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Abstract: In this paper, a new intelligent computing algorithm named Enhanced Black Hole (EBH) is
proposed to which the mutation operation and weight factor are applied. In EBH, several elites are
taken as role models instead of only one in the original Black Hole (BH) algorithm. The performance
of the EBH algorithm is verified by the CEC 2013 test suit, and shows better results than the original
BH. In addition, the EBH and other celebrated algorithms can be used to solve node coverage
problems of Wireless Sensor Network (WSN) in 3-D terrain with satisfactory performance.
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1. Introduction

With the development of integrated circuits, micro-electromechanical systems (MEMS) and
communication theory, the emergence of WSN has provided many conveniences for human life,
and people can more conveniently monitor the surrounding environment or instruments easily.
In WSN, optimizing the energy depletion ground on the limited size of sensor nodes while maintaining
the data transmission rate is an enormous challenge. A self-adaptive clustering method is implemented
to significantly save energy of sensor nodes [1]. Node coverage determines the detection property of
WSN, and therefore achieving the maximum coverage rate with a given number of sensor nodes is
of importance [2,3]. There are two methods to optimize sensor deployment: deterministic method
and stochastic method. Deterministic method is used to deploy sensor nodes in a static environment
for the predetermined positions of sensor nodes. The stochastic method randomly deploys sensor
nodes with vehicles such as cars, planes, ships and et al. The deployment strategies for maximizing
the coverage rate of WSN have not only been focused on the 2-D environment, but also on 3-D
environment. Delaunay Triangulation and Voronoi Diagram have been used to find the sparse area of
sensors and deploy new sensor nodes, which can significantly improve the coverage rate of WSN [4].
Bio-inspired algorithm has also been used to strengthen the capability of WSN [5], and PSO is applied
to work out the energy-efficient coverage problem for the minimal cost [6]. Black Hole (BH) algorithm
is an excellent meta-heuristic algorithm proposed in recent years [7]. It simulates the phenomenon
that black holes engulf other planets in the universe. In the BH algorithm, the optimal solution is
represented as the black hole and other candidate solutions are expressed as planets. The planet moves
toward the black hole and finds the optimal solution on the way. If a planet is too close to a black
hole, it will be engulfed by the black hole. Some simulations show that the BH algorithm has better
performance in data clustering than some existing well-known algorithms.

Intelligent computing has been paid more and more attention by researchers because of its
excellent performance in solving optimization problems, such as Artificial Bee Colony (ABC) [8–10],
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Particle Swarm Optimization (PSO) [11–14], Genetic Algorithm (GA) [15], Ant Colony Optimization
(ACO) [16–18], Cat Swarm Optimization (CSO) [19–21], Difference Evolution (DE) [22–24], Multi-Verse
Optimizer [25,26], Symbiotic Organism Search Algorithm [27,28], QUATRE [29–31] and et al.
To improve the optimization efficiency, many methods have been put forward. For example,
a compact method is implemented to achieve better performance based on the memory of a single
individual [32–37]. The simulation of the benchmark function can also effectively improve the speed
and sear-ability of the original algorithm [38]. In recent years, researchers are also inspired by the
movement of animals to simulate the natural phenomena for optimization [39–42], and more and more
improved algorithms have been proposed [43–46], including fuzzy processing [47–49].

Optimization methods are very important for increasing the efficiency of Wireless Sensor Network
(WSN), which can efficiently monitor the object area at a low cost. In military applications, enemy
invasion can be detected in real time by applying WSN. In agriculture applications, farmers can
appropriately adjust the schedule or content of work after receiving the crop data obtained by the
WSN. Moreover, we can prediction the localization, velocity and travel time of vehicle according to the
information of sensor nodes gathered [50,51].

This article presents a novel intelligence computing algorithm named Enhanced Black Hole (EBH)
to which the mutation operation and weight factor are applied. The BH algorithm and 3-D node
coverage problem of WSN are recommended in Section 2. Section 3 proposes an Enhanced version of
the EH algorithm, and Section 4 apply the novel algorithm in solving 3-D node coverage problem of
WSN. Section 5 shows the experiments and the results. Finally, in Section 6 a conclusion is drawn.

2. Black Hole Algorithm and 3-D Node Coverage Problem of WSN

2.1. Black Hole Algorithm

Black Hole (BH) algorithm is an excellent optimization algorithm for solving data clustering
problems, inspired by the phenomenon about black hole devouring other stars [7]. In BH algorithm,
the individual with the best fitness value is regarded as a black hole, and other individuals move
towards it. If the distance between an individual and the black hole is smaller than the radius of
event horizon RBH , then it will be swallowed by the black hole and an individual will be randomly
generated to maintain the size of the population. As other population-based algorithms, at the initial
stage, candidate solutions are generated randomly in a finite region, and then updates the population
to find the optimal value according to Equation (1).

Post+1
i = Post

i + rand · (Post
BH − Post

i) (1)

where the Post
i means the location of i-th candidate solution at the t iteration and Post

BH represents the
black hole location at the t iteration. The rand is a random number between 0 and 1. From Equation (1)
we can learn about the BH algorithm gives up the impact of pbest, velocity, and two constants. It has
been found that the BH algorithm outperforms the PSO algorithm in data clustering [7], this can prove
it is a meaningful algorithm in some ways.

In BH algorithm, the event horizon is used to describe the range of being devoured by the black
hole and it can be calculated by Equation (2) such that

RBH =
f itBH

∑N
n=1 f itn

(2)

where RBH is the radius of event horizon and f itBH represents the best fitness value at the current
iteration. The fitness value of n-t individual at the current iteration is represented by f itn. The size of
the population is represented by N. When the algorithm at an early stage, the population sparsely
separates in the limited area. The black hole has the signally fitness value and the algorithm in the
exploration phase. The longer the event horizon radius, the better to avoid the whole population being
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concentrated in one place and the algorithm precocious. On the contrary, when the algorithm in the
exploitation phase, the algorithm needs to further look for the optimal value around the promising area.

2.2. 3-D Node Coverage Problem of WSN

In this study, EBH algorithm is introduced to optimize the strategy of sensor nodes deployed in a
3-D terrain. Various factors will be taken into account when deploying sensors to a 3-D terrain than
a 2-D terrain. When a sensor node communicates with other nodes, the transmission of the wireless
signal may be interrupted, and the coverage rate of WSN will be affected.

In the simulation, sensor nodes are scattered randomly over a 3-D terrain generated by the “peak”
function of MATLAB as shown in Figure 1, and some sensor nodes are placed at the intersection of the
grid. The 3-D locations of nodes in this 3-D terrain are defined by the initial allocation, and the depth
locations are determined by the following rules:

• If the node is at the grid intersection, the value of the third dimension of the location is the height
of the three-dimensional terrain which showed in Figure 1.

• Otherwise, the value of the third dimension of the location is the height of the closest grid
intersection.
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Figure 1. Terrain for Deploying Sensor Nodes (The units of x, y, z-axis is meter).

In the cause of study, the node coverage of WSN in this 3-D terrain, it is necessary to detect
whether there is an obstacle between two nodes. The Bresenham Line of Sight (LOS) algorithm is
adopted for the optimization of this study thanks to its computational efficiency. To determine whether
the communication between the node and the target point is blocked, some points between S to P are
selected, as shown in Figure 2. If the height of any point in the terrain is higher than the ray height of
the same point, the communication between S and P will be blocked [52].

In WSN, the sensor nodes collect the information about object and transmits to the sink node for
further processing. The sensing model is formulated to describe the coverage rate and it is affected
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by the distance and other factors [53]. In this research, the binary sensing model is used to determine
whether there is a connection between two nodes. Since this model only simulates the connectivity
status of WSN, therefore it can only determine whether a sensor node is communicating with other
nodes according to the communication radius. It can be presented by Equation (3), such that

C(r, s) =

{
1, distance(r, s) 6 R and there no obstacle
0, distance(r, s) > R or there are obstacles

(3)

where the r and s represent receive node and send node, respectively. The communication radius
is represented by R. If the value of C(r, s) is 1 means the node r can communicate with node s and
vice versa.

In recent years, the Bresenham algorithm has been used in computer graphics to draw a line
segment on a 2-D surface, in [53] the algorithm is modified and used it to determine LOS on a 3-D
surface. Figure 2 shows a simplified paradigm about LOS on a 3-D terrain. It can be seen that if there
is no pixel higher than the virtual line between node S and node P, these two nodes can communicate
with each other, which means that there is a LOS between these two nodes.

Height

1               2                           3    4                         5    6            7             8

S

P

Figure 2. A Simple Paradigm about LOS.

3. Enhanced Black Hole Algorithm

BH algorithm is a competitive and novel algorithm, however its performance can be greatly
improved. In BH algorithm, the motion of all individuals is only affected by the optimal solution
position, and their trajectories are all straight lines. Therefore, there is not enough space for candidates
to explore as they move towards the black hole. Although the BH algorithm has a rapid convergence
rate and excellent performance in data clustering, it has a great chance to get stuck in the local optimal
location. Therefore, a multiple black holes scheme has been considered, and the impact of the best
candidate solution will be taken into account as well as the elite candidate solutions. In this study, we
chose three best alternatives as models and applied varying degrees of gravity to other stars, such that

Post+1
i =Post

i + w · [c1 · (Post
BH1 − Post

i) + c2 · (Post
BH2 − Post

i)

+ c3 · (Post
BH3 − Post

i)]
(4)

where w represents the role of weight for each black hole, and c1, c2, and c3 are three constants used to
adjust the degree of influence of black holes. In the early stage, the individuals were sparsely distributed
in the limited area, and the distances between the black holes and other stars are considerably longer
than among the stars. Therefore, a heavier weight w can help to look for the optimal value in the
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promising area quicker. If a promising area is found by the algorithm, the optimal value will be
targeted within a smaller area instead of moving over a wider area. Therefore, a smaller value of w
will be suitable for this situation. Mutation operation is added to the original BH algorithm, which
enhances the global search ability of the algorithm. In each iteration, the values of the three random
dimensions of the first black hole fluctuate 20% up and down based on their values. If the new position
of the first black hole is better than the original position, it will replace the original position, thereby
affecting the population to find the optimal solution. In general, the best candidate solution will have
the biggest impact on other stars and other elite candidate solutions have a smaller influence on other
stars. The pseudo-code of the novel algorithm is shown in Algorithm 1.

Algorithm 1: The Enhanced Black Hole Algorithm
Initialization: i = 1, t = 1, c1 = 0.9, c2 = 0.6, c3 = 0.3, D = 20, n = 30, T = 1000;
randomly initial the position of population and calculate the function value: Pos, f un;
while t ≤ T do

w = 2.0 - 1.6· t
T ;

Rank the population by function value form small to large:
Pos = (Pos1, Pos2, ..., Posn), f un = ( f un1, f un2, ..., f unn);
Pos_BH1 = Pos1, Pos_BH2 = Pos2, Pos_BH3 = Pos3, f un_BH = f un1;
R_BH = f un_BH

sum( f un) ;
Pos_mu = Pos_BH1;
(d1, d2, d3)← randomly select form D;
Pos_mu(d1, d2, d3) = (0.8 + 0.4·rand)·Pos_mu(d1, d2, d3);
f un_mu← function(Pos_mu);
if f un_mu < f un_BH then

Pos_BH1 = Pos_mu;
f un_BH = f un_mu;

end
while i ≤ n do

Update Posi according to Equation (4) and f uni;
if f uni < f un_BH then

Pos_BH1 = Posi;
f un_BH = f uni;

end
if The distance between Posi and Pos_BH1 smaller than R_BH then

Initial Posi and compute f uni
end
i = i + 1;

end
t = t + 1;

end

4. Enhanced Black Hole Algorithm Applied on Node Coverage of WSN

In the EBH algorithm, each individual represents a deployment strategy of the node coverage
problem. Since an individual represents the deployment positions of all nodes, the dimension of each
individual is the product of the dimensions of the deployment environment and the number of nodes.
However, the 3-D positions of the deployed terrain have been known, if the position of the 2-D plane
is provided, then the value of the depth location can be calculated. Figure 3 illustrates the setting of
values for each individual in the EBH algorithm.
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Figure 3. The Value Setting of Dimensions of Individual.

Where the Nodei,1 and Nodei,2 are the first dimension and second dimension value of the i-th
sensor node. The n represents the amount of the deployed sensor nodes. In the initial stage, each
individual is randomly generated, which means that each deployment strategy randomly arranges
sensor nodes. Except for the optimal strategy, all deployment strategies learn from the optimal strategy
according to the updated rules of the EBH algorithm. Coverage Rate (Cr) is defined to evaluate the
quality of deployment strategies and is given as,

Cr =
1
Q
·

Q

∑
q=1
·(

P

∑
p=1

C(sp, rq)) (5)

where the Q denotes the number of pixels of the 3-D terrain and P is the number of sensor nodes.
Through C(sp, rq), we can know whether the q-th pixel of the terrain is covered by the p-th sensor node
and value of C(sp, rq) can be calculated by Equation (3).

5. Experiment Results and Discuss

An improved BH algorithm is proposed in this paper. To verify the optimal performance of
the algorithm, it is compared with the original algorithm using the CEC 2013 test suite. Moreover,
the novel algorithm is compared with the canonical algorithm PSO and the state-of-the-art algorithm
WOA. In the CEC 2013, there are 28 benchmark functions which are denoted as f 1 to f 28 respectively.
There are some unimodal functions are the first five functions, f 21 to f 28 are composition functions
and others are basic multimodal functions.

All experiments in this article are performed on the same platform which is a notebook computer
with an i5-7300HQ CPU @ 2.50GHz. The parameters of the algorithm have an important impact
on the results. To fairly verify the performance of the algorithms participating in the comparison,
the parameters that they jointly own are set to the same value. The unique parameter values for these
algorithms are set according to the recommendations of the original [7,11,40]. Table 1 shows the setting
of the algorithm parameters.

Table 1. Parameter Setting of Algorithms.

Algorithms Common Parameters Unique Parameters

Particle Swarm Optimization
Population Size = 30

Iterations = 1000
Dimensions = 20

Limited Areas ∈ [−100, 100]

c = 2.0, w ∈ [0.4, 0.9],
Velocity Range ∈ [10, 10]

Whale Optimization Algorithms a ∈ [0, 2], b = 1

Black Hole NULL

Enhanced Black Hole
w ∈ [0.4, 2.0], c1 = 0.9,

c2 = 0.6, c3 = 0.3

Table 2 shows the average and standard deviation of the results of the 30 runs of the four
algorithms on the CEC 2013 test suite. The results obtained by EBH are superior to other algorithms
on functions 6, 10, 21, 22, 25 and especially significantly improves the results on functions 1, 3 and 26.
In terms of stability, the proposed algorithm has better performance than other algorithm on functions
1, 5, 6, 10, 24, 25 and 26. The PSO algorithm is well suited to optimize problems contained in CEC2013
and it shows the best performance in most test functions. In these test functions, the WOA algorithm
and the original BH algorithm are not sufficiently competitive with other algorithms.
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Table 2. Simulation Results of CEC 2013 Benchmark Function (The optimal value is marked by bold).

Functions PSO WOA BH EBH

Variable Mean Std Mean Std Mean Std Mean Std

f1 −1.36× 103 1.58× 103 −1.29× 103 8.43× 101 5.04× 103 1.02× 103 −1.40 × 103 9.51 × 10−7

f2 1.22 × 106 7.61 × 105 4.69× 107 2.25× 107 2.84× 107 4.47× 106 2.92× 106 1.62× 106

f3 2.92× 109 4.08× 109 2.14× 1010 3.47 × 1010 3.54× 1015 4.78× 1015 5.91 × 108 8.24× 108

f4 5.55 × 103 3.47 × 103 8.46× 104 2.99× 104 4.39× 104 1.20× 104 2.96× 104 8.27× 103

f5 −9.68× 102 5.26× 101 −6.67× 102 1.64× 102 5.08× 102 2.54× 102 −9.69 × 102 2.73 × 101

f6 −8.54× 102 3.73× 101 −7.62× 102 6.73× 101 3.99× 102 1.48× 102 −8.61 × 102 3.71 × 101

f7 −7.18 × 102 4.16 × 101 1.18× 104 6.04× 104 3.84× 104 3.25× 104 −4.84× 102 4.05× 102

f8 −6.79 × 102 8.05× 10−2 −6.79 × 102 8.41× 10−2 −6.79 × 102 6.87 × 10−2 −6.79 × 102 8.27× 10−2

f9 −5.80 × 102 2.87× 100 −5.77× 102 1.93× 100 −5.77× 102 2.29 × 100 −5.78× 102 2.51× 100

f10 −4.60× 102 6.67× 101 −2.95× 102 7.51× 101 1.97× 102 7.37× 101 −4.98 × 102 1.49 × 100

f11 −2.32 × 102 4.95× 101 −8.97× 101 7.55× 101 −1.29× 102 4.63 × 101 −2.16× 102 4.90× 101

f12 −1.39 × 102 4.80 × 101 −3.05× 101 5.40× 101 4.53× 100 6.03× 101 −1.01× 102 5.57× 101

f13 8.59 × 100 2.98 × 101 8.56× 101 7.01× 101 1.32× 102 5.77× 101 3.19× 101 5.36× 101

f14 2.35 × 103 4.36 × 102 3.45× 103 4.64× 102 4.03× 103 5.65× 102 2.76× 103 5.77× 102

f15 2.34 × 103 5.51 × 102 3.23× 103 5.74× 102 3.84× 103 5.81× 102 2.83× 103 5.79× 102

f16 2.01 × 102 3.85 × 10−1 2.02× 102 3.70× 10−1 2.01 × 102 4.66× 10−1 2.01 × 102 7.65× 10−1

f17 4.21 × 102 2.64 × 101 6.71× 102 8.93× 101 5.69× 102 5.05× 101 5.37× 102 5.87× 101

f18 5.14 × 102 2.44 × 101 7.69× 102 5.75× 101 6.85× 102 5.94× 101 6.20× 102 6.39× 101

f19 5.07 × 102 2.39 × 100 5.49× 102 2.58× 101 1.70× 103 3.96× 102 5.13× 102 5.90× 100

f20 6.10 × 102 2.38× 10−1 6.10 × 102 1.87× 10−1 6.10 × 102 1.63 × 10−1 6.10 × 102 2.02× 10−1

f21 1.04× 103 8.26× 101 1.44× 103 2.50× 102 1.80× 103 5.40 × 101 1.03 × 103 9.43× 101

f22 4.49× 103 5.69× 102 4.78× 103 5.28× 102 5.52× 103 4.74 × 102 4.15 × 103 7.89× 102

f23 4.54 × 103 5.98× 102 5.25× 103 6.81× 102 5.76× 103 5.01 × 102 4.56× 103 8.32× 102

f24 1.26 × 103 1.85× 101 1.27× 103 6.50× 100 1.29× 103 8.80× 100 1.27× 103 8.77 × 100

f25 1.39× 103 1.24× 101 1.38× 103 7.81× 100 1.41× 103 9.02× 100 1.37 × 103 6.63 × 100

f26 1.51× 103 6.65× 101 1.47× 103 8.01× 101 1.41× 103 2.08× 100 1.40 × 103 4.42 × 10−1

f27 2.16 × 103 7.73× 101 2.26× 103 5.24× 101 2.33× 103 6.09 × 101 2.19× 103 6.32× 101

f28 4.39 × 103 6.63× 102 5.62× 103 7.61× 102 5.18× 103 5.63 × 102 4.56× 103 5.90× 102
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Through the analysis of the results in Table 2, the EBH algorithm does not have the best processing
effect on multimodal problems. As described in the “there is no free lunch” theorem [54], “any
performance improvement for one type of problem will be offset by performance for another type of
problem.” EBH wants to get better on unimodal problems, the performance of the multimodal problem
will sacrifice some of the global search ability.

Figures 4 and 5 show the process of optimization of four algorithms on 28 test functions.
The abscissa is the number of iterations of the algorithm running, and the ordinate is the average
value obtained from the optimization test function 30 times, a function value is recorded for every
100 iterations to make a graph to prove the search ability of the algorithm. The PSO, WOA, BH,
and EBH algorithms are represented by “red”, “magenta”, “green” and “blue” respectively. In these
figures, the EBH algorithm has faster convergence speed and stronger optimization ability than the
original algorithm on unimodal problems, composition problems and most multimodal problems.
Although the EBH algorithm has fast convergence speed, it is easily trapped at local optimal value on
function 8 and 20. Therefore the original algorithm has better performance on these two functions.
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Figure 4. Results of Simulation Experiments (1).
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Figure 5. Results of Simulation Experiments (2).

In this article, the novel algorithm is used to solve the node coverage problem of WSN. This
algorithm optimizes the positions of sensor nodes to achieve maximize coverage area with same
account of nodes. The sensor nodes in the WSN are arranged in the terrain shown in Figure 1 and are
tested in five groups of different number of nodes, which are 30, 40, 50, 60, and 70 nodes, respectively.
In this simulation experiment, the area of plane of the terrain is 50 × 50 m and the communication
radius is set to 5 m for each group.

Table 3 shows the results of 5 sets of simulations, which are the average of 30 runs. The data of
different groups shows the influence of the number of nodes on the optimization results. When the
communication radius is constant, the more nodes, the larger the area covered. Therefore, the difference
between the optimization results of different algorithms decreases as the number of nodes increases.
In Table 3, the new algorithm performs best on 30, 40, 50, and 70 sensor nodes. Although the difference
is relatively small, in this optimization problem with few dimensions, we can still see the excellent
performance of the new algorithm.

Table 3. Simulation Results of Node Coverage (The optimal value is marked by bold).

Functions PSO WOA BH EBH

30 45.55% 47.88% 47.82% 48.01%
40 55.53% 57.43% 57.75% 57.85%
50 62.88% 62.51% 64.99% 65.06%
60 69.44% 71.50% 71.32% 71.26%
70 74.71% 76.43% 76.43% 76.54%

6. Conclusions

In this paper, we enhanced the BH algorithm by considering more influencing factors and putting
weight to the optimization of BH algorithm. Compared to the original BH algorithm, the EBH achieves
a greater probability of falling into a promising region and avoiding local optimal values with a faster
convergence speed. In the experiment with the CEC 2013 benchmark functions, the EBH algorithm
shows better performance than the original BH in all test functions. The EBH algorithm has also
been proved to be effective in solving the 3-D node coverage problems in WSN. The proposed EBH
algorithm can also be applied to solve the cluster head problem of WSN in future.
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The following abbreviations are used in this manuscript:
LD Linear dichroism
MEMS Micro-electro mechanical systems
PSO Particle swarm optimization
ACO Ant colony optimization
CSO Cat swarm optimization
ABC Artificial bee colony
GA Genetic algorithm
DE Difference evolution
QUATRE Quasi-affine transformation evolution
WSN Wireless sensor network
EBH Enhanced black hole
BH Black hole
LOS Line of sight
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