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An electrochemical sensor for paracetamol is executed by using conductive MOF

(NiCu-CAT), which is synthesized by 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene

(HHTP) ligand. The utility of this 2D NiCu-CAT is measured by the detection of

paracetamol, p-stacking within the MOF layers is essential to achieve high electrical

conductivity, redox activity, and catalytic activity. In particular, NiCu-CAT demonstrated

detection Limit of determination near 5µM for paracetamol through a wide concentration

range (5–190µM). The NiCu-CAT/GCE exhibits excellent reproducibility, stability, and

interference for paracetamol.

Keywords: sensor, conductive MOF, NiCu-CAT, amperometric, paracetamol detection

INTRODUCTION

Paracetamol (PA) is a high effective antipyretic and analgesic drug, which is generally used to relieve
moderate pain, such as headache caused by influenza or joint pain, migraine, etc. It regulates
the synthesis and release of central prostaglandins by controlling the body temperature in the
hypothalamus, improves the pain threshold and plays the role of antipyretic and analgesic (Wan
et al., 2009; Ghadimi et al., 2013). The normal dose of paracetamol is harmless to the human body,
but excessive or long-term use will lead to liver poisoning, leukemia, or even central nervous system
poisoning (Fan et al., 2011). Therefore, it is necessary to develop a sensitive, simple, and rapid
detection technology for paracetamol. The existing detection methods include spectrophotometry,
titration analysis, chemiluminescence, capillary electrophoresis, fluorescence spectrum, high-
performance liquid chromatography (Easwaramoorthy et al., 2001; Bosch et al., 2006). However,
it is not suitable for the rapid detection of PA in daily life due to the complex pretreatment, large
equipment, time-consuming and expensive of these existing detection methods. On the contrary,
electrochemical methods have the advantages of being simple and convenient, highly sensitive,
quickly responsive, low in cost and highly selective (Yan et al., 2019; Yuan et al., 2019, 2020; Ma
et al., 2020; Wang et al., 2020). In addition, PA is an electroactive substance that is prone to
electrochemical oxidation, so the detection of PA by electrochemical sensors has aroused great
interest. However, the redox reaction of PA on the bare electrode is slow. As a result, researchers
have developed high catalytic activity nanomaterials for the design of highly sensitive paracetamol
electrochemical sensors (Ejaz and Jeon, 2017; Raymundo-Pereira et al., 2017; Zhao et al., 2019).

In recent decades, nanomaterials have attracted worldwide attention and have been widely used
to modify electrochemical sensing electrodes. As one of the most popular materials at present,
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the conductive nano-Metal Organic Framework (MOFs)
(Campbell and Dincă, 2017; Biswas et al., 2020; Ko et al.,
2020; Suwannakot et al., 2020) have many advantages, such as
simple synthesis process, environmental friendliness, adjustable
structure and so on, especially its excellent conductivity, which
has attracted extensive attention (Ko et al., 2017; Fang et al.,
2018; Xie et al., 2020). Metal-catecholates (M-CATs) are a kind
of conductive MOF composed of HHTP ligands and central
metal ions (Miner et al., 2018; Zhang et al., 2018, 2019; Guo
et al., 2019). The good conductivity of M-CATs is mainly due to
its special structure, in which oxygen atoms in an HHTP ligand
can also combine with axial water ligands to form hydrogen
bonds. M-CATs show two accumulation modes: one kind, a
two-dimensional layered framework with a hexagonal hole and
honeycomb structure, is formed by oxygen and p-p interaction,
where metal nodes and organic ligands serving as charge carriers
enable full charge delocalization in the two-dimensional (2D)
plane, so as to produce good electrical conductivity, and the other
is along the c axis through hydrogen bonding accumulation,
which is easy to form one-dimensional (1D) structures between
layers. Because of their special porous structure and good
electrical conductivity, M-CATs have great prospects for
related applications such as catalysis, supercapacitors and
electrical analysis.

FIGURE 1 | (A) Schematic illustration of the preparation of NiCu-CAT. (B) Connecting mode of HHTP molecules and Ni2+ and Cu2+ ions. (C) View of the two

extended corrugated layers along the [110] direction. (D) XRD pattern of NiCu-CAT nanocrystal and simulated.

In this paper, the 2D conductive nano-MOFs are first
systematically studied for the detection of PA in multi-
component aqueous solutions. The sensor has the characteristics
of fast electronic transfer, good catalytic performance, and good
detection limit of determination for paracetamol. Hence this
work opens up a new method for electrochemical detection
of paracetamol, which is beneficial to the study of the redox
metabolism of paracetamol in aqueous solution and expands the
application of MOF nanomaterials in electroanalytical chemistry.

METHODS AND MATERIALS

Materials and Reagents
The chemical 2, 3, 6, 7, 10, 11-heahydroxytriphenylene
(HHTP) was purchased from Innochem Reagents (Shanghai,
China); Nickel (II) acetate tetrahydrate (Ni(OAc)2·4H2O),
Copper (II) acetate tetrahydrate (Cu(OAc)2·4H2O), standard
paracetamol, dopamine (DA), and ascorbic acid (AA) were
purchased from Aladdin (Shanghai, China). All other
chemicals were analytical reagent grade. Deionized water
was prepared from a Milli-Q water purification system.
Different pH phosphate buffers (0.1mol L−1) were prepared
by mixing KH2PO4 (0.1mol L−1) and Na2HPO4 (0.1mol
L−1) solutions.
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FIGURE 2 | (a,b) TEM images of the NiCu-CAT nanocrystal. (c–g) The distribution images of various elements of NiCu-CAT nanocrystal.

Instrumentation
All chemicals were obtained from commercial sources and used
without further purification. Powder X-ray diffraction (PXRD)
data were collected on a Rigaku D/max-2,550 diffractometer
with CuKα radiation (λ = 1.5418 Å). The infrared (IR) spectra
were recorded within the 4,000–500 cm−1 region on a Nicolet
Impact 410 FTIR spectrometer with KBr pellets. TEM, HAADF-
STEM, HRTEM, and EDX were carried out on a FEI Talos F200S
TEM (200 kV). The structure for NiCu-CAT was simulated by
Materials Studio 8.0 and using the Crystallographic Information
File (CIF) of Ni-CAT (Ko et al., 2020) as mode.

Synthesis of the NiCu-CAT Nanocomposite
Typically, 30mg of Ni(OAc)2·4H2O, 20mg of Cu(OAc)2·4H2O,
and 42mg of HHTP ligands were dissolved in 9mL of a solvent
mixture of deionized water. The vial was capped and sonicated
for 30min until the solid was dissolved, and after that 0.5mL
of NMP was added drop-wise into this solution, and then this
solution continue was sonicated for 10min, the reaction mixture
was transferred into an isothermal oven at 85◦C for 12 h. After
the crystals were washed with deionized water and acetone, the
NiCu-CAT was obtained.

Preparation of the Modified Electrodes
First of all, glassy carbon electrode (GCE) was mechanically
polished on a velvet cloth with 0.05µMalumina slurry. Secondly,
then electrochemical polishing was carried out in a potential
window of 0–1V at a scanning speed of 100 mV/s in 0.1M
H2SO4. Thirdly, GCE was ultrasonicated in deionized water
and ethanol for 5 s respectively. One milligram of NiCu-CAT
was dispersed in 1mL of distilled water and Nafion (5 wt%)

and ultrasonicated by cell disrupter for 30min to ensure a
uniform dispersion. Then, 6 µL of this dispersion was dropped
on cleaned GCE and dried at room temperature to obtain a
suitable coating (NiCu-CAT/GCE).

Electrochemical Measurements
Cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS) and differential pulse voltammetry (DPV)
were carried out with a CHI760E electrochemical workstation
(Shanghai Chenhua Instrument Co. Ltd., China) using a three-
electrode system, with a bare or modified glassy carbon electrode
(GCE, 3.0mm in diameter) as the working electrode. A platinum
(Pt) wire and Ag/AgCl were the counter and reference electrodes,
respectively. All electrochemical experiments were conducted at
room temperature (25◦C).

RESULTS

Characterization
Typically, NiCu-CAT constructed from a 2D hexagonal lattice
in the ab-plane, which configurations along the [001] direction,
are synthesized by solvothermal method (Figure 1A). As shown
in Figures 1B,C, the divalent metal ions (M2+) are matched to
adjacent deprotonated HHTP ligands to form an extended 2D P-
conjugation honeycomb framework. Each ligand can be oxidized
to achieve charge balance with the metal ion centers, which is
very important to improve the charge density of the M3(HHTP)2
(H2O)12 (Supplementary Figures 1a,b).

The X-ray diffraction (XRD) patterns of NiCu-CAT that
matched reported characterization are shown in Figure 1D. The
XRD pattern of NiCu-CAT clearly reveals three sharp intense
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FIGURE 3 | (A) CV curves of 50µM paracetamol at the NiCu-CAT/GCE in 0.1M PBS under 5.5, 6, 6.5, 7, 8 pH values. (B) The relationship between pH and

peak potential.

FIGURE 4 | (A) CVs of GCE and NiCu-CAT/GCE in presence of 40µM paracetamol. (B) CVs of 40µM paracetamol on NiCu-CAT/GCE at scan rates of 10, 20, 50,

100, 200, and 300 mVs−1. (C) Displays the plot of the peak current vs. scan rates. (D) Displays the plot of the peak potential vs. lnν.
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peaks of (100), (200) and (210) planes at 2θ = 4.7◦, 9.5◦, and
12.4◦, respectively. The peaks indicate the long-range order of the
nanocrystal in the ab-plane (Miner et al., 2018; Guo et al., 2019;
Ko et al., 2020). Fourier transform infrared spectroscopy (FT-IR)
is conducted, as showed in Supplementary Figure 2. Typically,
the bonds at 1,118, 1,430, and 3,099 cm−1 are attributed to
the -C = C- stretching, -C-O- stretching vibration, and -O-H,
respectively. The bands at 672 and 804 cm−1 represent the out-
of-plane C-H bending modes, fully manifesting the existence of
organic HHTP.

Transmission electron microscopy (TEM), high-angle
annular dark-field scanning TEM (HAADF-STEM), and
high-resolution transmission electron microscopy (HRTEM)
were executed to characterize the morphology of NiCu-
CAT. As shown in Figures 2a,b, NiCu-CAT is made up of
nanocrystals with the diameter of 20–50 nm. The corresponding
energy dispersive X-ray spectroscopy (EDX) mapping images
(Figures 2c–g and Supplementary Figure 4) evidence the
even distribution of elemental Ni, Cu, C, and O throughout
the nanocrystal.

Effect of the pH Values
Electrochemical properties were investigated with the
conventional three-electrode system, as mentioned in the
Methods and Materials section. The effect of pH on the peak
potential of PA using cyclic-voltammetry in 0.1M PBS at pH
values of 5.5 to 8.0 is presented in Figure 3A. The effect of
the pH value of the PBS on peak potential of 50µM PA at
NiCu-CAT/GCE is also investigated. It can be seen that with the
pH increased, the oxidation peak shifted to a negative potential,
indicating that this observation can be interpreted by observing
the protons in the electrochemical reactions. The pH value 6.5
is chosen for further PA detection, with the highest sensitivity.
In addition, Figure 3B shows that for a linear relationship
between the peak potential (Epa) and pH value, the regression
equation is shown by the following expression (Afkhami et al.,
2004):

Epa (V) =Epa
(

pH=0
)

− (2.303mRT/nF) ∗ pH (1)

where Epa(pH = 0) is the oxidation potential for paracetamol,
R is the gas constant (8.314 J·K mol−1), F is Faraday’s constant
(96485C mol−1), T is the Kelvin temperature (298.15K), n
is the number of electrons transferred, and m is the number
of protons involved in the reaction. From Figure 3B, Epa
decreased with a slope of −47.5 mV/pH (R = 0.98802).
Furthermore, from this equation, according to dEpa/dpH =

−2.303 mRT/nF (Kang et al., 2010). Obviously, the redox
reaction involves the same protons and number of electrons
with a ratio of 1:1 (Fanjul-Bolado et al., 2009; Kalambate et al.,
2015).

Electrocatalytic Behavior of Paracetamol
Cyclic voltammetry for NiCu-CAT/GCE is performed to
investigate the electrochemical behavior of 40µM paracetamol,
electrodes are cycled between −0.8 and 0.8V at a scan
rate of 100 mV/s. Figure 4A shows CV responses of

SCHEME 1 | Redox mechanisms of NiCu-CAT/GCE.

GCE and NiCu-CAT /GCE in PBS (pH = 6.5). No redox
peaks are observed at GCE, which means that GCE is not
electroactive in the studied potential region. In contrast,
the redox peaks of NiCu-CAT/GCE appeared at −0.14
and 0.53V, respectively, which can be attributed to the
electrochemical redox process of the NiCu-CAT nanocrystals,
and the current is larger than that of the bare glassy carbon
electrode. The results show that NiCu-CAT has a good
electrocatalytic effect on PA. Due to the special mesoporous
structure of NiCu-CAT, the conductivity of the electrode is
improved and the electrocatalytic effect of the electrode on PA
is enhanced.

Effect of the Potential Scan Rate
In order to investigate the mechanisms responsible for the
oxidation of PA at NiCu-CAT/GCE, cyclic voltammograms of
PA were recorded at various scan rates. It was observed that
the cathodic peak current (Ipc) and anodic peak current (Ipa)
increase linearly with the scan rate over the range of 10–300
mVs−1 for and PA. Figure 4B shows that the peak potential
shifts forward with the increase of scanning rate. The linear
relationship between the scan rate and peak current can be
expressed by a linear regression equation (Raymundo-Pereira
et al., 2016) as Ipa[µA] = 101.88 ν[Vs−1] −0.25, (R2 = 0.980)
and Ipc[µA] = −45.45 ν[ Vs−1] −8.471 (R2 = 0.957) for the
NiCu-CAT/GCE electrode, respectively (Figure 4C). The results
show that PA undergoes an adsorption-controlled reaction
(Goyal et al., 2010; Arvand and Gholizadeh, 2012; Kutluay and
Aslanoglu, 2013).

To investigate the reaction kinetics, as shown in Figure 4D,
the anodic and cathodic peak potentials have linear relationships
with the natural logarithm of the scan rate (lnν). The linear
regression equations are found to be:

Epa (V) = 0.020lnν

(

V

s

)

+ 0.580, (R2
=0.9535) (2)

Epc (V) = −0.019lnν

(

V

s

)

− 0.580, (R2
=0.9859) (3)

According to Laviron’s model (Laviron, 1974, 1979), the number
of the electron–transfer (n) and charge-transfer coefficient (α)
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FIGURE 5 | (A) DPV responses for different paracetamol concentrations (5, 10, 15, 20, 25, 30, 35, 40, 50, 70, 90, 110, 150, and 190µM) on a NiCu-CAT/GCE. (B)

The linear relationship between the peak current and paracetamol concentration.

FIGURE 6 | (a) Evaluation of repeatability. (b) Stability of the NiCu-CAT/GCE after pretreatment during 30 days. (c) DPV responses of the NiCu-CAT/GCE in PBS

(0.1M, pH 6.5) containing 40µM PA and 200µM DA; inset is the containing 40µM PA and 200µM AA, respectively. (d) Effects of the presence of inorganic ions on

the voltammetric responses of 40µM paracetamol using the NiCu-CAT/GCE.
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can be calculated to be 2 and 0.50, respectively. According to the
above equations, results show that there is a two-proton and two-
electron process for the PA electro-oxidation at NiCu-CAT/GCE.
The possible redox mechanisms are as follows in Scheme 1.

Analytical Performance Characteristics
DPV is utilized to measure the PA peak current on the present
electrochemical sensor. This method has the advantages of high
sensitivity and good resolution. Under optimized experimental
conditions, the anodic peak current is directly proportional
to the concentration of PA from 5 to 190µM as shown in
Figure 5A. From Figure 5B, it can be seen that the peak current
of PA is in a linear dynamic range with its concentration. The
regression equation (Goyal and Singh, 2006; Krampa et al., 2018;
Xu et al., 2019) for the region is Ipa(µA) = 0.1473c(µM) +

1.9019 (R2 = 0.9993), the limit of determination is near 5µM.
The limit of determination of the NiCu-CAT/GCE is similar
to some electrochemical sensors reported using electrochemical
method for detecting paracetamol (Fu et al., 2015, 2018a,b).
As shown in Supplementary Figure 7, the diameter of the
paracetamol is 8.3 Å∗ 3.7 Å, and the pore size of the Ni/Cu
CAT is 13 Å. The paracetamol could easily go into the
channel; consequently, we expected that the effects between
the Ni/Cu CAT and paracetamol were based on host-guest
interaction (Ko et al., 2017; Fang et al., 2018; Xie et al.,
2020).

DISCUSSION

Reproducibility, Stability and Interference
The peak currents of five tests were recorded to study
the reproducibility of the NiCu-CAT/GCE by DPV, and the
same electrode was modified five times for PA detection
at the same concentration of 40µM (Figure 6a). Under
the optimized conditions, the relative standard deviation
(RSD) is 1.01%, indicating that NiCu-CAT/GCE can obtain
satisfactory repeatability.

In order to study the stability of the modified GCE, the NiCu-
CAT/GCE is used tomeasure 40µMparacetamol in PBS (0.1mol
L−1, pH = 6.5) after being stored in the air for 7 days and
30 days, respectively (Figure 6b and Supplementary Figure 5).
The fabricated sensors retain more than 95.8% of their original
responses, indicating that NiCu-CAT/GCE has good stability.
This stability is helpful to the application of chemically modified
electrode in electroanalysis.

To investigate the sensor selectivity, the modified GCE is used
to detect paracetamol in the presence of interferents. In addition,
it was found that the peak current of 40µM PA is not affected
in the presence of 5-folds of dopamine (DA) and ascorbic acid
(AA) (Figure 6c), and 100-fold excess concentrations of K+,
Cd2+, Cu2+, Pb2+, Fe3+, Al3+, SO2−

4 , and Cl− (Figure 6d). The
results demonstrated that the potential interfering substances
did not interfere with the 40µM paracetamol signals,
indicating that the present assay offers good sensitivity for
determining paracetamol.

Real Sample Analysis
In this paper, theNiCu-CAT electrochemical sensor was prepared
to detect paracetamol in actual samples. The commercial tablet
(Tylenol, produced in Shanghai, China) with a nominal value
of 650mg was used for the analysis of paracetamol. The tablets
were pre-treated by grinding, dissolving with ethanol, filtering,
and then diluting them with a phosphate buffer solution. The test
results are shown in Supplementary Table 1. The recoveries of
the tests were in the range from 97.23 to 103.8%. indicating that
the modified electrode has a good detection performance for the
actual samples containing PA, which is expected to be used for
the detection of PA in real life.

CONCLUSION

In summary, we have successfully constructed 2D conductive
metal–organic frameworks as efficient electrocatalysts to achieve
electrochemical detection of PA in aqueous solutions. The
NiCu-CAT possesses a specifically big pore, numerous potential
active sites, good electrical conductivity and water stability.
The electrochemical properties of NiCu-CAT/GCE for PA
were studied by cyclic voltammetry and the differential
pulse method, under the optimal experimental conditions, the
modified electrode has a wide linear range (5–190µm) for the
electrochemical detection of PA with good reproducibility and
stability, and it also achieved the limit of determination near
5µM. The research on the electrochemical detection of PA
provides a platform for the application of MOF composites in
electroanalysis, which is an excellent electrochemical method for
pharmaceutical analysis.
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