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Abstract

Glaesserella parasuis is the cause of Glässer’s disease in pigs and is a significant contribu-

tor to post-weaning mortality in the swine industry. Prevention of G. parasuis disease relies

primarily on bacterin vaccines, which have shown good homologous protection and variable

heterologous protection. Bacterin production involves large scale growth of the bacteria and

proteins produced during the proliferation phase of production become important antigens

that stimulate the immune response. In order to evaluate genes activated during G. parasuis

growth on different media substrates, the transcriptome of broth and agar grown G. parasuis

strain 29755 were sequenced and compared. The transcription of most purported virulence

genes were comparable between broth and agar grown G. parasuis; however, four viru-

lence-associated genes, including ompA and vapD, had elevated expression under agar

growth, while six virulence-associate genes had elevated expression during broth growth,

including several protease genes. Additionally, there were metabolic shifts toward increased

protein and lipid production and increased cellular division in broth grown G. parasuis. The

results contribute to the understanding of how growth substrate alters gene transcription

and protein expression, which may impact vaccine efficacy if immunogens important to the

protective immune response are not produced under specific in vitro conditions. While the

results of this work are unable to fully elucidate which growth medium presents a transcrip-

tome more representative of in vivo samples or best suited for bacterin production, it forms a

foundation that can be used for future comparisons and provides a better understanding of

the metabolic differences in broth and agar grown bacteria.

Introduction

Glaesserella parasuis (formerly Haemophilus parasuis) is a commensal of the swine nasal cavity

and the causative agent of Glässer’s disease, a significant cause of post-weaning mortality in

pigs [1]. To provide protection against systemic disease with G. parasuis, pigs are most often
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vaccinated with bacterins. Bacterins have shown good efficacy in homologous protection and

variable results under heterologous challenge [2–4]. This is thought to be associated with sero-

type-specific immunity, but may also relate in part to gene expression and the specific immu-

nogenic proteins produced by the bacterium during proliferation for bacterin production.

Growth substrate is known to affect gene expression [5], which may alter the presence of

important immunogens and virulence factors on the bacterial cell surface and result in a less

effective vaccine. To date, there are few reports investigating gene transcription in G. parasuis
and these focus on mimicking in vivo conditions to detect genes of interest during infections

[6, 7]. The effect that growth substrate has on gene expression in G. parasuis has not been

investigated.

This study aimed to define the transcriptome of G. parasuis strain 29755 when grown in

broth and on agar. The results were utilized to better understand the impact of growth sub-

strate on transcription, the production of immunogenic proteins, and the potential impacts

this may have on vaccine development. This study will also form the foundation for compari-

son with future work utilizing in vivo G. parasuis samples.

Materials and methods

Bacterial strains and culture conditions

Experiments were performed on G. parasuis 29755, a serotype 5 isolate cultured from the lung

of a pig with Glässer’s disease and shown to be virulent in colostrum-deprived pigs [8, 9]. G.

parasuis 29755 was grown in brain heart infusion (BHI) broth or agar plates supplemented

with 0.01% nicotinamide adenine dinucleotide (NAD) and 5% heat-inactivated horse serum

(BHI–NAD–HS) in the presence of 5% CO2 at 37˚C.

RNA extraction of in vitro grown G. parasuis
G. parasuis was grown for RNA extraction in BHI-NAD-HS broth and on BHI-NAD-HS agar

with five replicates per growth substrate. Agar grown bacteria were prepared from an over-

night lawn harvested in 1 mL of BHI-NAD-HS broth. Broth grown bacteria were prepared by

inoculating BHI-NAD-HS broth with G. parasuis grown overnight on BHI-NAD-HS agar.

The cultures were incubated for 6 hours to an adjusted OD600 between 0.42–0.44 (colony

forming unit (CFU)/mL of 109). To prepare RNA for extraction, cultures were pelleted at

3,220xg, supernatant was decanted, and TRI reagent (ThermoFisher Scientific, Waltham, MA)

was added. Cultures were vortexed for 1 minute, incubated at room temperature for 5 minutes,

then stored at -80˚C until RNA isolation.

To extract total RNA from samples, chloroform was added in a 1:5 ratio to TRI Reagent-

cell mixture. The mixture was centrifuged at 4˚C for 15min at 13,000rpm and the aqueous

phase was transferred. Ethanol was added in a 1:1 ratio to the aqueous phase and the RNA was

processed using the miRNeasy Mini Kit (Qiagen, Germantown, MD) following manufacturer’s

instructions. On-column DNase treatment was performed using the RNase-free DNase set

(Qiagen). Following RNA extraction, 10μg of extracted RNA was further treated with the

TURBO DNA-free kit (ThermoFisher Scientific) and RNA was quantified using the Nano-

Drop ND-2000 spectrophotometer (ThermoFisher Scientific). RNA quality was assessed using

the Agilent 2100 Bioanalyzer RNA 6000 Nano kit (Agilent Technologies, Santa Clara, CA).

RNAseq library preparation and sequencing

To remove residual prokaryotic rRNA, the DNA-free total RNA was treated with the Ribo-

Zero Gold Epidemiology Kit (Illumina, San Diego, CA) according to manufacturer’s
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instructions. Removal of rRNA was assessed using the Agilent 2100 Bioanalyzer RNA 6000

Pico kit (Agilent Technologies). Samples were submitted to the Iowa State University DNA

Facility in Ames, IA for library preparation using the Stranded Total RNASeq library prepara-

tion kit (Illumina). Libraries were sequenced on one flow cell using the Illumina HiSeq 3000

platform to generate 100-nucleotide single-end reads on high output mode.

Transcriptomic analysis

The initial quality of the sequencing reads was assessed using FastQC [10]. Reads were adapter

and quality trimmed using Skewer [11], and the post-trimming read quality was again deter-

mined with FastQC. The Bowtie aligner was used to map trimmed reads to the G. parasuis
strain 29755 genome (NCBI accession CP021644.1) [12]. Samtools was used to convert the

mapped reads to the format needed for counting [13]. The read counts per gene were calcu-

lated by using HTSeq-count to process the mapped read alignment files [14]. DESeq2 was

used to perform the differential expression analysis [15]. The count file data for all the samples

were transformed using a regularized log transformation and then analyzed by clustering and

visualization of the clustering via principle component analysis (PCA) and multi-dimensional

scaling (MDS) to determine whether any of the samples were outliers due to uncontrolled

experimental errors. No outlier samples were indicated and all samples were subsequently

used. The count data for the samples were loaded into DESeq2 for the full analysis, the con-

trasts of interest were specified, and the differential expression (fold log2 difference) was

calculated. The difference testing was done to identify genes differentially expressed (P-

value < 0.001, false discovery rate (FDR) 0.1%) more than 1.6 log2 fold change (i.e. approxi-

mately 3x fold arithmetic change).

The genes identified as differentially expressed were assigned, to the largest extent possible,

to their respective clusters of orthologous genes (COGs) to determine which COGs were most

affected by growth condition [16].

Results

Clustering of growth conditions

A principal component analysis (PCA) plot of the transcriptional profile revealed highly simi-

lar profiles within a treatment group and clear separation between the transcriptome of G.

parasuis under different growth conditions (Fig 1). The PC1-axis represented the majority

of variance (97%), while small portion (2%) of the variance was represented by the PC2-axis.

Replicates from the same treatment group clustered together, indicating most of the variance

within the study was generated by differences associated with the growth substrate.

Differentially expressed genes between plate and broth growth

Mapped reads totaled 25–50 million reads per sample. The results of differential expression

analysis are presented in S1 Table. Genes found to have a statistically significant (adjusted P-

value < 0.001) and greater than 1.6 log2 fold change in expression between G. parasuis grown

in broth culture or grown on agar are listed in S2 Table. There were 231 genes found to be dif-

ferentially expressed depending on the growth medium utilized, with 124 genes showing ele-

vated expression in broth growth G. parasuis and 107 genes showing elevated expression when

G. parasuis was grown on BHI-NAD-HS agar.

Previously identified virulence factors were evaluated for differential expression between

growth conditions [9, 17–19] (S3 Table). Ten genes with a suspected role in virulence met the

threshold of differential expression between broth and agar grown G. parasuis. Six genes had
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elevated expression under broth growth: phosphopantetheine adenylyltransferase, 3-deoxy-D-

manno-octulosonic acid transferase, UDP-N-acetyl-D-mannosamine dehydrogenase, auto-

transporter outer membrane beta-barrel domain-containing protein, RIP metalloprotease

rseP, and pitrilysin. Four genes showed elevated expression under agar growth: ADP-heptose-

LPS heptosyltransferase, porin ompA, type II secreptory pathway pseudopilin (pulG) and viru-

lence associated protein D (vapD). Other virulence genes, including the capsule locus genes,

did not meet the threshold for differential expression when the growth conditions were com-

pared (S3 Table).

Cluster of orthologous group analysis

Cluster of orthologous group (COG) analysis identified the functional categories of differen-

tially expressed genes between the two growth conditions. The results of COG analysis are in

Table 1. In broth grown G. parasuis, there was greater representation of genes in the following

COG classifications: amino acid transport/metabolism (E), nucleotide transport/metabolism

(F), translation/ribosomal structure and biogenesis (J), replication/recombination/repair (L),

cell wall/membrane/envelope biogenesis (M), and inorganic ion transport/metabolism (P).

Agar grown G. parasuis had greater representation of genes in the COG classifications of car-

bohydrate transport/metabolism (G) and lipid transport/metabolism (I).

Further investigation into gene function indicated increased expression of genes in differ-

ent metabolic pathways between broth and agar grown G. parasuis. Broth grown G. parasuis
showed increased expression of genes involved in the utilization of nitrogen as a terminal elec-

tron acceptor, as opposed to agar grown G. parasuis which had increased expression of genes

involved in the citric acid cycle and conversion of fermentation byproducts (COG C). Addi-

tionally, there was elevated expression of genes involved in protein and nucleic acid turnover

in broth grown G. parasuis (COG O, L, and J).

Discussion

Growth substrate has been shown to alter gene transcription [5]; however, this has been associ-

ated with changes in the media base from an enriched to a minimal medium. Differences in

transcription may play a role in vaccine efficacy if one condition promotes greater production

of immunoprotective antigens. To investigate gene transcription under different growth

Fig 1. Principal component analysis (PCA) plot evaluating the variance between samples. The transcriptome of broth grown (orange) and agar grown (blue) G.

parasuis replicates clustered within a treatment group (growth medium). The majority of variance detected was associated with differences between growth

medium utilized.

https://doi.org/10.1371/journal.pone.0220365.g001
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conditions and identify the growth substrate that provides a transcription profile more able to

provide a protective immune response, we sequenced the transcriptome of G. parasuis 29755

when grown on BHI-NAD-HS agar and in BHI-NAD-HS broth.

Transcriptional differences were noted between broth and plate grown G. parasuis. Broth

grown G. parasuis had greater expression of genes involved in DNA replication, cell wall syn-

thesis, and cell division, indicating more rapid cellular proliferation. Additionally, broth

grown G. parasuis had greater expression of genes involved in proteolysis, amino acid

uptake, and amino acid synthesis, which are necessary to provide the amino acids utilized in

cellular proteins. Expression of genes involved in protein and lipid synthesis were also ele-

vated, which is likely associated with proliferation and production of cellular proteins and

cellular membranes. It also appeared that broth grown G. parasuis may shift its metabolism

to utilize nitrogen as an electron acceptor, which may indicate portions of the liquid culture

become oxygen depleted during growth. Agar grown G. parasuis showed elevated expression

of carbohydrate uptake and breakdown proteins, which may indicate agar as a substrate has

less available carbohydrates and may necessitate greater resources being spent in energy

acquisition.

It is difficult to speculate on which method of growth will generate a bacterin better capable

of providing protective immunity. The transcription levels of purported G. parasuis virulence

factors were comparable between both growth methods for the majority of virulence associated

genes. Differentially expressed virulence genes were found in both growth conditions. Agar

Table 1. COG analysis results.

OG_class Number of Genes with Increased

Expression during Broth Growth

Number of Genes with Increased

Expression during Agar Growth

Total Number of Differentially

Expressed Genes

Function Description

C 8 7 15 Energy production and conversion

D 1 0 1 Cell cycle control, cell division,

chromosome partitioning

E 19 8 27 Amino acid transport and metabolism

F 10 3 13 Nucleotide transport and metabolism

G 2 9 11 Carbohydrate transport and

metabolism

H 6 6 12 Coenzyme transport and metabolism

I 1 5 6 Lipid transport and metabolism

J 6 3 9 Translation, ribosomal structure and

biogenesis

K 5 5 10 Transcription

L 10 3 13 Replication, recombination and repair

M 10 5 15 Cell wall/membrane/envelope

biogenesis

O 9 8 17 Posttranslational modification,

protein turnover, chaperones

P 10 4 14 Inorganic ion transport and

metabolism

Q 0 1 1 Secondary metabolites biosynthesis,

transport and catabolism

R 17 6 23 General function prediction only

S 9 9 18 Function unknown

T 4 5 9 Signal transduction mechanisms

U 2 1 3 Intracellular trafficking, secretion, and

vesicular transport

- 10 29 39 Not in a COG

https://doi.org/10.1371/journal.pone.0220365.t001

Growth substrate effects on Glaesserella parasuis transcriptome

PLOS ONE | https://doi.org/10.1371/journal.pone.0220365 August 6, 2019 5 / 8

https://doi.org/10.1371/journal.pone.0220365.t001
https://doi.org/10.1371/journal.pone.0220365


grown G. parasuis showed elevated expression of ompA and vapD. In other Gram negative

bacteria, OmpA has been associated with adhesion, cellular infectivity and survival, and

immune evasion [20]. Additionally, vaccination with OmpA has been associated with partial

protection in some animal models of G. parasuis infection [21]. The vapD gene is thought to

play a role in cellular infectivity based on the function of homologous genes in Haemophilus
influenzae and Rhodococcus equi [22, 23]; however, its role in G. parasuis infection has not

been confirmed. Broth grown G. parasuis had elevated expression several proteases, including

a beta-barrel domain containing autotransporter with a putative serine protease function, rseP,

and pitrilysin. Additionally, agar grown G. parasuis appear to be utilizing different metabolic

pathways and may be replicating at a slower rate. Previous in vivo work identified reduced rep-

lication rates of G. parasuis during lung infection [6]. The bacteria had reduced expression of

genes involved in translation and nucleotide metabolic processes [6], which is more consistent

with G. parasuis grown on agar media than in broth. However, G. parasuis from the lung infec-

tion model also had reduced expression of genes involved in cellular carbohydrate metabolic

processes, the citric acid cycle, and the electron transport chain [6]. These same COGs showed

increased expression in agar grown G. parasuis in our study.

The data presented here indicate differences in transcription between G. parasuis grown on

agar and in broth culture. Differences in gene transcription and protein production have the

potential to alter the prevalence of important immunogens that may contribute to the protec-

tive immune response. At this time, we are unable to say which growth substrate generates a

transcriptional profile most similar to that of G. parasuis during systemic infection, as we do

not have in vivo data for analysis; however, this data can be utilized in future studies to help

assess whether broth or agar growth most closely replicates in vivo conditions. The data gener-

ated in this study ultimately forms the foundation of future RNA sequencing work and will

enable comparisons that may contribute to the generation of novel, more effective vaccines or

the capacity to mimic in vivo conditions in the laboratory.

Supporting information

S1 Table. Differential expression results. The results output from the differential expression

analysis comparing G. parasuis 29755 grown in broth and on agar.

(XLSX)

S2 Table. Genes with significant differential expression. Genes from S1 Table with a statisti-

cally significant change of 1.6 fold or greater differential expression between G. parasuis 29755

grown in broth and on agar. Broth grown G. parasuis was utilized as the reference, with posi-

tive fold change indicating an increase in agar grown G. parasuis as compared to broth.

(XLSX)

S3 Table. Differential expression results for virulence associated genes. Genes that have

been previously associated with virulence were selected from the whole differential expression

data (S1 Table) for comparison between the two treatment groups.

(XLSX)
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