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Abstract

The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been
recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these
strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm
formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a
detailed genomic comparison of two breast milk–derived isolates representative of each group: an established probiotic
strain (L. reuteri ATCC 55730) and a strain with promising probiotic features (L. reuteri ATCC PTA 6475). Transcriptomes of L.
reuteri strains in different growth phases were monitored using strain-specific microarrays, and compared using a pan-
metabolic model representing all known metabolic reactions present in these strains. Both strains contained candidate
genes involved in the survival and persistence in the gut such as mucus-binding proteins and enzymes scavenging reactive
oxygen species. A large operon predicted to encode the synthesis of an exopolysaccharide was identified in strain 55730.
Both strains were predicted to produce health-promoting factors, including antimicrobial agents and vitamins (folate,
vitamin B12). Additionally, a complete pathway for thiamine biosynthesis was predicted in strain 55730 for the first time in
this species. Candidate genes responsible for immunomodulatory properties of each strain were identified by transcriptomic
comparisons. The production of bioactive metabolites by human-derived probiotics may be predicted using metabolic
modeling and transcriptomics. Such strategies may facilitate selection and optimization of probiotics for health promotion,
disease prevention and amelioration.
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Introduction

Human beings are colonized by a diverse and complex

collection of microbes, contributing to host nutrition, development

of the immune system, response to pathogens, and intestinal cell

differentiation and proliferation [1,2]. A global initiative repre-

sented by the International Human Microbiome Consortium

(IHMC) is currently characterizing microbial communities that

reside in diverse body habitats, and how the human microbiome

may contribute to health and disease [1]. By 2012, this consortium

aims to sequence 1000 bacterial genomes to serve as reference

strains and help researchers to better understand the evolutionary

relationships within the microbiome. As part of the Human

Microbiome Project (HMP), the genomes of four human-derived

Lactobacillus reuteri strains (L. reuteri ATCC PTA 6475, ATCC PTA

4659, ATCC 55730, and CF48-3A) have been sequenced [1]. L.

reuteri is a bacterium indigenous to humans and other animals, and

has been isolated from infants and adults at different body sites,

including the gastrointestinal (GI) tract, vagina, and from human

breast milk [3,4].

Host adaptation of this species is supported by genetic clustering

of strains originating from common or related hosts [5]. Using

amplified-fragment length polymorphism (AFLP) and multi-locus

sequence analysis (MLSA) with more than 160 L. reuteri strains

isolated from humans (including the 4 strains sequenced as part of

the HMP), pigs, rats, mice, chickens and turkeys revealed that
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considerable genetic heterogeneity exists within the L. reuteri

population, with distinct monophyletic clades reflecting host

origins [6]. Preliminary genomic analysis from four human-

derived L. reuteri strains sequenced by the HMP suggested that

these strains can be divided into two different groups (strains

55730 and CF48-3A in one group, and strains 6475 and 4659 in a

separate group and highly similar to the type strain JCM 1112) [1].

These findings confirm previous observations from Oh et al

showing that at least two different clades of human-derived L.

reuteri strains can be distinguished, as represented in the

phylogenetic tree created using amplified fragment length

polymorphism analysis [6].

L. reuteri 55730 is an established probiotic strain, defined as

‘‘bacterium, which when ingested in an adequate amount, confer a

health benefit to the host’’ [7]. The beneficial effects of oral intake

of L. reuteri strain ATCC 55730, or its daughter strain DSM 17938

[8], have been well documented in a number of clinical trials.

These strains improved symptoms of infantile colic [9], feeding

tolerance and gut function in pre-term infants [10], and reduced

constipation or perceived pain intensity in children with functional

abdominal pain [11]. Treatment with strain 55730 also modulated

cytokine patterns in exhaled breath condensates of children with

atopic dermatitis [12]. L. reuteri ATCC PTA 6475 is a promising

probiotic strain with anti-inflammatory properties demonstrated in

vitro [13]. This strain has been shown to ameliorate disease due to

enterohemorrhagic Escherichia coli in germ-free mice [14]. Most

human-derived L. reuteri strains secreted the antimicrobial

aldehyde reuterin [6] that is active against a wide range of

pathogens [15]. Human-derived L. reuteri strains from two different

groups differed by their immunomodulatory properties, ability to

produce the antimicrobial factor reuterin, and form biofilms in vitro

[13,16,17,18]. However, within each of these two groups, the

strains are highly similar to one another [1,5].

Probiogenomics was the term recently coined to define whole

genome sequencing of probiotics [19] as a strategy to generate

insights into the functional diversity, health-promoting mecha-

nisms, and evolution of probiotics. This approach has been used in

a relatively small number of probiotics that belong mostly to the

Lactobacillus and Bifidobacterium genera [20,21,22]. Although

complete genome sequences describe all known metabolic

reactions for a specific bacterial strain, genomics does not address

quantitative differences in gene expression and how different genes

and metabolic pathways are interconnected. Transcriptome

analysis effectively complements microbial genomics by enabling

one to map gene expression profiles onto metabolic models

established by genomic DNA sequencing data. Microbial

transcriptomics may yield improved predictions of metabolic

processes and enzymatic pathways present in well-defined

environmental conditions, but interpretations of such metabolic

models are cumbersome [23,24]. Visualization and interpretation

of transcriptomics data is facilitated by the use of genome-scale

metabolic networks for individual bacterial strains [25], but the

generation of pan-metabolic networks for entire bacterial species

and metabolic pathway reconstruction tools for microbial

communities remain largely under development. In this study,

we focused on genome-wide comparisons of two human breast

milk-derived L. reuteri strains, including one established commer-

cial strain (L. reuteri ATCC 55730), with distinct genetic and

functional features in an attempt to explain host survival and

probiotic mechanisms. Metabolic models were created for both

strains L. reuteri 55730 and 6475, and these models highlighted

different probiotic features in each strain. The transcriptomes of

each strain were visualized and compared in different growth

phases in order to explore potential physiologic differences in the

host. A recent study by Van Baarlen et al [26] highlighted the

functional differences in human subjects following administration

of a single L. plantarum strain harvested in two different growth

phases. The metabolic modeling approach in this study revealed

potential differences of functional significance between strains of a

single probiotic species and enabled metabolic pathway prediction

that could be useful for the optimization of survival, persistence

and efficacy of probiotic strains. Although few metabolic pathways

were found to be unique to each strain, genomic comparisons

revealed extensive differences between these strains due to large

genomic rearrangements in 55730, and the presence of large

numbers of genes encoding proteins of unknown function in both

L. reuteri strains 6475 and 55730. Transcriptome comparisons

revealed many differences between these strains when grown in a

semi-defined medium, providing a rational basis for selection of

strains for different human applications, improved commercial

formulations, and nutritional insights that could enhance strain

effectiveness in vivo.

Results

Genome-Wide Comparisons
The genome sequences of strains 55730 and 6475 are relatively

similar in size. The genome of strain 6475 is composed of a single

circular chromosome of 2,039 kb [5], while the genome of strain

55730 is composed of a single chromosome together with 4

plasmids (2,036 kb). The sequences of these plasmids have been

described previously and named as pLR580, pLR581, pLR584,

pLR585, ranging in size from 8.1 to 19.1 kb [8]. Plasmids

pLR581and pLR585 contain tetracycline [tet(W)] and lincosamide

resistance genes [lnu(A)], respectively, have been successively

removed from L. reuteri 55730, generating the daughter strain L.

reuteri DSM 17938, nearly identical in term of physiological

attributes [8]. Plasmids are absents in the 6475 genome. L. reuteri

genomes have a similar average chromosomal GC content (38%)

consistent with previously described L. reuteri strains and other

lactobacilli [21,27]. The GC content of the cured plasmids was

slightly higher, ranging from 39% for pLR581 to 41% for

pLR585.

Both strains possess a core genome containing approximately

1600 genes, and representing approximately 70% of the total

genetic content. However, as many as 289 genes (including

pseudogenes) are present in the genome of strain 6475 and absent

in the genome of strain 55730, while up to 700 genes (including

pseudogenes) are present in the 55730 genome and absent in 6475.

Comparisons of the percentages of the different clusters of

orthologous groups (COG) categories revealed that the genome

of strain 55730 was enriched with respect to genes involved in cell

wall/membrane/envelope biogenesis, transcription, cell motility,

general function, but also in genes of unknown function when

compared to 6475 (Figure S1). The genome of strain 6475 is

slightly enriched in DNA replication/recombination/repair COG

categories. The genome of strain 55730 is characterized by the

presence of more than 400 genes annotated as transposases,

indicating extensive genomic rearrangements (Figure S2) in this

strain. Several gene truncations are present in the 55730 genome

mainly due to the presence of insertional elements.

Deviation from the average GC content (.10% from the

average whole genome GC% content of 39%) indicates that genes

in both L. reuteri genomes may have been acquired by horizontal

gene transfer [21]. A genomic island encoding the propanediol

utilization and vitamin B12 operons with a very low GC content

(GC content close to 25%), is present in both strains 6475 and

55730, as described previously in other L. reuteri strains [21]. A

L. reuteri Metabolic Model
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glycerol kinase gene (GC content of 51%) is also present in both

strains. A neopullulanase in strain 6475, and a dextranase, L-

ribulose-5-phosphate-4 epimerase (GC content of 53%), several

glycosylhydrolases and hypothetical proteins (GC content between

26–29%) predicted to encode the synthesis of exopolysaccharide

(EPS) in strain 55730 have been also probably acquired from other

microorganisms such as Proteobacteria and other lactic acid

bacteria.

Metabolic Modeling of L. reuteri
Based on whole genome comparisons, metabolic models

representative of each group of human-derived strains (6475 and

55730) were also built. The metabolic model of 6475 includes 563

genes, similar to the metabolic model of L. reuteri JCM 1112. The

metabolic model of 55730 includes a total of 623 genes. Compared

to the metabolic model of strain 6475, 109 genes unique to 55730

have been added to the 55730 metabolic model. Compared to the

metabolic model of strain 6475, 51 genes not present in the 55730

genome have been excluded. Overall, this model differs in the

pathways related to carbohydrate metabolism (described in more

detail in the paragraph ‘‘Carbohydrate Metabolism’’), with the

addition of several genes involved in the tricarboxylic acid (TCA)

cycle, polysaccharide transport and exopolysaccharide synthesis in

strain 55730. Strain 6475 was predicted to be able to synthesize 10

amino acids (arginine, alanine, asparagine, aspartate, cysteine,

glutamine, glycine, proline, serine, and lysine). Additional enzymes

involved in amino acid synthesis (threonine synthase for instance)

were present in strain 55730 (described in paragraph ‘‘Probiotics

as Nutrient Factories’’). Both strains were predicted to synthesize

several vitamins de novo including vitamin B12 and folate, but only

strain 55730 has a complete pathway for thiamine biosynthesis

(described in more details in paragraph ‘‘Probiotics as Nutrient

Factories’’). A comprehensive pan-metabolic map in which

common pathways are differentiated from strain-specific pathways

is provided in Figure S3.

Transcriptome Comparisons: Gene Expression Profiling of
both Probiotic Strains

Transcriptomes of strains 55730 and 6475 were monitored at

different time points in order to get an overview of various pathways

active during specific growth phases. Genes expressed and detected

in microarrays were then mapped to the pan-metabolic map of the

two strains for easier visualization and comparison (transcriptome

and genome-based mapping), and are provided in Figures S4 and
S5. Overall, a higher number of genes (n = 643) were differentially

expressed in strain 6475 between the early log phase at 8 h and the

late stationary phase, compared to strain 55730 in which 322 genes

were differentially expressed between these two time points (fold-

change .1.5, P value,0.05). Several metabolic pathways were

more highly expressed in the same growth phase for both strains.

For example, genes involved in fatty acid, peptidoglycan, and

ribosomal synthesis, as well as carbohydrate metabolism were

generally highly expressed during the early log phase (T8). In the

stationary phase (16 h and 24 h), highly up-regulated genes are

linked to stress-related functions or hypothetical proteins. The

largest differences in transcription between the two strains were

observed in pathways related to carbohydrate metabolism, vitamin

B12 synthesis, and conversion of 3-hydroxypropionaldehyde

(reuterin) to 1,3 propanediol in the late stationary phase. In strain

6475, numerous hypothetical proteins were highly expressed in this

phase. Other interesting differences between the transcriptomes of

the two L. reuteri strains include the arginine metabolic pathway.

Arginine degradation via the arginine deaminase (ADI) pathway

was highly expressed in the stationary phase for strain 6475, while in

contrast, arginine biosynthesis was strongly up-regulated in strain

55730. In strain 55730, metabolic pathways strongly up-regulated

in the stationary phase included the purine and glutathione

synthesis pathways.

Carbohydrate Metabolism - Basic Metabolism affecting
Survival and Persistence

The capacity of a probiotic strain to adapt to nutrient

availability and environmental conditions in various microhabitats

of the GI tract is of utmost importance for their residence time and

survival. L. reuteri is a heterofermentative species, which was

confirmed in strain 55730 by the presence of both the

phosphoketolase and Embden-Meyerhof pathways [28]. Both

strains possess several genes that could be deployed to utilize

human milk oligosaccharides (HMOs) (fucose transporter, beta-

galactosidase, glucose-6 phosphate deiminase, deacetylase). Both

genomes encode genes responsible for the degradation of 1,2

propanediol, a major by-product of the anaerobic degradation of

rhamnose and fucose, which are common sugars in HMOs and

plant cell walls, bacterial exopolysaccharides, and glycoconjugates

of intestinal epithelial cells [29].

Metabolic model comparisons of the two L. reuteri strains

highlight the presence of additional pathways for carbohydrate

uptake, degradation, and polysaccharide synthesis in strain 55730

(Figure 1). The presence of 3 subunits of the citrate lyase complex

and a malate dehydrogenase suggests that strain 55730, but not

6475, had a partial TCA cycle, and is able to use citrate as an

energy source (Figure S6). A lactoylglutathione lyase gene that

can convert methylglyoxal into lactate is present only in strain

55730. Other genes present solely in 55730 related to carbohy-

drate metabolism include several glycosyltransferases, glycohydro-

lases and specific carbohydrate transporters for sucrose, trehalose

and mannose. Interestingly, the glycohydrolases in strain 55730

formed a cluster of more than 25 genes that may contribute to EPS

synthesis and is similarly organized compared to EPS-related

genes described in other Lactobacillus strains, including L. rhamnosus

GG. Although the start of this operon is similar in strain 6475, the

presence of an insertional element in strain 6475 after the first 12

genes indicates that genomic rearrangements and gene loss have

occurred. A comparison between the genetic organization of this

EPS cluster in strain 55730, 6475 and L. rhamnosus GG is provided

in Figure 2. Genes related to carbohydrate metabolism in strain

6475, but absent in strain 55730, included a neopullulanase (3

subunits) important in starch degradation, an arabinogalactan

endo-1,4-beta-galactosidase, and an arabinose efflux transporter.

Differences highlighted in the genome sequences of L. reuteri

strains 55730 and 6475 regarding carbohydrate metabolism were

validated experimentally using a range of simple sugars and

prebiotics as sole carbon sources by replacing glucose in the same

medium. Strain 55730 demonstrated enhanced versatility with

respect to proliferation with different carbohydrates as primary

substrates, such as sucrose, raffinose, maltose, lactose, galactose,

and galacto-oligosaccharides compared to strain 6475 (Figure
S7). The last three sugars are major components of human breast

milk, an environment from where both L. reuteri strains were

isolated. Neither 55730 nor 6475 were able to ferment prebiotic

fructans, and only strain 55730 was able to metabolize the

prebiotic lactulose.

Differences in carbohydrate metabolism between the two strains

were also visible based on gene expression patterns in different

growth phases. For instance, a glucose uptake protein and a

glucose hydrolase were highly expressed in 6475 during the early

log phase. In contrast, ribose, ribokinase, and a deoxyribose

transporter were strongly expressed in the early log phase in strain

L. reuteri Metabolic Model
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55730. This result suggests that other carbon sources such as

deoxyribose or ribose derivatives may have been used as

alternative substrates by strain 55730. Confirming previous

observations [28], both the phosphoketolase and Embden-

Meyerhof pathways appear to be active during the logarithmic

and stationary phases of both strains 55730 and 6475. Genes

coding for EPS in 55730 were expressed throughout the different

growth phases.

Stress Resistance Mechanisms - Survival in the Midst of
Physiologic Stressors

Various physiologic stresses affect the survival and functionality

of microbes in the GI tract, and resistance to physiologic stresses is

a desirable feature of probiotics. As examples, probiotics must face

the gastric acidity, the antimicrobial activity of intestinal bile salts,

and oxidative stress. Whole genome analysis demonstrated that

human-derived L. reuteri strains are well equipped to respond to

different sources of physiologic stress. Both strains possess a

choloylglycine hydrolase, an enzyme that catalyzes the hydrolysis

of conjugated bile salts in the intestine; however this gene is

truncated in strain 55730. Growth in presence of bile has been

shown to be effectively impaired in the 55730 strain only (S.

Harpavat, personal communication). Both strains possess an

arginine deiminase that can potentially produce ammonia (an

alkaline compound) and ATP by converting arginine to ornithine

[30]. Moreover, both strains have an arsenal of several genes that

Figure 1. (Poly)saccharide metabolism in L. reuteri ATCC 55730 and ATCC PTA 6475. Metabolic reactions present in both strains are
highlighted in dark grey. Metabolic reactions only present in L. reuteri ATCC 55730 are highlighted in black. Abbreviations are indicated for reactions
present at least in one strain. [e]: extracellular; 6pgg: 6-phospho-beta-D-glucosyl-(1,4)-D-glucose; acgal6p: N-acetylgalactosamine 6-phosphate;
acgala: N-Acetyl-D-galactosamine; ACGALpts: N-acetylgalactosamine PTS; a-gal-D: alpha-D galactose; CELBpts: cellobiose transport via PEP:Pyr PTS;
cellb: cellobiose; CPS_LPL2: capsular polysaccharide linkage unit, LPL specific; CPSS_LPL2: CPS synthase complex, LPL specific; dtdp6dm: dTDP-6-
deoxy-L-mannose; dtdpddg: dTDP-4-dehydro-6-deoxy-D-glucose; dtdpddm: dTDP-4-dehydro-6-deoxy-L-mannose; dtdpglc: dTDPglucose; dttp: dTTP;
f6p: D-Fructose 6-phosphate; fru: D-Fructose; FRUK: fructokinase; g1p: D-Glucose 1-phosphate; G1PTMT: glucose-1-phosphate thymidylyltransferase;
g6p: D-glucose 6-phosphate; g6p-B: beta-D-glucose 6-phosphate; G6P: Glucose-6-phosphate isomerase; gal: D-galactose; gal1p: alpha-D-Galactose 1-
phosphate: GALK2: galactokinase; GALM: aldose 1-epimerase; GALS3: a-galactosidase (melibiose); GALSZ: beta-galactosidase; GALT: galactose-1-
phosphate uridylyltransferase; GALU: UTP-glucose-1-phosphate uridylyltransferase; glc-D: D-glucose; lcts: lactose; LCTSt6: lactose transport in/out via
proton symport; MALP: maltose phosphorylase; malt: maltose; MALT: alpha-glucosidase; man: D-mannose; man1p: D-mannose 1-phosphate; man6p:
D-mannose 6-phosphate; MAN6PI: mannose-6-phosphate isomerase; MANpts: D-mannose transport via PEP:Pyr PTS; melib: melibiose; PGGH: 6-
phospho-beta-glucosidase; PGI: glucose-6-phosphate isomerase; PGMT: phosphoglucomutase; PGMT_B: b-phosphoglucomutase; PMANM:
phosphomannomutase; raffin: raffinose; RAFGH; raffinose galactohydrolase; suc6p: sucrose 6-phosphate: SUCpts: sucrose transport via PEP:Pyr
PTS; sucr: sucrose; TDPDRE: dTDP-4-dehydrorhamnose 3,5-epimerase; TDPDRR: dTDP-4-dehydrorhamnose reductase; TDPGDH: dTDPglucose 4,6-
dehydratase; tre: trehalose; tre6p: alpha’-trehalose 6-phosphate; TREpts: trehalose transport via PEP:Pyr PTS; udpg; UDPglucose; UDPG4E: UDPglucose
4-epimerase; udpgal: UDPgalactose. The red boxes depict compound that can be incorporated in biomass.
doi:10.1371/journal.pone.0018783.g001

L. reuteri Metabolic Model
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can counteract reactive oxygen species, including glutathione,

methionine sulfoxide reductase, peroxiredoxin, peroxidase, thiol

peroxidase, and glutathione disulfide reductase. Arginine degra-

dation via the arginine deiminase pathway was highly expressed in

both strains. Interestingly, this pathway was more highly expressed

during the stationary phase in 6475, while it was more highly

expressed during the early log phase in 55730.

Adhesion Mechanisms - the Bacterial:Host Interface
The adhesion of probiotics to the intestinal mucosal surface

could be a critical prerequisite for exerting beneficial effects to

cognate mammalian hosts [31]. Mucosal adherence is considered

one of the main selection criteria for potential probiotics, as

adherence prolongs the persistence of microbes in the intestine.

Both strains 55730 and 6475 possess a gene encoding a protein

with very strong identity (.99%) to the 26 kDa mucus adhesion

promoting protein (MapA) [32] or collagen binding protein CnBP

[33]. A fibronectin binding protein A encoding gene exists and is

nearly identical (99% identity) in both strains. These sequences do

not contain any signal peptide. Several surface proteins with

LPXTG sortase motifs were identified in both strains: three

homolog encoding proteins with LPXTG sortase motifs were

identified in both strains (two proteins of unknown function, and a

59-nucleotidase). Additionally, two proteins of unknown function

with LPXTG sortase motifs were identified solely in strain 55730,

while four proteins with LPXTG sortase motifs were unique to

strain 6475 (three proteins of unknown function, and a putative 6-

aminohexanoate-cyclic-dimer hydrolase that contains a gamma-

glutamyltransferase domain belonging to the AIG2-like family)

(data not shown). A single gene encoding sortase A (srtA) was

identified in both the 55730 and 6475 genome (.98% identity to

each other).

Probiotics as Nutrient Factories - Nutrition via the
Microbiome

The synthesis of nutrients in the gastrointestinal tract by

probiotics may enhance human nutrition by complementing

dietary components and providing essential compounds for the

human host and the microbiome [34]. Genome analysis revealed

that 55730 and 6475 may be especially apt to synthesize vitamins

essential to humans. In silico genome analysis revealed that both

6475 and 55730 have complete pathways for folate and vitamin

B12 biosynthesis. Complementary analysis using mass spectroscopy

had confirmed the presence of several folate derivatives, including

long-chain folylpolyglutamates, in both strains (D. Saulnier,

personal communication). Furthermore, a complete pathway for

Figure 2. Exopolysaccharide gene cluster comparison in L. reuteri strain 6475, 55730, and L. rhamnosus GG. Genes encoding similar
functions in EPS biosynthesis have a similar color. Genes indicated in dark blue encode proteins putatively involved in the regulation of EPS
production and polymerization. Genes indicated in white encode putative glycosyltransferases. Genes indicated in light blue encode proteins
involved in the biosynthesis of the dTDP-rhamnose precursor. Genes indicated in plain blue encode hypothetical proteins. Genes indicated in dark
grey encode the putative polysaccharide transporter and polymerase. Transposases are indicated by a triangle. Intergenic regions are not
represented at this scale. cpsA: cell envelope related transcriptional regulator; cps1C: polysaccharide biosynthesis protein; GFT: galactofuranosyl-
transferase; GT: glycosyltransferase; HEP: hypothetical extracellular protein; HP: hypothetical protein; P: permease; PS: polysaccharide synthesis
protein; recX: regulatory protein; rfbA: glucose-1-phosphate thymidylyltransferase; rfbB: dTDP-glucose 4,6-dehydratase; rfbC: dTDP-4-dehydrorham-
nose 3,5-epimerase; rfbD: dTDP-4-dehydrorhamnose reductase; rfbF: dTDP-rhamnosyl transferase; rfbP: undecaprenyl-phosphate galactose
phosphotransferase; rgbP: group 2 glycosyl transferase; rmLA1, rmLA2: glucose-1-phosphate thymidyl transferase; rmLB: dTDP glucose 4,6-
dehydratase; rmLD: dTDP-4-dehydrorhamnose reductase; welE: priming glycosyltransferase; welF, welG: glycosyltransferase; welH: a-L-rhamnose a-1,3-
L-rhamnosyltransferase; welI, welJ: glycosyltransferase; wzx: flippase; wzx; non-specific protein-tyrosine kinase; wzx: polysaccharide transporter; wzy:
polymerase.
doi:10.1371/journal.pone.0018783.g002

L. reuteri Metabolic Model
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thiamine (Vitamin B1) production is predicted in strain 55730 only

(Figure 3), and it is the first report of thiamine biosynthesis in

lactobacilli. Metabolic pathways of other vitamins (vitamin K,

biotin, pantotenate, riboflavin, pyridoxine) that have been

described in other bacteria are absent in the genomes of strains

55730 and 6475.

Synthesis of essential amino acids for the host by probiotics is an

interesting avenue that deserves further exploration. Eight amino

acids are generally regarded as essential for humans: phenylala-

nine, valine, threonine, tryptophan, isoleucine, methionine,

leucine, and lysine [35]. Additionally, cysteine (or sulphur-

containing amino acids), tyrosine (or aromatic amino acids),

histidine and arginine are required by infants and growing

children [36,37]. Strain 6475 is predicted to be able to synthesize

10 amino acids (arginine, alanine, asparagine, aspartate, cysteine,

glutamine, glycine, proline, serine, and lysine), including three

amino acids considered to be required by young children. In

addition to the synthesis of these 10 amino acids, the presence of

threonine synthase in strain 55730 suggests that the essential

amino acid, threonine, can additionally be synthesized from the

conversion of homoserine in this strain.

In addition to vitamins and essential amino acids, both L. reuteri

strains produce lactate, an electron sink in the gut that can be

further converted into butyrate, the main carbon source for the

Figure 3. Thiamine biosynthesis pathway in L. reuteri ATCC 55730 and ATCC PTA 6475. The thiamine synthesis pathway is predicted to be
complete in strain 55730 only. Metabolic reactions present in both strains 55730 and 6475 are highlighted in dark grey. Metabolic reactions present
only in L. reuteri ATCC 55730 are highlighted in black. 2mahmp: 2-methyl-4-amino-5-hydroxymethylpyrimidine diphosphate; 4ahmmp: 4-amino-5-
hydroxymethyl-2-methylpyrimidine; 4ampm: 4-amino-2-methyl-5-phosphomethylpyrimidine; 4mhetz: 4-methyl-5-(2-hydroxyethyl)-thiazole; 4mpetz:
4-methyl-5-(2-phosphoethyl)-thiazole; AHMMPS: 4-amino-5-hydroxymethyl-2-methylpyrimidine synthetase; air: 5-amino-1-(5-phospho-D-ribosyl)imi-
dazole; DXPS: 1-deoxy-D-xylulose 5-phosphate synthase; dxyl5p: 1-deoxy-D-xylulose 5-phosphate; g3p: glyceraldehyde 3-phosphate; gcald:
glycolaldehyde; gly: glycine; HETZK: hydroxyethylthiazole kinase; HMPK1: hydroxymethylpyrimidine kinase (ATP); MCOOH: MPT synthase small
subunit MoaD; MCOSH: MPT synthase sulfurylated small subunit (MoaD-SH); MOADCST: MoaD:cysteine sulfur transferase; PMPK: phosphomethylpyr-
imidine kinase; pyr; pyruvate; thm: thiamine; thm[e]: thiamine (extracellular); THMabc: thiamine transport via ABC system; thmmp: thiamine
monophosphate; thmpp: thiamine diphosphate; THZPSN2: thiazole phosphate synthesis; TMDPK: thiamine diphosphokinase; TMPKr: thiamine-
phosphate kinase; TMPPP: thiamine-phosphate diphosphorylase. The red boxes depict compound that can be incorporated in biomass.
doi:10.1371/journal.pone.0018783.g003
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colonocytes, by other species of the microbiome [38]. Similar

amounts (30–40 mM) of lactic acid were produced by strains 6475

and 55730 after 24 h of growth in a semi-defined medium (data

not shown). However, qualitative differences in lactic acid isomers

were found between the two strains. D- and L-lactic acid isomers

were produced in equimolar amounts by strain 6475, while more

L-lactic acid (ratio 3:1) was produced by strain 55730 (data not

shown). This difference may be attributed to the presence of a

second L-lactate dehydrogenase gene in the 55730 genome. L.

reuteri strains can produce the short chain fatty acid (SCFA),

acetate, a substrate that is absorbed in the GI tract and enters the

circulation to be metabolized by peripheral tissues [39].

Production of Antimicrobial Compounds - Survival in the
Microbial Community

Like other probiotics and commensal microbes, L. reuteri

produces antimicrobial factors, including lactate and reuterin.

Strain 55730 produced up to three times more reuterin than strain

6475, but the reason for this difference is unknown [18]. The

genes responsible for reuterin production such as the glycerol

dehydratase (gdh) are part of the propanediol utilization (pdu)

operon. The gene (1,3 pdo) encoding the enzyme responsible for

the conversion of reuterin into 1,3 propanediol is 1,3 propanediol

dehydratase, and this gene is positioned at another location in the

genome. Genome comparisons between the different strains

showed a similar gene organization of the pdu operon. All genes

within this operon were 95–100% identical in strains 55730 and

6475, with the exception of the transcriptional regulator, pocR

(74% identity between each strain), that has been shown to

regulate reuterin production in these strains (Spinler et al, personal

communication). In terms of gene transcription, the pdu operon

was highly expressed throughout the logarithmic and stationary

growth phases in both strains. Although gdh was not differentially

expressed between the two strains, 1,3 pdo was strongly up-

regulated after 12, 16, and 24 h in strain 6475 only (Figure 4).

The upregulation of 1,3 pdo in strain 6475 probably accounts for

the lack of stationary phase enhancement of reuterin production in

this strain.

Besides lactic acid and reuterin, a new antimicrobial compound

derived from the degradation of the protein MapA was recently

reported in a porcine isolate of L. reuteri [40]. The purified 48

amino acid peptide of 5.3 kDa with antimicrobial activity was heat

stable and possessed a strong pI (9.3), physical properties

characteristics of bacteriocins. The processing or degradation of

this peptide is not known. The presence of the same genomic

sequence (100% identity) with the protein described by Bohle et al

in both strains 6475 and 55730 suggests that this new

antimicrobial agent could also be produced by these two strains.

Mechanisms of Immunomodulation
Strains 55730 and 6475 are known to exert opposite

immunomodulatory effects in vitro (see Lin et al [17]). Genome-

wide analysis revealed that the genome of the immunostimulatory

strain 55730 encodes the synthesis of putative compounds (EPS,

cell surface protein containing five repetitive Rib motifs) that can

be pro-inflammatory. Organization of the EPS is similar to an EPS

described in the probiotic L. rhamnosus GG, and this gene complex

has been associated with pro-inflammatory functions [41].

However, a galactose-rich EPS are synthesized by L. rhamnosus

GG, but genomic analysis of the operon suggests that a rhamnose-

rich EPS may be synthesized by strain 55730. Besides this EPS, a

gene encoding a cell surface protein containing five repetitive Rib

motifs is only present in strain 55730. This gene has a strong

similarity to a surface protein in Streptococcus pyogenes thought to

confer protective immunity [42,43].

In silico analysis of anti-inflammatory strain 6475 did not reveal

the presence of genes previously known to play a role in

suppression of immune responses. Previous experiments conduct-

ed with the supernatant of 6475 grown in the same semi-defined

medium and harvested in late stationary phase has demonstrated

that this strain strongly reduced TNF production by lipopolysac-

charide (LPS) activated monocytoid cells [17]. In an effort to focus

on genes more highly expressed during this specific growth phase,

we compared gene expression profiles of strain 6475 in different

growth phases using the same medium and environmental

conditions. We also excluded genes that were strongly up-

regulated in the stationary phase using the immunostimulatory

strain 55730. The most highly expressed genes unique to strain

6475 encode proteins involved in DNA repair, competence, folate

biosynthesis, or proteins of unknown function (Table 1). Pheno-

typic analyses of strains containing a genetic insertion in some of

these genes have validated their predicted role in immunomod-

ulation (D. Saulnier, personal communication).

Discussion

Bacterial species that are considered commensal microbes may

contain a number of beneficial features that enhance host

physiology. Probiotics deserve attention as beneficial microbes

with specific features that promote human health and ameliorate

or prevent disease. However, the functional diversity within

individual bacterial species considered to be probiotics has only

recently been appreciated. In this report, we describe significant

differences in the genome structure and whole genome gene

expression profiles of one probiotic species Lactobacillus reuteri.

Potentially host-beneficial or probiotic features were explored in

detail using the bio-informatic methods of metabolic modeling.

With respect to carbohydrate substrate utilization and metabolism,

one strain, 55730, appears to be significantly more versatile with

practical consequences in terms of host survival and persistence.

Both strains explored in this study appear to have evolved multiple

mechanisms of physiologic stress resistance in the gut. Examina-

tion of the nutrient production phenotype has yielded insights into

the abilities of both strains to produce vitamins and essential

amino acids. These strains have different phenotypes with respect

to antimicrobial agent production, affecting microbe:microbe

interactions in the gastrointestinal tract. Finally, a stark contrast

with respect to features of immumomodulation (TNF stimulation

in the case of 55730 and TNF suppression in the case of 6475) may

depend on multiple differences in genetic features.

Although the two L. reuteri strains belong to the same species,

genome comparisons revealed that only 70% of the genes were

shared between strains 55730 and 6475. The genomic and

functional diversity within a single probiotic species emphasizes

the need for strains to be clearly distinguished and verified in

experimental studies. Meta-analyses of probiotics in clinical trials

have often ‘‘lumped’’ species and strains together with the result

that effects may be difficult to interpret [44]. The two metabolic

models described in this report share many overlapping genes

(more than 90% of the genes), but many genes unique to strains

55730 or 6475, lack known metabolic functions and may be

entirely absent from current metabolic models. Most genes

included solely in one of the strains were probably acquired by

horizontal gene transfer due to differences in average % GC

content between these genes and the harboring genomes. The

presence of these genes may confer specific advantages in

changing environments as documented in other bacteria [45].
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Extensive evidence of horizontal gene transfer by bacteriophages

or conjugation has been documented in Lactobacillales using

genomic comparisons, and has been shown to be important for

specific niche adaptation in probiotic bacteria [19]. Pathways

rapidly acquired in prokaryotes are usually related to cofactor/

vitamins, glycans, and environmental information processing/

signaling pathways [46]. These observations seem to apply to L.

reuteri strains. For example, L. reuteri 55730 is predicted to

metabolize thiamine, synthesize several polysaccharides, and

possesses additional genes in the TCA cycle compared to 6475.

The presence of these genes in the TCA cycle in L. reuteri has been

demonstrated indirectly previously [47]. In this study, Kaneuchi et

al tested 39 strains and 59% of these strains were able to produce

succinate from citrate, confirming that this feature is common in

this species. Citrate is present in substantive amounts in the human

breast milk and could provide a competitive advantage to this

strain in this environment, more specifically at the time of delivery

when citrate concentration increases [48].

In silico genome analysis revealed that both strains 55730 and

6475 possessed common factors attributed to survival in the GI

tract. The role of genes involved in bile acid resistance have also

been confirmed using gene expression and targeted mutagenesis in

strain 55730 [49]. The presence of a complete choloylglycine

hydrolase gene in strain 6475 suggests that this gene could be an

additional asset to counteract the antimicrobial activity of bile

salts, but that strain 55730 may be more susceptible to bile salts or

may contain some other feature of bile salt resistance. Genome

analysis suggested that these strains may have a competitive

advantage in human breast milk by being able to utilize sugars

commonly found in milk (lactose, galactose, galacto-oligosaccha-

rides). Their genomes encode several genes that could participate

in the (partial) degradation of complex HMOs, as demonstrated

previously for bifidobacteria isolated from the same environment

[20]. Although degradation of complex HMOs by L. reuteri strains

has not been studied, this metabolic feature is biologically relevant

as L. reuteri has been found in the breast milk of 15% of nursing

mothers worldwide [3,50]. Transcriptome analysis has demon-

strated that the products of degradation of nucleic acid hydrolyis,

such as ribose, are also found in breast milk and may be an

important carbon source for certain L. reuteri strains. Products of

degradation of nucleic acid metabolism may also be a major

source of these sugars in vivo, generated from bacterial lysis or the

shedding of enterocytes degraded by bacterial or host nuclease.

The intake of ribose has been confirmed experimentally for the

strain 55730 [8] and 6475 (S. Roos, unpublished results).

Adhesion to the mucosal surface of the GI tract may improve

the beneficial effects of probiotics for the host. Both strains 55730

and 6475 possessed a gene encoding a protein with homology to a

mucus adhesion-promoting protein in L. reuteri R104 [32]. Purified

MapA protein was able to bind to Caco-2 human colonocytes, and

this binding inhibited the adhesion of several L. reuteri strains

(including L. reuteri DSM 20016, highly similar to strain 6475) in a

concentration-dependent manner [51]. A gene encoding sortase A

could facilitate cell adhesion by promoting cell surface expression

of different proteins, and this gene was identified in both strains

55730 and 6475. This enzyme might be essential to anchor cell

Figure 4. Transcription comparisons of genes involved in reuterin production and conversion in L. reuteri strains overtime. 12 h
versus 8 h (dark grey), 16 h versus 8 h (light grey), and 24 h versus 8 h (medium grey). Strains were grown in a semi-defined medium in anoxic
conditions at 37uC.
doi:10.1371/journal.pone.0018783.g004
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surface proteins that contain the sorting signal LPXTG motif, as

shown previously for several microorganisms [52,53]. In strain

55730, a complex EPS is predicted to be synthesized, and may

improve adherence and gut colonization as elegantly demonstrat-

ed for other indigenous microbes such as Bacteroides fragilis [54].

Further characterization of these proteins may expand our

understanding of how probiotic strains adhere to intestinal

epithelial cells and mucins.

In humans, it has been estimated that the liberation of energy by

the commensal microbiota is approximately 10% of the energy

absorbed in the diet, but it is highly dependent upon the nature of

the diet [55]. Both strains were predicted to produce essential

nutrients for the host (amino acids, vitamins). Previous studies have

demonstrated that other L. reuteri strains such as JCM 1112 are

able to synthesize vitamin B12, a rare characteristic among lactic

acid bacteria [56]. This synthesis was explained by the presence of

a large genomic island containing more than 25 genes for

cobalamin synthesis that was probably transferred from gram-

negative bacteria [21,57]. A similar organization of this vitamin

operon also exists in strains 6475 and 55730, suggesting that both

strains are able to produce this metabolite. In silico genome analysis

revealed that both 6475 and 55730 have complete pathways for

folate biosynthesis. Preliminary studies in our laboratory have

shown that several folate derivatives can be effectively produced by

L. reuteri 6475 and 55730. Interestingly, genome analysis in strain

55730 highlighted the presence of a complete pathway for

thiamine biosynthesis. Further studies must confirm whether

thiamine is effectively produced and secreted in this strain.

Thiamine biosynthesis has been well studied in other prokaryotes,

including E. coli, Salmonella, and Bacillus subtilis [58], and complete

pathways have been described in bifidobacteria isolated from

human breast milk [20]. However, thiamine biosynthesis has not

been described in Lactobacillus species, but it does not seem that the

thiamine synthesis pathway in strain 55730 has been acquired

from other bacteria. The genes that are part of the thiamine

synthesis pathway in 55730 are not located in a single operon, but

in multiple locations across the genome. Some of the genes of this

pathway seem to have been lost in the 6475 strain. Predicted

pathways for the production of essential amino acids were also

identified, which could enhance the beneficial effects of probiotic

strains. Both strains 55730 and 6475 possessed a pathway for the de

novo synthesis of the essential amino acid lysine. It has been

Table 1. Genes significantly up-regulated in the stationary phase (24 h) compared to early log phase (8 h) for L. reuteri ATCC PTA
6475.

Microarray Probe ID Protein ID Name
Fold-change 24 h/
8 h*

Protein with unknown function

NT01LR0789 GI:227531231 Hypothetical protein 43.3

NT01LR0977 GI:227532502 Hypothetical protein 32.9

NT01LR1311 GI:227532590 Hypothetical protein 29.0

NT01LR0293 GI:227532398 Hypothetical protein 19.3

NT01LR1962 GI:227532487 Hypothetical protein 15.0

NT01LR0916 GI:227531908 Hypothetical protein 11.7

Competence

NT01LR0625 GI:227530733 ATP-dependent ClpP protease proteolytic subunit 24.7

NT01LR1937 GI:227530859 Competence protein CoiA-like family 15.3

NT01LR1936 GI:227530860 Possible dithiol-disulfide isomerase 13.6

Vitamin and cofactor metabolism

NT01LR1511 GI:227532295 Putative tetrahydrofolate synthase 20.6

NT01LR1371 GI:227532039 Cobalamin biosynthesis protein CbiD 14.5

NT01LR1375 GI:227532035 Possible threonine-phosphate decarboxylase (EC:4.1.1.81) 12.0

NT01LR1372 GI:227532038 Cobalt-precorrin-8X methylmutase 11.6

DNA repair

NT01LR1510 GI:227532296 DNA repair protein radC 18.1

Carbohydrate metabolism

NT01LR1312 GI:227532591 Ribose operon repressor 17.3

Prophage

NT01LR1675 GI:227531144 Hypothetical protein 15.7

NT01LR1673 GI:227531141 Conserved hypothetical protein 15.6

NT01LR1676 GI:227531146 Prophage Lp1 protein 18 15.1

NT01LR0827 GI:227531270 Hypothetical extracellular protein 12.7

Thymidine metabolism

NT01LR1345 GI:227532065 thymidine kinase 15.6

*Only genes significantly up-regulated more than 11.5-fold are represented. The genes indicated were not present or not differentially expressed at this phase of growth
in L. reuteri strain ATCC 55730. The strains were grown in a semi-defined medium at 37uC in anoxic conditions.
doi:10.1371/journal.pone.0018783.t001
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estimated that between 1–20% of circulating plasma lysine,

urinary lysine and body protein lysine is derived from intestinal

microbial sources [59] Both strains possess a pathway for the de

novo synthesis of arginine, another essential amino acid for human

infants. Essential nutrients and vitamins that can be produced by

probiotics may warrant further studies and consideration as

dietary strategies for vitamin- or amino acid-deficient populations.

Furthermore, synthesis of lactate and acetate by L. reuteri can

contribute important energy sources in the gastrointestinal tract,

the conversion of lactate or acetate by the gut microbiota can lead

to the production of butyrate and its trophic effects such as

increased intestinal epithelial cell proliferation [60].

Production of antimicrobial compounds such as reuterin may

facilitate prevention of gastrointestinal infections. A recent study

highlighted that most human-derived L. reuteri strains are able to

produce reuterin, in contrast to most L. reuteri strains isolated from

rodents [5]. Whether reuterin synthesis provides a competitive

advantage to human-derived L. reuteri strains remains to be

determined. When cultured in a rich medium, strain 55730

produces up to three times more reuterin than 6475, both in

planktonic culture and biofilms [13,18]. By transcriptome analysis,

all genes of this operon were expressed, but no differences in the

transcription of pocR and gdh were observed. These results suggest

that the propanediol utilization operon is expressed when L. reuteri

strains are grown in the absence of glycerol, although production

of reuterin does not occur when this compound is absent [61].

These findings suggest that this pathway may have other roles in L.

reuteri. Additionally, the gene encoding the enzyme thought to be

responsible for reuterin conversion to 1,3 propanediol was strongly

up-regulated after 12, 16, and 24 h in strain 6475, but this gene

induction was not observed for 55730. Differences in 1,3 pdo

expression might explain differences of reuterin production

between the two L. reuteri strains when grown in rich media.

Mechanisms of immunomodulation by probiotics is an area of

research that has received ample attention [62], and immuno-

modulatory features distinguished strains 55730 and 6475 [16,17].

Strain 55730 strongly stimulates TNF-production in LPS-activated

monocytoid cells, while strain 6475 suppresses TNF-production

under the same conditions. Using whole genome comparisons with

well-characterized bacterial immunomodulins, putative genes and

operons responsible for differences in immunomodulation between

strains 55730 and 6475 were identified. Genes encoding the

putative synthesis of EPS with a comparable organization in other

lactobacilli warrant further characterization. The EPS is predicted

to be constituted of repetitive units constituted of rhamnose,

galactofuranose, galactopyranose, and N-acetylglucosamine. EPS

and capsular polysaccharides have been characterized in other

probiotic lactobacilli and linked to the stimulation of the immune

system [63,64,65]. EPS produced by L. rhamnosus RW-9595M

stimulates TNF production by macrophage-like RAW 264.7 cells

[66], and shares strong similarities of organization with EPS in L.

rhamnosus GG and L. reuteri 55730. Genes encoding EPS were

expressed in strain 55730 throughout different growth phases in a

semi-defined medium. In contrast, no candidate genes related to

the global immunosuppresion or TNF inhibition were identified in

the genome, transcriptome or metabolic model of strain 6475.

Characterization of these candidate genes and their possible roles

in immunomodulation is currently ongoing.

Genomic analysis, transcriptomic comparisons, and metabolic

model reconstruction of two different human-derived L. reuteri

strains provide a comprehensive overview of the metabolic

capacity of one probiotic species. This work has important

implications for the fields of probiogenomics and metagenomics,

and functional studies of reference genomes and the mammalian

microbiome will require deeper insights into metabolic models

based on patterns of gene expression. In light of the explosion of

metagenomics data as a result of global collaboration in the

IHMC, metabolic reconstruction of an indigenous microorganism

such as L. reuteri will lead investigators to understand the multiple

metabolic pathways and functional capacity of a single commensal

species and potential interactions between beneficial microbes and

the human host. The many differences highlighted by comparisons

of two groups of L. reuteri strains isolated from distinct niches

(breast milk, gastrointestinal tract and the oral cavity) generate

more questions about the ubiquity and possible mechanisms of

probiosis in different body sites. Expression of specific genes and

activation of specific metabolic pathways might allow microbes to

thrive and survive in different environments. Computational

reconstruction and analysis of cellular models of microbial

metabolism is one of the great success stories of systems biology,

and much more needs to be learned from the many microbial

components of mutualistic microbiomes that inhabit mammals.

Materials and Methods

Whole Genome Sequencing of L. reuteri Genomes
As part of the HMP, four human-derived L. reuteri strains (L.

reuteri ATCC PTA 6475 = MM4-1A, L. reuteri ATCC PTA

4659 = MM2-3, L. reuteri ATCC 55730 = SD2112, and L. reuteri

CF48-3A) were sequenced at the Human Genome Sequencing

Center at Baylor College of Medicine as described previously

Nelson et al [1]. The genomic DNA was prepared from a single

bacterial isolate. The sequence generated included at least 10-fold

coverage of 454-FLX (Roche, Lifesciences, Brandford, CT)

fragment data, at least 8-fold clone coverage of 454-FLX paired-

end data, and at least 10-fold coverage of Illumina (Illumina, San

Diego, CA) data. The 454 sequence was assembled using the 454

Newbler assembler version 2.3. The contigs from the Newbler

assembly were aligned to the Illumina/Solexa data with mapping

tools such as Mosaic and Crossmatch and these data were used for

error correction for this version of the draft assembly. This draft

assembly meets the HMP draft quality standards (more than 90%

of the genome is included in contigs, more than 90% of a core set

of bacterial genes are found with .30% identity and .30%

length; more than 90% of the bases in the assembly have more

than 5-fold sequence coverage, the contig N50 length is greater

than 5 kb, the scaffold N50 length is greater than 20 kb, and there

is less than 1 gap per 5 kb. Annotation was added to the contigs in

April 2009. All whole genome shotgun sequences were deposited

in Genbank (L. reuteri ATCC 55730: Genbank accession number

ACGW00000000.2, improved assembly high quality draft,

genome coverage = 636, 14 contigs; L. reuteri CF48-3A: Genbank

accession number ACHG00000000.1.2, draft assembly, genome

coverage = 606, 244 contigs; L. reuteri ATCC PTA 6475: Genbank

accession number ACGX00000000.1, draft assembly, genome

coverage = 636, contigs; L. reuteri ATCC PTA 4659: Genbank

accession number ACLB00000000.1, draft assembly, genome

coverage = 376, 167 contigs).

Whole genome sequences of human-derived L. reuteri strains

were compared using the Integral Microbial Genome (IMG)

Platform (http://img.jgi.doe.gov/) [67]. IMG generated annota-

tion consists of protein family and domain characterization based

on Clusters of Orthologous Groups (COG) [68], Pfam [69],

TIGRfam and TIGR role categories [70], and Interpro domains

[71]. LPXTG motifs were searched in the complete genome of L.

reuteri JCM1112 using the Augur software (http://bioinfo.mikrobio.

med.uni-giessen.de/augur), and BlastP [72] was then run against

the 6475 genome. LPXTG motifs have been previously described
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in strain 55730 [42]. A list of all the L. reuteri strains mentioned in

this study is provided in table 2.

Metabolic Model Construction of Two Different Probiotic
Strains

The in silico reconstruction of the genome-scale metabolic

networks of two human-derived L. reuteri strains was performed by

implementing the AUTOGRAPH method [73]. This semi-

automatic method combines orthology predictions with available

curated metabolic networks to infer gene-reaction associations.

Using this same methodology, a metabolic model was recently

constructed for the type strain L. reuteri JCM1112 [56], based on

the networks of L. plantarum [74], Lactococcus lactis [75], Bacillus

subtilis [76], and E. coli [77]. Due to the obvious close proximity

between all human-derived L. reuteri strains relative to members of

different taxa, the manually curated metabolic network of

JCM1112 was used as a template for the development of the

genome-scale models for L. reuteri ATCC PTA 6475 and ATCC

55730. Pair-wise orthologous relationships between the query

species and JCM1112 were established by comparing their

genome sequences (retrieved in May 2009 from GenBank),

resorting to the stand-alone version of Inparanoid (version 3.0)

using BLOSUM80 as the substitution matrix [78]. The original

gene-reaction association of the genes considered to be ortholo-

gous between the two strains was then transferred to the

corresponding genes of the query species.

The fully automated version of the model was further curated

by manual inspection of the list of gene-reaction associations,

incorporating experimental evidence regarding carbohydrate

utilization. With this purpose, the growth of L. reuteri 55730 and

6475 on different carbohydrates was measured for 24 h in

LDMIII at 600 nm (OD600 nm) using commercially available

sugars and well established prebiotics as previously described [79].

Simple carbohydrates tested consist of glucose, sucrose, lactose,

raffinose, fructose, arabinose, maltose, mannose, arabinogalactan,

starch and 1,2 propanediol (Sigma, St Louis, MO). Growth on

following prebiotics as the sole carbon source were also tested:

fructooligosaccharides (FOS, BeneoTM P95, Orafti, Belgium, 5%

glucose, fructose and sucrose, degree of polymerization [DP] = 2–

10), short-chain fructooligosaccharides (ScFOS, Actilight 950P,

Beighin-Meiji, France, 5% glucose, fructose and sucrose, DP = 2–

5), high-molecular weight inulin (BeneoTM HP, Orafti, 100%

inulin, average DP = 23), galactooligosaccharides (Vivinal GOS,

Friesland Food, partially dried by evaporation to form a syrup

containing approximately 45% galactooligosaccharides, DP = 3–8,

15% lactose, 14% glucose, and 1% galactose).

The comparison of the newly obtained genome-scale metabolic

models for L. reuteri ATCC PTA 6475 and ATCC 55730, along

with the visualization of experimental data was carried out within

the SimPhenyTM software platform (Genomatica, Inc., San Diego,

CA).

Cell Harvesting and RNA Isolation for Transcriptome
Comparisons of L. reuteri Strains

Culture stocks of L. reuteri 55730 or 6475 stored at 280uC were

first cultured for 24 h on MRS agar at 37uC under anaerobic

conditions (80% N2, 10% H2, and 10% CO2, MG-500,

Microbiology International, Frederick, MD). A single colony was

resuspended and cultured overnight in MRS broth (16–18 h).

Bacteria were then resuspended to a concentration of ,1.06108

cells/mL in 10 mL of a semi-defined medium LDMIII with 10 g/

L of glucose as sole carbon source [13] and were incubated

anaerobically up to 24 h. Samples were taken after 8 h (early

exponential phase), 12 h (late exponential phase), 16 h (early

stationary phase) and 24 h (late stationary phase). Optical density

at 600 nm was measured using absorbance spectrometry to

estimate growth phase. The experiments were performed in

triplicate for each strain. A 10 mL cold fixative solution (100% [v/

v] cold methanol) was added to quickly halt transcription. Samples

were then centrifuged (10 min at 1,5006 g), and the pellets were

stored at 280uC prior to RNA isolation.

Frozen pellets were thawed on ice, and then resuspended in

STE buffer (6.7% sucrose, 50 mM Tris [pH 8.0], 1 mM EDTA),

harvested by centrifugation at 40006 g for 10 min, and

resuspended in 100 ml of STE containing 5 ml of mutanolysin

(5 U/ml, St Louis, MO). Cells were incubated at 37uC for 2 h.

RNA was extracted using the RNeasy kit (Qiagen, Valencia, CA),

and DNA was removed by adding RNase-free DNase (Qiagen,

Valencia, CA). RNA concentrations were measured at 260 nm

with the ND-1000 spectrophotometer (NanoDrop Technologies

Inc., Wilmington, DE). The A260/A280 ratio was measured to

determine the relative purity of the RNA. RNA samples were

analyzed by 1% agarose gel electrophoresis to assess RNA quality.

For expression analyses, three biological replicates were

performed with dye-swap experiments for each comparison.

Following mRNA isolation, cDNA synthesis, labeling, and

hybridization were performed as previously described [80].

L. reuteri Strain-Specific Microarrays and Data Analysis/
Visualization

Strain-specific two-color microarrays (‘‘55730’’ or ‘‘6475’’ arrays)

were used to compare the transcriptome of each strain at different

phases of growth. The 55730 array has been described previously

[49], and is based on the draft genome sequence of L. reuteri 55730

[42]. In brief, oligonucleotides (60-mers) were designed and

synthesized for 1,864 open reading frames of this strain. The same

technology was used for the 6475 array, and oligonucleotides (60-

mers) were designed and synthesized for 1,966 open reading frames

Table 2. List of bacterial strains that have been used in this study.

Name Host Origin Isolation source Clade according to Oh et al [6]

L. reuteri ATCC 55730 Human South American Breast milk VI

L. reuteri CF48-3A Human Europe Feces VI

L. reuteri DSM 17938 Human (daughter strains of L. reuteri ATCC 55730) (VI)

L. reuteri ATCC 4659 Human Europe Breast milk II

L. reuteri ATCC PTA 6475 Human Europe Breast milk II

L. reuteri JCM 1112 Human Europe Feces II

doi:10.1371/journal.pone.0018783.t002
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using OligoArray 1.0 software. Oligonucleotide design, synthesis,

and array construction were performed at the Research Technology

Support Facility at Michigan State University, East Lansing, MI.

GenePix Pro 4.0.12 software was utilized for image analysis of the

microarrays. We performed 18 arrays to study the transcriptome of

each strain at different phases of growth. Information regarding the

microarray platforms can be found at the NCBI Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under GEO

platform GPL6366 for the 55730 array or GPL7541 for the 6475

array. The complete set of microarray data for 55730 and 6475 can

be found under the GEO series accession GSE24570 and

GSE24415 respectively, or under the superseries GSE24572.

Data from custom microarrays for 55730 or 6475 were analyzed

using R/Bioconductor (http://www.bioconductor.org/). The raw

data in the .gpr files was normalized using statistical algorithms

specifically designed for two color arrays implemented in Biocon-

ductor packages of R. The raw signal intensity data was background

corrected using the moving minimum algorithm. Print-tip loess is

applied for Within Array normalization and quantile normalization

is used for Between Arrays to normalize between chips. An

expression value, in log2-scale, is obtained for each channel in the

custom two color arrays. Each set (55730, 6475) was normalized

and in the case of the comparison analysis, a combined expression

set was generated. Null hypotheses were tested for each experiment.

The null hypothesis states that there are no significant changes in

gene expression between the treatment pairs. This comparison was

done using Limma, which is also implemented in R/Bioconductor.

It uses an empirical Bayesian method to estimate the variance in

gene expression. Comparisons were made between the reference

samples at times T8 and T12, T16, T24, respectively.

A comparison analysis was also run in the same manner as

above, with the ‘‘between array normalization’’ that also excluded

probe sets that were not common to both chips, thereby

generating a combined expression set. The null hypotheses were

tested using T8 as a common reference and contrasts were made

at T12 or T16 or T24 between strain 55730 and strain 6475. The

resulting list was filtered further using Microsoft Access to exclude

any probe set with an identity score less than 30%. Scored lists

were filtered again by adjusted p-value (,0.05) and fold change

(1.5) and probe sets not meeting these criteria for both strains were

excluded yielding a list of 910 probe sets.

The protein sequences of the two strains were linked with the

probes (60 mer-sequences) of the strain-specific 55730 or 6475

microarray using the ‘‘many to many blasts’’ feature in

DNAnnotator (http://bioinfo.bsd.uchicago.edu/blastall.htm).

Genes that were significantly up-or down-regulated were

visualized on the genome of L. reuteri JCM112 using ERGOTM

(Integrated Genomics Inc, Arlighton Heights, IL) for both 55730

and 6475 microarrays, using a cut-off of 80% identity and

similarities with the probe sequences. These same genes were also

visualized in the metabolic model using SimPheny (Genomatica,

Inc., San Diego, CA).

Supporting Information

Figure S1 Comparison of genes representing different
clusters of orthologous groups (COG) in L. reuteri ATCC
55730 and L. reuteri ATCC PTA 6475. 1592 genes (69.2% of

the genome) had a COG classification in L. reuteri ATCC 55730

(light grey), and 1495 genes (78.6% of the genome) in L. reuteri

ATCC PTA 6475 (dark grey).

(TIF)

Figure S2 Whole genome comparisons of L. reuteri
ATCC 55730 and ATCC PTA 6475. Comparisons were

completed using the Artemis Comparison Tool (ACT) in IMG.

For this analysis, the scaffolds of the 55730 and 6475 genome were

combined and the chromosome replication initiation site was

identified. Visual genome comparisons of the genomes of strains

55730 and JCM1112 were prepared by using ACT (BLASTN

with a score cutoff of 1900, pair-wise genomic comparisons). Both

sequences are read left to right from the predicted origin of

replication. Homologous regions within the two genomes

identified by reciprocal BLASTN are indicated by red (same

orientation) and blue (reverse orientation) bars.

(TIF)

Figure S3 Pan-metabolic model of L. reuteri ATCC
55730 and ATCC PTA 6475 based on whole genome
sequences. Metabolic reactions represented in yellow are present

in both strains. Metabolic reactions represented in green are only

present in L. reuteri ATCC PTA 6475. Metabolic reactions

represented in red are only present in L. reuteri ATCC 55730.

The vitamin B12 synthesis pathway is present in both strains but

not represented on the map.

(TIF)

Figure S4 Transcriptome comparison of L. reuteri
ATCC 55730 in the early log and late stationary phase.
L. reuteri was grown in LDM at 37uC in anoxic conditions.

Metabolic reactions in red represent genes significantly up-

regulated (.1.5 fold, P,0.05) in the early log phase (8 h).

Metabolic reactions in green represent genes significantly up-

regulated (.1.5 fold, P,0.05) in the late stationary phase (24 h).

N = 6. The vitamin B12 synthesis pathway is not represented on

this map.

(TIF)

Figure S5 Transcriptome comparison of L. reuteri
ATCC PTA 6475 in the early log and late stationary
phase. L. reuteri was grown in LDM at 37uC in anoxic conditions.

Metabolic reactions in red represent genes significantly up-

regulated (.1.5 fold, P,0.05) in the early log phase (8 h).

Metabolic reactions in green represent genes significantly up-

regulated (.1.5 fold, P,0.05) in the late stationary phase (24 h).

N = 6. The vitamin B12 synthesis pathway is not represented on

this map.

(TIF)

Figure S6 Prediction of additional enzymes tricarbox-
ylic acid (TCA) pathway in L. reuteri ATCC 55730 and
partial TCA pathway in L. reuteri ATCC PTA 6475. Genes

encoding the enzymes represented in blue are present in both L.

reuteri ATCC 55730 and L. reuteri ATCC PTA 6475. Genes

encoding the enzymes represented in orange are only present in L.

reuteri ATCC 55730. EC:1.1.1.37: malate dehydrogenase;

EC:1.2.4.1; pyruvate dehydrogenase (acetyl-transferring);

EC:1.3.99.1: succinate dehydrogenase; EC:1.8.1.4: dihydrolipoyl

dehydrogenase; EC:2.3.1.12: dihydrolipoyllysine-residue acetyl-

transferase; EC:4.1.3.6: citrate (pro-3S)-lyase (3 subunits repre-

sented by 3 different genes in L. reuteri 55730); EC:4.2.1.2:

fumarate hydratase. Figure was obtained by projecting genes

present in the TCA pathway in strain 55730 and 6475 via the

Integral Microbial Genomes Platform: http://img.jgi.doe.gov.

(TIF)

Figure S7 Final OD600 nm reached by L. reuteri ATCC
55730 (light grey) and L. reuteri ATCC PTA 6475 (dark
grey) after 24 h of growth in LDM medium with 20 g/L
of different carbon source. Strains were grown in anoxic

conditions at 37uC. FOS: fructooligosaccharide; ScFOS: fructoo-

ligosaccharides; Raftiline HP: long-chain inulin. Error bars
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represent standard deviations. Data represent the average of 3

biological replicates.

(TIF)
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