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Abstract
Complex network theory has been used, during the last decade, to understand
the structures behind complex biological problems, yielding new knowledge in
a large number of situations. Nevertheless, such knowledge has remained
mostly qualitative. In this contribution, I show how information extracted from a
network representation can be used in a quantitative way, to improve the score
of a classification task. As a test bed, I consider a dataset corresponding to
patients suffering from prostate cancer, and the task of successfully prognosing
their survival. When information from a complex network representation is
added on top of a simple classification model, the error is reduced from 27.9%
to 23.8%. This confirms that network theory can be used to synthesize
information that may not readily be accessible by standard data mining
algorithms.
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Introduction
Constructing prognostic models for different types of cancers is 
a problem that is attracting increasing attention, due to the high 
impact that these models may have in the clinical treatment. This 
is clearly related to the movement of personalized medicine (Jain, 
2005; Samani et al., 2010; Van’t Veer & Bernards, 2008). As more 
and more data describing human biology are available, both for 
healthy and pathological conditions, coming from heterogeneous 
sources (e.g. from all the -omics fields), there is a well-founded 
hope that such data may be of help to improve the treatment of 
individual patients, personalizing the way drugs and therapies are 
provided.

When one ought to extract a model from a collection of data, the 
customary solution is to resort to data mining algorithms. In the 
case of cancer prognosis, this has resulted in the development of 
numerous models - see, for instance, Alexe et al., 2006; Gupta  
et al., 2011; Halabi et al., 2003; Halabi et al., 2014; Mangasarian & 
Wolberg, 2000 and Quaranta et al., 2005 for a few examples. Data 
mining nevertheless presents some drawbacks, the most important 
of which is the way features are analyzed. Elements are considered 
individually, or by being pairwise combined; yet, data mining does 
not provide a way to create a global picture of the available data.

In the last decade, a novel solution has been proposed. The  
complex network theory provides an elegant way for representing 
the structure created by the interactions between the elements of a 
complex system (Boccaletti et al., 2006; Strogatz, 2001). The result 
is encoded in an adjacency matrix, which can then be analyzed  
by means of multiple metrics (Costa et al., 2007). Applications  
span from the characterization of social networks, to the internet  
or the human brain (Costa et al., 2011).

In this contribution, I explore the possibility of using complex 
networks as an instrument for improving a model of survival prog-
nosis of patients with metastatic castrate resistant prostate cancer 
(mCRPC) treated with docetaxel. In order to achieve this, I compare 
two models. The first one is a classification model, i.e. classifying 
between surviving and non-surviving patients, which only uses raw 
features like baseline lab results and patient vital signs. The second 
one combines such information with structural metrics extracted 
from a network representation of the same data. The hypothesis 
tested here is that complex networks should synthesize information 
present in the raw data in a new way that should reflect an improved 
classification score (Zanin et al., 2014b).

The paper is organized as follows: first, I describe the main methods 
of the analysis, with a special focus on the networks reconstruction 
methodology and the metrics used for their characterization, and 
the dataset considered here; afterwards, the results obtained are pre-
sented, i.e. the comparison of the two classification models; finally, 
some conclusions are drawn.

Methods
Network reconstruction
Reconstructing a network representation of a given system entails 
two steps. First, one needs to define the elements of such a system. 

This is usually constrained by the type of available data; thus, in 
this case, the nodes of the network are going to correspond to the 
different available biomarkers.

Second, one should detect when two of such elements are connected 
by some kind of relationship. If a priori knowledge is available, e.g. 
information about how different metabolites or proteins are con-
nected in a pathway, such information can directly be mapped into 
the network. Alternatively, if a time evolution (i.e. a time series) 
is available for each element, functional links can be established 
between them, by means of metrics like correlations or causalities. 
Note that this last option entails two important problems: a time 
evolution should be available, which is not straightforward in the 
case of biomedical analyses; and that functional links represent 
the “co-evolution” of factors, while in some cases, and specifi-
cally in the diagnosis of a disease, it is more interesting to detect  
“deviations” from the expected (healthy) behavior.

Recently, a new methodology for network reconstruction has been 
proposed, which solves the two aforementioned problems (Zanin 
& Boccaletti, 2011; Zanin et al., 2014). Starting with a set of 
scalar values, pairs of elements are analyzed by firstly detecting 
if a standard relation is present between them in a set of control 
subjects; afterwards, data corresponding to new subjects are com-
pared with such relation, and a link is created between two nodes if 
they present an abnormal deviation. The resulting object is called 
a parenclitic network, named after the Greek term for “deviation”, 
originally used by the Greek philosopher Epicurus to designate 
the spontaneous and unpredictable swerving of free-falling atoms 
(Zanin et al., 2014).

In mathematical terms, suppose n healthy subjects are described 
by a vector of features, such that the i-th of them is represented 
by fi = ( f i,1, fi,2, ... , fi,nf

). All the n
f
 features are mapped into nodes 

of the network, which is now described by an adjacency matrix 
Anf × nf 

.  As the final aim is to construct a network for each subject 
under study, suppose a new subject j, with its corresponding vector 
f
j
, is introduced in the system. The reconstruction process should 

analyze each pair of features, denoted by k and l, to understand if 
they deviated from the expected (healthy) behavior. For the sake of 
simplicity, in this work we consider that the healthy relation can be 
obtained as a linear regression between both features:

  f.,l
 = αk,l 

+ βk,l f.,k + ∈k,l.

Here, f.,k represents the vector of values of feature k for all healthy 
subjects, and αk,l and bk,l the two parameters of the best linear fit. 
Additionally, ∈k,l is a vector containing all fit errors; note that a 
linear relation may not describe well the relationship between k and 
l, and that this vector will be key to understand its statistical signifi-
cance. Now, suppose a new subject h is available, for which their 
health condition is unknown, and for which one wants to create the 
corresponding network representation. A link between nodes k and 
l is then created, with a weight equal to its distance from the previ-
ously detected normal relation:

( )– k k, ,l l h,kh,l
k ,l

k ,l

f f
w ,

α +β
=

σ
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being σk,l the standard deviation of ∈k,l. In other words, wk,l repre-
sents the Z-score of the distance of the subject h with respect to the 
normal behavior of features k and l - large values of wk,l, both posi-
tive and negative, indicate that the subject under analysis presents 
an abnormal behavior, which may be symptomatic of a disease. 
When the process is repeated for all pairs of features, the result is a 
parenclitic network for each patient.

Network interpretation
Intuitively, healthy subjects should be associated with random-like 
networks, as strong links may appear due to the intrinsic noise of 
biological processes, but should not form coherent structures; on 
the other hand, patients should present networks with non-trivial 
topologies. Also, the more a network is different from a random 
structure, the more severe the pathology is expected to be.

In order to transform the obtained networks into a representation 
suitable to be used in a data mining (classification) algorithm, first 
these have been binarized, i.e. links with a weight |wk,l| ≤ 0.5 have 
been discarded. The threshold of 0.5 has manually been set, in order 
to obtain structures dense enough to support the subsequent analy-
sis, but still being able to discard statistically insignificant connec-
tions. Afterwards, two topological (i.e. structural) properties have 
been considered:

•    Link density, defined as the number of links present in the  
network, divided by the number of all possible links. The 
higher the link density, the more pairs of features present an 
abnormal behavior.

•    Information content (Zanin et al., 2014). This metric assesses 
the presence of mesoscale structures, i.e. structures created 
by small groups of nodes, by evaluating the information lost 
when pairs of nodes are iteratively merged together. Low  
values of Information Content indicate a random-like  
structure; conversely, high values suggest a non-trivial  
topology, potentially fingerprint of a severe condition.

Classification
In order to evaluate the performance of a complex network repre-
sentation with respect to a baseline, a classification between the 
two groups of patients (i.e. surviving vs. not surviving patients) is 
performed, and the resulting scores compared. Such classification is 
based on a support vector machine (SVM) model with linear kernel 
(Noble, 2006; Wang, 2005).

SVMs are binary linear classifiers that model concepts by creat-
ing hyperplanes in a multidimensional space, which can be used 
for both classification and regression (Cortes & Vapnik, 1995). A 
good separation is achieved by the hyperplane that has the largest 
distance to the nearest training-data point of any class, as this mini-
mises the error. The SVM model has been chosen for two reasons: 
its good performance and diffusion in biomedical classification 
problems; and its simplicity: only linear relationships are mined, 
allowing a better identification of the contribution of the complex 
network representation.

The validation of the results has been performed using a 10-fold 
cross-validation (Friedman et al., 2001). The original sample of 
subjects is randomly partitioned into 10 equal sized subsamples. 
A single subsample is retained as the validation data for testing the 
model, and the remaining 9 subsamples are used as training data. 
The cross-validation process is then repeated 10 times, with each 
of the 10 subsamples used exactly once as the validation data. The 
average value of the error obtained in the 10 executions is used for 
estimating the error.

Initial dataset
The dataset considered here is part of the Prostate Cancer DREAM 
Challenge, including information from the prostate cancer clinical 
trials ASCENT-2 (Novacea, provided by Memorial Sloan Kettering 
Cancer Center) (Scher et al., 2011), VENICE (Sanofi) (Tannock 
et al., 2013), MAINSAIL (Celgene) (Petrylak et al., 2015), and 
ENTHUSE-33 (AstraZeneca) (Fizazi et al., 2013). Only the data 
included in the CoreTable have been considered, representing the 
core patient level data. They cover information about demograph-
ics, co-existing disease conditions, prior treatment of the tumor and 
other co-existing conditions, important baseline lab results and vital 
signs, lesion measure and early response to therapy. More informa-
tion on the dataset can be found at https://www.synpase.org/Pros-
tateCancerChallenge.

One of the limitations of the network reconstruction process previ-
ously described is that it can only handle numerical features. Thus, 
only those features fulfilling this condition have been selected. 
Additionally, binary features have been transformed into numbers, 
i.e. 1 for “yes” and 0 for “no”. The final data set included 92 fea-
tures for each patient.

Afterwards, 2000 patients have been randomly selected, of which 
half of them did not survive cancer - as coded by the DEATH flag 
in the dataset. The rationale of selecting only a subset of patients 
is two-fold: first, to reduce the computational cost, and thus allow 
a more detailed analysis of results; and second, to ensure that the 
data set used in the classification task is balanced, i.e. it includes 
the same number of subjects in both classes. All other patients have 
been discarded.

Results
Standard scenario: raw features classification
Figure 1 presents the results obtained in the classification of patients 
using only raw features. As previously introduced, this classification 
will be the baseline against which the benefits of using complex 
networks will be evaluated. In order to reduce the computational 
cost of the analysis, and to reduce the risk of overfitting, a greedy 
feature selection algorithm has been executed. The three selected 
features were: LDH (Lactate Dehydrogenase level), TURP (prior 
transurethral resection of the prostate, binary value) and MHGEN 
(presence of general disorders, binary value). The probability dis-
tributions for the three features are presented in Figure 1 top and 
bottom left.
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Figure 1. Classification with raw features. Probability distributions of the LDH feature for surviving and not surviving patients (top left). 
Appearance probability of the features TURP and MHGEN, for surviving and not surviving patients (top right and bottom left). Classification 
score when considering LDH, LDH + TURP, and all three features (bottom right).

By using these three selected features, the classification score 
reaches 72.1% (Figure 1, bottom right). Adding more features does 
not yield substantial improvements.

Enhanced scenario: complex network features
In the second case, I consider the same original raw features, 
plus the two features synthesized from the complex network rep-
resentation, as previously described. A network has been created 
for each subject, by using the information of surviving patients as 
baseline- in other words, surviving patients have been considered 
as healthy, following the convention previously described. In order 
to avoid overfitting, a new baseline has been calculated in each one 
of the 10 cross-validation rounds, ensuring no patient was included 
both in the training and in the classification steps. Finally, a greedy 
feature selection algorithm has been executed on the complete fea-
ture set, following the same process described previosuly.

Figure 2 presents the results obtained, both in terms of the network 
features probability distributions (top), and the classification score 

(bottom). It can be appreciated as the classification score improves, 
from 72.1% up to 76.2%; this corresponds to a decrease of 15% in 
the classification error.

Conclusions
If complex networks have by and large been used to describe 
biomedical problems (Costa et al., 2011), much less attention has 
been devoted to their relation with prediction, i.e. to how the infor-
mation they provide could be used in the construction of diagnosis 
models. In this contribution, I make a first step in this direction, by 
studying the following hypothesis: can the precision of a predic-
tive model be improved, if information extracted from a complex 
network representation is fed to a data mining algorithm along with 
raw features?

I used, as a test bed, a data set describing patients suffering from 
prostate cancer, and a classification task in which patients are dis-
criminated according to the expected prognosis (surviving vs. not 
surviving). The inclusion of complex network features, obtained 
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through a parenclitic representation (Zanin & Boccaletti, 2011; 
Zanin et al., 2014), resulted in a small but significant reduction of 
the classification error (from 27.9% to 23.8%).

When comparing these results with the state of the art, as for 
instance (Halabi et al., 2003; Halabi et al., 2014), it is clear that they 
are still far away from representing an efficient prognostic instru-
ment. Within the Prostate Cancer DREAM Challenge, the proposed 
method ranked 50 out of 51 in Subchallenge 1a (iAUC of 0.6171, 
against a reference of 0.7429 of the Halabi et al. method and 0.7915 
of the winning team); and 27 out of 49 in Subchallenge 1b (RMSE 
of 214.39, against 194.41 of the winning team). Additionally, an 
error of the 23.8% in the survival probability is clearly intolerable 
for clinical applications.

It is also important to note that complex networks introduce a 
“black box” element in the analysis. As features are represented 
and analyzed in a topological way, i.e. focusing on the structure 

created by their relationships, it is not possible to identify which 
element(s) contribute the most to the final model. This complicates 
direct comparisons with standard prognostic models, and the design 
of therapeutic solutions.

In spite of the discussed drawbacks, we believe that the results here 
reported shed light on the importance of using complex networks 
in future prognostic models, as a way of synthesizing complex rela-
tionships in simple and numerical metrics.

Data availability
The Challenge datasets can be accessed at: https://www.projectda-
tasphere.org/projectdatasphere/html/pcdc

Challenge documentation, including the detailed description of the 
Challenge design, overall results, scoring scripts, and the clinical 
trials data dictionary can be found at: https://www.synapse.org/
ProstateCancerChallenge

Figure 2. Classification with complex network features. (Top) Probability distributions of the link density and Information Content features, 
for surviving and not surviving patients. See main text for definitions. (Bottom) Classification score when considering LDH, LDH + link density, 
and all three features.
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The code and documentation underlying the method presented in 
this paper can be found at: http://dx.doi.org/10.7303/syn4732239 
(Zanin, 2016)
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