g., mutation, drug treatment). However, perturbations that

affect the same system (i.e., perturbing a single process or pathway)

can lead to misinterpretation, as the perturbation may abolish a

given dependency between two features or may affect the co-

varying phenotypes independently. Increasing the number of inde-

pendent perturbations has two major effects. First, it alleviates the

interpretation problem by averaging out the specific effect associ-

ated with each perturbation (Sachs et al, 2005; Collinet et al, 2010;

Liberali et al, 2015). The Keio collection consists of mutants affected

in a wide variety of cellular processes, allowing us to examine

whether specific features correlate across many different genetic

perturbations. Second, the large number of genetic perturbations

increases our confidence in any calculated correlation (or lack

thereof) between features. To illustrate, let’s consider two indepen-

dent features (i.e., true correlation = 0). Using an analytical solution

(Fisher, 1915, 1921), one can show that the calculated 95% confi-

dence interval (CI) for the Pearson correlation is between �0.63 and

+0.63 if the sample size is 10. The calculated 95% CI is very wide

because two uncorrelated features can easily appear positively or
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Figure 6. Nucleoid separation and cell constriction dynamics.

A Scatter plot of the relative timing of cell constriction versus the relative timing of nucleoid separation. The gray scale indicates the density of dots in a given area of
the chart. The dotted contours represent the 0.5, 0.75, and 0.95 probability contours of the 240 WT replicates. The Pearson correlation is q = 0.65, with a 95%
CI = [0.63, 0.66]. The black-dotted diagonal represents the line where a strain should be if both nucleoid separation and cell constriction happen at the same time.
Red dots highlight strains shown in panels (C, D, and E).

B Close-up view of the cell cycle island 8 with each dot representing a Keio strain colored according to the two features driving the clustering of the 48 strains. The
relative timing of nucleoid separation is the dominant feature of island 8, while the relative timing of cell constriction drives the layout of the strains within the
island.

C Average dynamics of nucleoid separation and cell constriction for WT and the DmatP mutant strain. The cumulative distributions of the fraction of cells with two
nucleoids (blue) and of the fraction of cells with a constriction degree above 0.15 (red) were plotted against cell age. Cell age was calculated according to the rank of
each cell based on their cell length with the formula agei(F) = �In(1�F/2) / In(2), where F represents the fraction of cells with a cell length equal or below the length
of cell i (Wold et al, 1994).

D Same plots as in (C) for three strains clustering in island 8 with the DmatP strain. The WT curves shown in (C) were plotted in gray for comparison.
E Same plots as in (C) for two island-8 strains, DycjV and DhslU, and the DhslV strain, which does not partition in island 8.
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negatively correlated if the sample size is small. The 95% CI shrinks

down to [�0.06, +0.06] if the sample size is 1,000. Therefore, the

large number and variety of mutants in our study provided an

opportunity to identify global effects and dependencies between

morphological, cell cycle, and growth phenotypes through correla-

tion analysis.

To build an interaction network, we used the information-

theoretic algorithm ARACNE (Margolin et al, 2006). This method

considers all pairwise correlations between features at the same

time and identifies the most relevant connections by removing those

that are weak or that can be explained via more correlated paths. In

this analysis, we focused on 10 quantitative non-collinear features

that describe cellular dimensions (<L>, <W>, <A>), nucleoid size

(<NA>), population growth (amax, ODmax), nucleoid separation (rel.

T nuc), cell constriction (rel. T const), and their interdependency

(qCD, CDNC0; see Materials and Methods). The resulting network

recovered obvious connections, such as the relation of cell area with

cell length and width. It also showed that growth rate features

displayed virtually no connectivity to cell size or cell cycle features

(Fig 8A). This was further illustrated by the close-to-zero correla-

tions between growth rate and any of the 24 morphological and cell

cycle features considered in our screen (Fig EV4A).

Another interesting lack of connection was between <L> and <W>

(Fig 8A), as these two variables were largely uncorrelated (Fig 8B).

With n = 4,227, our estimated Pearson correlation (q = 0.06) is asso-

ciated with a narrow 95% CI between 0.03 and 0.09. By subsampling

this large dataset, we can show how a decrease in sample size

increases the likelihood of obtaining erroneous positive or negative

correlations (Fig EV5). The lack of correlation between <L> and <W>

is interesting from a cell size control standpoint. If E. coli was

controlling its size by sensing its volume, surface area, or the ratio

between the two, as Caulobacter crescentus does (Harris et al, 2014),

we would expect a global anti-correlation between length and width

such that an increase in cell length would be, on average, compen-

sated by a decrease in width, and vice versa. The lack of correlation

argues that cell length and width are controlled independently in

E. coli, at least under our growth conditions.

Some features, however, displayed strong covariation across the

4,000 genetic perturbations. For instance, the mean cell area and

mean nucleoid area (considering the sum of nucleoids in the cell)

were highly positively correlated (q = 0.84, 95% CI [0.83, 0.85]), in

a growth rate-independent manner (Fig 8C). In wild-type cells,

nucleoid size linearly increases with cell size throughout the cell

cycle (Junier et al, 2014; Paintdakhi et al, 2016). Here, we found

that nucleoid size scales with cell size across ~4,000 mutants despite

their effects on different cellular functions: Small mutants had a

small nucleoid size, and big mutants had a big nucleoid size

(Fig 8C). This remarkable linear relationship held true regardless of

the number of nucleoids per cell (Fig 8D). In addition to its strong

positive correlation with the average cell size, the average nucleoid

size was negatively correlated with the relative timing of nucleoid

separation (q = �0.48, 95% CI [�0.50, �0.45], Fig 8E). These

connections suggest a dependency between size and cell cycle

features: the bigger the cell is, the bigger the nucleoid is (Fig 8C),

and the earlier nucleoid separation and cell constriction occur in

relative cell cycle units (Fig 8E and F). This dependency is high-

lighted by the overall structure of the interaction network (Fig 8A),

which reveals that the cell cycle features (yellow nodes) are primar-

ily connected to the cellular dimension features (blue nodes)

through the dimensions of the nucleoid (gray node).

Discussion

In this study, we used a multi-parametric approach to quantitatively

survey the role of the non-essential E. coli genome in cell shape, cell

A CB

Figure 7. Cell length regulation mutants.

A Scatter plot of the mean cell length versus the CV of the length for all the strains. The gray color levels indicate the density of points in the vicinity of each strain. The
orange dots and error bars represent the mean and standard error of the mean per bin.

B The cumulative distribution of the proportion of constricting cells for the ftsA* mutant and its parent were plotted against cell age. We measured the degree of
constriction of all cells using Oufti. For each strain, we had two independently acquired image sets (n = 496 and 1,168 cells for the WT replicates and n = 692 and
1,506 cells for the ftsA* replicates). The distributions of the degree of constriction were not significantly different among the four datasets at a threshold P-value of
0.01 using a Kruskal–Wallis multicomparison test. Moreover, Bonferroni-corrected post hoc pairwise tests did not allow a distinction between WT and ftsA* samples.

C Scatter plot of the CV of the cell length for the whole population versus the CV of the cell length for constricting cells only. The contour lines represent the 0.5, 075,
and 0.95 probability envelopes of the 240 independent WT replicates. The gray color levels indicate the density of points in the vicinity of each strain. The DmraZ
strain discussed in the text is highlighted in red.
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size, cell growth, and two late cell cycle stages, nucleoid separation

and cell constriction. The results provide a valuable resource of

phenotypic references for both characterized and uncharacterized

genes, as well as a rich dataset to explore the correlation structure

between cellular dimensions, growth, and cell cycle features at the

system level.

A

C

D

F

B E

Figure 8. Interdependence of cell morphogenesis and cell cycle progression.

A Network showing the functional relationship between 10 non-collinear morphological, growth, and cell cycle features. The network is an undirected network
highlighting the most informative connections detected by the ARACNE algorithm. The thickness of an edge represents the fraction of the networks containing this
specific edge after bootstrapping the network 200 times, from 70% (thinnest) to 100% (thickest).

B Scatter plot of the normalized mean cell length and mean cell width of all 4,227 Keio strains and 240 WT replicates. Each dot represents a strain, and the gray level
illustrates the density of neighbors in the vicinity of each point in the graph. The dotted contours represent the 0.5, 0.75, and 0.95 probability envelopes of the 240
WT replicates. The correlation between mean cell width and mean cell length is low (q = 0.06, 95% CI [0.03, 0.09]).

C Heatmap showing the mean growth rate value for data binned by both mean cell area and mean nucleoid area. The cell and nucleoid areas are strongly correlated
(q = 0.84, 95% CI [0.83, 0.85]). The median value of amax per bin is color-coded according to the color scale. The inset highlights the linearity of the relationship
between mean cell area and mean nucleoid area. The orange dots and error bars represent the binned data, with the black line showing the best linear fit to the
binned data.

D Scatter plot of the mean cell area versus the mean nucleoid area for cells with 1, 2, 3, or ≥ 4 nucleoids for each strain. The histogram in the inset illustrates the
average proportions of cells with 1, 2, 3, or ≥ 4 nucleoids per strain. Although there were typically few cells in each strain with 3 or ≥ 4 nucleoids, at least one cell
with ≥ 3 nucleoids was detected for 61% of the strains.

E Heatmap showing the mean growth rate value for data binned by both the mean nucleoid area and the relative timing of nucleoid separation. The mean nucleoid
area negatively correlates with the relative timing of nucleoid separation (q = �0.48, 95% CI [�0.50, �0.45]).

F Heatmap showing the mean cell area value for data binned by both the relative timing of cell constriction and the relative timing of nucleoid separation. The relative
timing of cell constriction is strongly correlated to the relative timing of nucleoid separation (q = 0.65, 95% CI [0.63, 0.66]).
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The large proportion of genes and the wide variety of functions

impacting cell size and shape and the progression of late cell cycle

stages (Figs 2 and 3, Appendix Fig S5) underscore the degree of

integration of cell morphogenesis and cell cycle progression in all

aspects of E. coli cell physiology. It also implies that most morpho-

logical and cell cycle phenotypes cannot easily be imputed to a

specific pathway or cluster of genes. In fact, genes involved in the

same cellular process can have very different, and even sometimes

opposing, effects. Genes associated with translation illustrate this

concept. Deletion of ribosomal subunit genes leads to a diversity of

morphological phenotypes, such as thin (DrplY), wide (DrpsO),
short (DrpsT), and short and thin (DrpsF; Dataset EV2). This diver-

sity of phenotypes is also observable for deletions of genes encoding

enzymes that modify ribosomal RNAs or tRNAs (e.g., DrsmD cells

are long, whereas DrluD and DtruA cells are wide, and DmnmC cells

are long, wide, and variable in size). The latter suggests an unex-

pected role for RNA modifications in cell morphogenesis.

Overall, this study greatly expands the number of genes associ-

ated with cell morphogenesis (874) and the cell cycle (231).

Notably, it provides a phenotype for 283 genes of uncharacterized

function (out of 1,306 y-genes). The Keio collection, as any genome-

wide deletion collection (Teng et al, 2013), is no stranger to gene

duplications and compensatory mutations (Yamamoto et al, 2009;

Otsuka et al, 2015). Although their occurrence can impact interpre-

tation at the gene level, “suppressor” mutants tend to display more

WT-like behavior. It is, therefore, possible that we have underesti-

mated the actual number of mutants displaying altered phenotypic

characteristics or underrated the severity of the phenotype of a

given deletion. Importantly, “incorrect” mutants have no effect on

our global correlation analyses, as the latter does not rely on the

genetic identity of the mutants.

Our study reveals new phenotypes for previously characterized

gene deletions. We have already mentioned above the unexpected

filamentation phenotype of the Duup strain (Figs 4C and EV1A) and

have proposed a tentative connection between Uup’s known func-

tion (precise transposon excision) and DNA damage through repli-

some stalling. We also identified unanticipated links. For example,

the requirement for lysophospholipase L2 (PldB) in the coupling of

nucleoid separation and cell constriction (Fig 6D) suggests a

connection between phospholipid metabolism and the coordination

of late cell cycle stages. Previous works have also linked phospho-

lipid metabolism to cell morphology (Yao et al, 2012), showing that

fatty acid availability dictates the capacity of the cell envelope to

expand, ultimately affecting cell size (Vadia et al, 2017). We found

that mutants with an altered degree of saturated versus unsaturated

phospholipids have an abnormal length and width (Fig EV2D). It is,

therefore, tempting to speculate that not only the amount, but also

the composition of fatty acids, plays an important role in cell shape

and size control. Phospholipid composition determines the chemical

and physical properties of the cell membrane (Dowhan & Bogdanov,

2002), which is known to affect the function of cell division and

morphogenesis proteins such as MinD and MreB (Mileykovskaya

et al, 2003; Kawazura et al, 2017).

By combining the t-SNE and dbscan algorithms, we were able to

cluster strains with similar phenoprints into islands (Figs 4 and 5).

This granular representation of the phenotypic space allowed us to

expand on well-studied archetypal phenotypes such as “filamentous”

and “fat” (islands 22 and 21 of the morpho-archipelago, respectively,

see Fig 4). This classification also allowed us to populate less well-

studied phenotypes, from which we can gain new insight into cell

morphogenesis and the cell cycle. For example, the substantial

number of thin mutants reported here may prove as valuable as fat

mutants to study cell morphogenesis from a different angle. The clus-

tering results also revealed entirely new classes of mutants. In that

respect, islands 4, 8, and 12 of the cell cycle archipelago are particu-

larly interesting because they offer a genetic toolkit to explore

nucleoid and cell constriction dynamics, which have remained poorly

understood despite their essential role in cellular replication.

It is important to note that the phenoprints reported in this study

are tied to the specific experimental conditions of the screen. Cell

size is well known to vary with nutrient conditions (Schaechter

et al, 1958), indicating that the behavior of the Keio mutants may

be different in other environments. Differences in growth conditions

also lead to different metabolic requirements and growth limita-

tions. For instance, none of the mutant strains auxotrophic for

nucleotides were able to grow in our synthetic medium, which lacks

nucleotide precursors. We also note that growth in 96-well plates

likely corresponds to micro-aerophilic conditions. Accordingly, we

identified morphological deviations for strains deleted for genes

known to be only expressed under micro-aerophilic or anaerobic

conditions, revealing new metabolic connections to cell morphogen-

esis. For example, deletion of ybcF, which is predicted to encode an

enzyme involved in anaerobic purine degradation (Smith et al,

2012), results in a fat cell phenotype (Dataset EV2).

In this study, each gene deletion can be seen as a perturbation.

The sheer number of perturbations (~4,000) guarantees a large

number of independent perturbations and offers a unique opportu-

nity to infer the underlying correlation structure between the dif-

ferent phenotypes (Fig 8A). Such relationships, or lack thereof, can

be very informative. For instance, we found that growth rate is not

predictive of cell size. This is an interesting finding because current

theoretical models of cell size control generally include growth rate

as a variable. Recently, the original growth law was modified to

include a second variable, the C + D period (time of DNA replica-

tion + time between the end of DNA replication and cell division),

that influences cell size (Zheng et al, 2016; Si et al, 2017). Although

we do not have specific measurements of C + D periods and thus

cannot directly compare our results to this general growth law, the

observed lack of correlation between growth rate and cell size

remains surprising, especially for the fast-growing mutants

(Appendix Fig S7). Growth inhibition and nutrient limitation experi-

ments have shown that the C + D period increases with slower

growth rates (Kubitschek & Newman, 1978; Wallden et al, 2016; Si

et al, 2017). It is therefore possible that a lengthening of the C + D

period in slow-growing mutants compensates for the growth rate

difference, masking the relationship between the growth rate and

cell size in our dataset. However, under our nutrient-growth condi-

tions of overlapping DNA replication cycles (Appendix Fig S1A), the

C + D period is supposed to have reached a plateau, i.e., a minimal

value that remains constant at even faster growth rates (Cooper &

Helmstetter, 1968; Helmstetter, 1968; Wallden et al, 2016; Si et al,

2017). Therefore, we would not expect fast-growing mutants to have

a shorter C + D period that compensates for their faster growth rate.

Future studies on these fast-growing mutants could be enlightening.

The relative timings of nucleoid separation and cell constriction

are independent of growth rate (Fig EV4B and C). The absence of
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correlation between growth rate and the relative timing of these cell

cycle events was also observed for the wild-type strain when the

growth rate was varied by changing the composition of the growth

medium (Den Blaauwen et al, 1999). Collectively, our findings

show that the cell can accommodate a large range of sizes and rela-

tive timings of nucleoid segregation and cell division with no effect

on growth rate, and vice versa. This flexibility may offer greater

evolvability of cellular dimensions and cell cycle progression.

The complexity of cellular systems can sometimes be reduced to

simple quantitative relationships, which have been very useful in

identifying the governing principles by which cells integrate various

processes (Scott & Hwa, 2011). Our correlation analysis identified a

strong linear relationship between nucleoid size and cell size. This

remarkable scaling property is independent of growth rate and holds

across the wide range of cellular perturbations present in the ~4,000

deletion strains examined in this study (Fig 8C and D). This result

draws a striking parallel with the 100-year-old observation that

nucleus size scales with cell size in eukaryotes (Conklin, 1912), an

empirical relationship that has been reported for many eukaryotic cell

types since then (Vukovic et al, 2016). This suggests a universal size

relationship between DNA-containing organelles and the cell across

taxonomic kingdoms, even for organisms that lack a nuclear enve-

lope.

Our information-theoretic Bayesian network analysis (Fig 8)

enabled us to go beyond pairwise correlations by integrating the

complex set of interdependencies between cell morphogenesis,

growth, and cell cycle events. This analysis unveiled an unexpected

connection between average cell size and the relative timings of

nucleoid separation and cell constriction through nucleoid size

across thousands of genetic perturbations (Fig 8E and F). This

finding suggests that the size of the nucleoid is an important element

of the coordination mechanism between cell morphogenesis and the

cell cycle.

Materials and Methods

Bacterial strains and growth conditions

The Keio collection contains 3,787 annotated single-gene in-frame

deletion strains, 412 strains (referred to as JW strains) with kana-

mycin cassette inserted at unknown locations, and the remainder

(28) were repeats (Baba et al, 2006).

All strains, including E. coli K12 BW25113 (Datsenko & Wanner,

2000) and derivatives (strains from the Keio collection), as well as

E. coli K12 MG1655 and isogenic ftsA* WM1659 strains (Geissler

et al, 2007), were grown in M9 medium (6 g/l Na2HPO4�7H2O, 3 g/l

KH2PO4, 0.5 g/l NaCl, 1 g NH4Cl, 2 mM MgSO4, 1 lg/ml thiamine)

with 0.2% glucose as the carbon source and supplemented with

0.1% casamino acids.

Screening setup and microscopy

All E. coli strains were grown overnight at 30°C in 96-well plates in

M9 supplemented with 0.1% casamino acids, 0.2% glucose, and

kanamycin (30 lg/ml). Cultures were diluted 1:300 in 150 ll of

fresh M9 medium supplemented with 0.1% casamino acids and

0.2% glucose and grown in 96-well plates at 30°C with continuous

shaking in a BioTek plate reader. DAPI was added to the cultures to

a final concentration of 1 lg/ml 15–20 min prior imaging. All (par-

ent and mutant) strains were sampled within a very narrow range

of OD600 nm (0.2 � 0.1; min = 0.108; max = 0.350) corresponding

to the exponential growth phase (Appendix Fig S1D). We did not

detect any trend between morphological/cell cycle features and the

OD600 nm at which each culture was sampled. Cells were deposited

(0.5 ll per strain) on a large, 0.75-lm-thick, M9-supplemented

agarose pads with a multichannel pipette. The pads were made by

pouring warm agarose containing supplemented M9 medium

between a (10.16 × 12.7 × 0.12 cm) glass slide and a (9.53 ×

11.43 cm) n° 2 cover glass (Brain Research Laboratories, Newton,

MA, USA).

Microscopy was performed on an Eclipse Ti-E microscope

(Nikon, Tokyo, Japan) equipped with Perfect Focus System (Nikon)

and an Orca-R2 camera (Hamamatsu Photonics, Hamamatsu City,

Japan) and a phase-contrast objective Plan Apochromat 100×/1.45

numerical aperture (Nikon). The initial field of view for each strain

was chosen manually, and nine images were taken automatically

over a 3 × 3 square lattice with 200-nm step, using 80-ms exposure

for phase-contrast and 600-ms exposure for the DAPI channel using

Nikon Elements (Nikon).

Image processing

Cell outlines were detected using the MicrobeTracker software

(Sliusarenko et al, 2011). All data processing was then performed

using MATLAB (The MathWorks Inc., Natick, MA, 2000). Custom-

built codes were used to automate the aggregation of data from the

cell outlines of all the strains. Data are available in Datasets EV1

and EV2.

For cell and nucleoid detections, we consistently used the same

parameters (See Appendix for parameters). In order to avoid unnec-

essary bias in the cell outlines, the parameters defining the initial

guess for the cell contour fit were set to intermediate values, while

the parameters constraining the fit of the final outline were set to

negligible values. For example, we increased the fsmooth parameter

value to 100 in order to capture both short and long cells, and we

set the width spring constant parameter wspringconst to 0 so as to

avoid biasing the cell width estimate toward the initial guess value.

The edges in the DAPI fluorescence signal were detected with

Oufti’s objectDetection tool (Paintdakhi et al, 2016) which is based

on a Laplacian of Gaussian filtering method that takes into account

the dispersion of the point spread function (PSF) of our microscopy

setup at a wavelength of 460 nm (input parameter rPSF set to

1.62 pixels).

Rifampicin run-out experiments

The number of ongoing replication cycles was examined in run-out

experiments (Skarstad & Katayama, 2013). BW25113 cells were

grown at 30°C either in M9 glycerol or M9 medium supplemented

with 0.1% casamino acids, 0.2% glucose, and 1 lg/ml thiamine (as

for the Keio screen described here). Cells were grown up to expo-

nential phase and then treated for 3 h with 30 lg/ml cephalexin

and 300 lg/ml of rifampicin prior to overnight fixation in 70%

ethanol at 4°C. Cells were washed twice with phosphate-buffered

saline and then stained with DAPI (1 lg/ml) prior to imaging on a
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PBS-containing agarose pad. In M9 glycerol medium, E. coli

BW25113 cells do not start a new round of replication before the

previous one ended (Cooper & Helmstetter, 1968; Wang et al,

2011). This growth condition was used as a control to estimate the

DAPI intensity corresponding to 1 and 2 genome equivalents.

Data analysis

Dataset curation—Support Vector Machine (SVM) model

Due to the size of the dataset (> 1,500,000 cells detected globally),

we adopted an automated approach to identify poorly (or wrongly)

detected cells across the entire dataset. We developed an SVM

model based on 16 normalized features: cell length, cell width, cell

area, cell volume, cell perimeter, cell constriction degree, division

ratio, integrated phase signal, integrated DAPI fluorescence signal,

mean cell contour intensity in phase contrast, variability of cell

width along the cell, nucleoid area, single-cell nucleoid variability,

cell circularity (2*p*cell area/(cell perimeter)2), nucleoid intensity,

and number of nucleoids. We trained a binary classifier (positive or

negative) over wild-type strain replicates as well as 419 mutants

with the most severe morphological defects prior to data curation.

We visually scored 145,911 cells and used 30% of them (43,774) to

train the model. The model was evaluated using a k-fold cross-vali-

dation approach, leading to a generalized misclassification rate of

10%. We used the remaining 70% of the data set (102,137 cells) to

validate the model. This SVM classifier achieves a balanced classifi-

cation rate of 84% and features an AUROC of 0.94 (Appendix Fig

S1E). Furthermore, the resulting group of false negatives was not

significantly different from the true positives (Appendix Fig S1F and

G), indicating that the classification did not introduce a bias by

excluding a specific class of “good” cells from the analysis.

Data processing

For each feature, we checked and corrected for any bias associated

with plate-to-plate variability, differences in position on the 96-well

plates, timing of imaging, and optical density of the culture

(Appendix Figs S2–S4). For each plate, we set the median values of

each feature, F, to the median feature value of the parental strain.

The F values were transformed into normalized scores by a trans-

formation akin to a z-score transformation but more robust to

outliers.

s ¼ 1:35� Fi �median FWT
i

� �� �
=iqr FWT

i

� �
;

where Fi is the corrected value for the mutant strains for feature i,

FWT
i is the value for the wild-type strain for feature i, and iqr

stands for interquartile range. As the interquartile range of

normally distributed data is equal to 1.35 times their standard devi-

ation, we scaled the score by this factor so as to express the scores

in terms of standard deviations away from the median.

The temporal biases for the fraction of cells committed (or not)

to division and the fractions of cells with 1, 2, or more nucleoids

were corrected using a Dirichlet regression to maintain the relative

proportions between classes (Appendix Fig S3; Maier, 2014). In an

exponentially expanding population of growing E. coli cells at

steady state, the fraction of cells in the population before the occur-

rence of a cell cycle event is related to the cell age at which this

event occurs by a monotonic relationship (Collins & Richmond,

1962). The proportions of cells at different cell cycle stages are

therefore used to infer the relative proportions of different cell cycle

stages and the cell age at which a specific cell cycle event occurs

(Powell, 1956; Collins & Richmond, 1962). These inferences only

rely on the assumption that the population of cells is in a steady

state leading to a stable distribution of cell ages (see the appendix

of Wold et al, 1994 for a detailed, mathematical description). One

limitation of this approach is that only relative timings or propor-

tions can be inferred, and no conclusions should be drawn on the

absolute duration of the different periods without any other hypoth-

esis. For instance, a reduction of the fraction of cells with one

nucleoid could result either from an actual reduction in the cell

cycle period associated with one nucleoid or from a lengthening of

the period associated with cells with two or more nucleoids. In both

cases, we can, however, conclude that the separation of nucleoids

happens earlier in relative cell cycle units. Another limitation is that

only population-level average timings can be obtained. Although

these average relative timings would also be obtained when averaging

the behavior of many individual cells of that same population, we

cannot quantify single-cell level variability in these timings (and its

potential cross-talk with morphological features of individual cells).

Data exploration, dimensionality reduction, and clustering

A similarity measure between strains was needed to identify and

separate different phenoprints. Pearson correlations or Euclidean

distances classically provide such similarity measures, and principal

component analysis (PCA) and/or hierarchical or k-means cluster-

ing are often used. However, PCA tends to explode datasets and

Pearson correlations do not always reflect the desired type of simi-

larity. As an extreme example, consider two strains with two pheno-

prints that are proportional, one with values within a very small

score range, such as [�1 1], while the other with score values span-

ning the [�10 10] range. These two strains will get a maximal simi-

larity measure through a correlation analysis, despite the fact that

the first strain is wild-type-like while the other is an outlier. Instead,

we chose to use a recently described algorithm, called t-distributed

stochastic neighbor embedding, or t-SNE (van der Maaten & Hinton,

2008), to project our multidimensional datasets in two dimensions

and generate, at the same time, similarity measures between strains.

t-SNE estimates low-dimensional space distances between points

based on their similarity, as opposed to dissimilarity as in the case

of PCA, thereby highlighting local similarities rather than global

disparities.

We used the stochastic nature of the t-SNE algorithm to evaluate

the robustness of the resulting projection by repeating the procedure

multiple times (n = 100 for each t-SNE map). We coupled this

dimensional reduction procedure with a density-based clustering

algorithm, dbscan (Ester et al, 1996), to group strains with similar

phenoprints. The two input parameters of the dbscan algorithm, e
and minPoints, were optimized so as to generate a maximum

number of islands without separating the bulk of WT strains in two

or more islands. Islands include strains that clustered together more

than 90% of the time.

The convergence of the dimensionality reduction was verified

by repeating the t-SNE dimensionality reduction on subsamples of

the initial dataset (1,225 × 21 matrix). In this approach akin to

cross-validation, we generated 50 partitions of either 1,200 or

1,201 strains, holding out disjoint sets of points, with the
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cvpartition built-in function in MATLAB, and repeated the dimen-

sional reduction with the t-SNE algorithm 10 times for each parti-

tion. We first compared the pairwise distances between the points

in each of these 500 t-SNE maps with the pairwise distances

between the corresponding points in the t-SNE map presented in

Fig 4A. The distribution of Pearson correlation coefficients

between these sets of distances, calculated with a kernel density

estimation function (Botev et al, 2010), is illustrated in

Appendix Fig S8A (red curve). This distribution is highly similar

to the distribution obtained from the repetition of the t-SNE

dimensional reduction on the full dataset (1,225 strains—blue

curve in Appendix Fig S8A) and suggests that the algorithm

converges toward a global minimum. The bimodality in the distri-

bution of the Pearson correlation coefficients is not due to specific

subsamples (Appendix Fig S8B) and rather reflects the stochastic-

ity of the t-SNE algorithm and the low weight carried by large

distances in the map. For example, the displacement of a well-

isolated island relative to others may not impact strongly the mini-

mized score of this t-SNE map, but would definitely reduce the

Pearson correlation coefficient between this map and the reference

t-SNE map presented in Fig 4A. Using the same parameters as for

the full dataset (e = 4.9, minPoints = 3), we verified that the

dbscan algorithm results in a similar clustering as in the global

map. The resulting clusters for each t-SNE map associated with a

subsample of the dataset were compared with the clustering

output presented in Fig 4A and B. For each reference cluster (is-

lands in Fig 4A), we identified all the representative points of this

cluster in the subsample t-SNE map and calculated the ratio

between the maximal number of these points clustering together

in this subsample map divided by the total number of representa-

tive points of the reference cluster in this subsampling. This ratio

is akin to the Jaccard index for each reference cluster, and all

indexes for a given map were averaged to provide a score to each

t-SNE map. The distribution of these scores (10 scores per

subsample corresponding to the 10 t-SNE maps calculated for each

subsample) is represented in the boxplot in Appendix Fig S8C.

The average indexes are typically above 0.9, which reflects the

threshold used to generate the clusters as points clustering in

more than 90% of the t-SNE maps. The same reproducibility of

clustering in the subsample t-SNE maps is also a good indication

that the t-SNE dimensional reduction converges toward an optimal

embedding.

Map exploration

Each t-SNE map is a similarity map, and can therefore be treated

as a network where the nodes represent strains and the edges the

Euclidean distance between strains in the t-SNE map. Building up

on recent quantitative network analysis tools (Baryshnikova,

2016), we calculated the local enrichment in the maps of different

strain-associated attributes, such as COG and GO terms. Briefly,

the sum of the attributes in a local area (within a radius around

each point, defined as the 1-percentile of the distribution of all

the pairwise distances between points) was compared to a back-

ground score (defined as the average score obtained over 1,000

identical maps with randomly permutated attributes) with a

hypergeometric test. The significant local enrichments were

considered at a threshold of 0.05 after adjusting for false discov-

ery rate correction with the Benjamini–Yekutieli (BY) procedure,

taking into account dependencies between tests (Benjamini &

Yekutieli, 2001). The SAFE algorithm proposed by Baryshnikova

(2016) was implemented as a MATLAB function mapEnrich.m

(see Code EV1).

Cluster of orthologous gene enrichment analysis

We associated E. coli BW25113 genes with COGs using the web

server (Van Domselaar et al, 2005). The enrichment analyses

were performed using a custom-built algorithm in MATLAB based

on a two-tailed hypergeometric test to compute P-values, which

were subsequently adjusted with the Benjamini–Hochberg (BH)

false discovery rate procedure (Benjamini & Hochberg, 1995)

(Code EV2). Because the COG categories are largely independent,

we did not consider any correction for the dependence between

tests.

Gene ontology analysis

We used ontologies from the Gene Ontology website (http://

www.geneontology.org/ontology/gene_ontology.obo, version 2016-

05-27; Ashburner et al, 2000), and annotations were obtained from

EcoCyc for E. coli strain MG1655 (Keseler et al, 2013). Analysis was

performed using a MATLAB custom-built algorithm that includes a

hypergeometric test to compute P-values that were subsequently

adjusted with the BY false discovery rate procedure (Benjamini &

Yekutieli, 2001; Code EV2).

Bayesian network

The Bayesian network presented in Fig 8 was generated in R with

the bnlearn package (Scutari, 2010), using the ARACNE algorithm

as described in Margolin et al (2006). The network was boot-

strapped 200 times, and all the edges were identified in more than

70% of the networks. We assessed the strength and the origin of

collinearity among features using Belsley diagnostic method (Belsley

et al, 1980), with the built-in collintest.m function in MATLAB. We

excluded features associated with a “condition number” above the

classical threshold of 30.

Calculation of confidence intervals

As the true correlation between two normally distributed variables

approaches 1 or �1, the probability density distribution of the esti-

mated correlation becomes highly skewed and far from normal. For

Pearson correlations (q), this distribution can be transformed using

Fisher z-transform to approximate a normal distribution for any true

correlation value r (Fisher, 1915):

z ¼ 1

2
ln

1þ r

1� r

� �
:

The variable z follows a normal distribution with mean 1
2 ln

1þq
1�q

� �
and standard error 1ffiffiffiffiffiffiffi

n�3
p , where q and n are the estimated Pearson

correlation value and the sample size, respectively.

Using this transformation, the limits of the distribution covering

the 95% most probable values of the distribution can be calculated

using the 2.5 and 97.5 percentiles of the normal distribution

centered on 1
2 ln

1þq
1�q

� �
with standard deviation 1ffiffiffiffiffiffiffi

n�3
p :

zlow; zup
	 
 ¼ z� z97:5%

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r
:
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The inverse transformation on these confidence boundaries on z

is then used to calculate the 95% confidence upper and lower limits

for the estimated correlation value q.

qlow ¼ e2zlow � 1

e2zlow þ 1
; qup ¼

e2zup � 1

e2zup þ 1

Unfortunately, a similar approach cannot be employed for an

estimated Kendall correlation (s) value (Long & Cliff, 1997). To

generate 95% CIs, we used a bootstrapping approach (Efron &

Tibshirani, 1993). Correlation values were calculated between 5,000

resampled (with replacement) variable pairs. The 2.5 and 97.5

percentiles of the obtained distribution of correlation values were

subsequently taken as the respective lower and upper boundaries of

the bootstrapped 95% CIs.

Data representation

All graphs were generated using MATLAB, except for the networks

in Figs 4C and 8A panels, which were created using Cytoscape v3.2

(Shannon et al, 2003) and the Rgraphviz package in R (Hansen

et al, 2017), respectively. For Fig 4C, we used the built-in, edge-

weighted, spring-embedded algorithm in Cytoscape. We considered

the pairwise Euclidean distances between the nine strains of island

22 as the weights of the edges connecting the nodes (or strains).

The density scales in scatter plots represent the number of points

around each point in a radius equal to the 0.03 percentile of the

pairwise distances distribution.

The WT isocontours representing the 0.5, 0.75, and 0.95 proba-

bility envelopes for the 240 WT replicates were calculated using a

2D kernel density estimation function over a 128-by-128 lattice

covering the entire set of points. The bandwidth of the kernel was

internally determined (Botev et al, 2010).

Simulations of cell length distributions

Cell length distributions at any given cell age were assumed to be

log-normally distributed with different dispersion values. The CV of

the distribution for the WT strain (CV = 0.11) was previously exper-

imentally determined (Campos et al, 2014). The cell length distribu-

tions at 100 different ages equidistantly distributed between 0

(birth) and 1 (division) were convolved with the cell age distribu-

tion, assuming an exponentially growing culture, PrðageÞ ¼ 2�age.

Data and software availability

The imaging data from this publication have been deposited to the

BioStudies database (https://www.ebi.ac.uk/biostudies/). The

accession number for our image dataset is S-BSST151. The dataset

files containing the raw data, normalized data, and scores for all the

strains are available as Datasets EV1 and EV2. The computer codes

are available as ZIP files Code EV1 and EV2.

Expanded View for this article is available online.
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