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Bio-production of chemicals is an important driver of the societal
transition toward sustainability. However, fermentations with
heavily engineered production organisms can be challenging to
scale to industrial volumes. Such fermentations are subject to
evolutionary pressures that select for a wide range of genetic
variants that disrupt the biosynthetic capacity of the engineered
organism. Synthetic product addiction that couples high-yield pro-
duction of a desired metabolite to expression of nonconditionally
essential genes could offer a solution to this problem by selectively
favoring cells with biosynthetic capacity in the population without
constraining the medium. We constructed such synthetic product
addiction by controlling the expression of two nonconditionally
essential genes with a mevalonic acid biosensor. The product-
addicted production organism retained high-yield mevalonic acid
production through 95 generations of cultivation, corresponding to
the number of cell generations required for>200-m3 industrial-scale
production, at which time the nonaddicted strain completely abol-
ished production. Using deep DNA sequencing, we find that the
product-addicted populations do not accumulate genetic variants
that compromise biosynthetic capacity, highlighting how synthetic
networks can be designed to control genetic population heteroge-
neity. Such synthetic redesign of evolutionary forces with endoge-
nous processes may be a promising concept for realizing complex
cellular designs required for sustainable bio-manufacturing.
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Engineering of microbial cells to produce chemicals cost-
effectively is emerging as a promising alternative to petro-

chemical synthesis and natural extraction. However, heavily
engineered high-performing strains remain difficult to scale for
robust long-term production at industrial fermentation volumes
(e.g., 1- to 200-m3 bioreactors) (1, 2). Reduced bioreactor yields are
commonly ascribed to spontaneous establishment of nongenetic
single-cell variation, in which subpopulations intermittently limit
production due to phenotypic noise such as stochastic gene ex-
pression and physical mass transfer heterogeneities (3–5). However,
engineered strains frequently also exhibit reduced cell fitness due to
the loads of production. Production loads typically arise from
metabolic depletions (6) in addition to toxicities from pathway in-
termediates and end products (7). Such production loads can cause
declining yields due to genetic instabilities and eventually lead to
the complete loss of production, posing substantial challenges to
the scale-up of bio-based processes (8–10) and applicability of
continuous fermentations (11, 12). Optimization of long-term ge-
netic strain stability is therefore a necessary and research-intensive
process toward commercialization of bioprocesses.
One strategy to improve production and also limit the pro-

duction load by reduction of flux imbalances and pathway in-
termediate toxicities is to deploy pathway promoters that respond
to product stress or precursor supply (13–15). Adaptive laboratory
evolution represents an alternative strategy, which has been suc-
cessfully used to reduce the fitness defects of engineered strains
(16). Still, production loads are challenging to eliminate.
Metabolite-responsive molecular biosensors have been developed

to accelerate the screening process for new or optimized enzymatic
activities and to interrogate metagenomics libraries (17–19).

Biosensor-based screening of libraries >108 is possible by deploying
metabolite-responsive screening circuits with fluorescence or selec-
tion outputs at low false-positive levels (20). By employing pro-
totrophic or antibiotic selection genes, a biosensor has also been used
in a production strain to enrich a phenotypically high-performing
subpopulation (5). However, such medium-conditional selection
genes are at risk for cross-cell leakage of the conditional nutrients or
antibiotic-degrading enzymes and constrain the medium composition
in ways that can be prohibitive for large-scale fermentations.
As an approach to synthetically limit the abundance of non-

producing mutant cells in a population, we propose a synthetic
product addiction system that punishes nonproducing mutants.
Unlike screens, a population control system should function
without conditioned growth medium, since such conditions are
poorly compatible with large-scale industrial fermentations (1).
Instead, we propose that the system could harness the regulation
of essential endogenous cell processes to punish nonproducing
cells in the population. In this study, we develop such a synthetic
product addiction system for a high-yielding mevalonic-acid-
production organism and experimentally test the system under
long-term cultivation conditions designed to mimic the exponen-
tial growth durations of large batch or continuous industrial-scale
bioreactors.

Significance

Bioproduction of chemicals offers a sustainable alternative to
petrochemical synthesis routes by using genetically engineered
microorganisms to convert waste and simple substrates into
higher-value products. However, efficient high-yield production
commonly introduces a metabolic burden that selects for sub-
populations of nonproducing cells in large fermentations. To
postpone such detrimental evolution, we have synthetically
addicted production cells to production by carefully linking sig-
nals of product presence to expression of nonconditionally es-
sential genes. We addict Escherichia coli cells to their engineered
biosynthesis of mevalonic acid by fine-tuned control of essential
genes using a product-responsive transcription factor. Over the
course of a long-term fermentation equivalent to industrial
200-m3 bioreactors such addicted cells remained productive,
unlike the control, in which evolution fully terminated production.
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Results
To engineer durable and effective product addiction (Fig. 1A),
we define three design criteria that address general large-scale
bioprocess constraints. Design criterion 1: Cells should be non-
conditionally addicted to product, i.e., excluding use of antibiotic
resistance and prototrophic selection genes. Large-scale biore-
actors operate with strict economic and regulatory require-
ments prohibitive of inducers or specific nutrient omissions that
are normally attractive in laboratory-scale molecular engineer-
ing. Accordingly, common inducers such as isopropyl β-D-1-
thiogalactopyranoside (1), drop-outs of nutrients, or addition of
antibiotics are often not economically viable to implement in
large-scale bioprocesses. Design criterion 2: Product addiction
should not reduce biosynthetic yield and titer. Pleiotropic effects
of product addiction might occur as consequence of perturbing
expression of genes involved in central transcription, translation,
and glucose metabolism limiting the commercial viability of the
addiction system. Design criterion 3: Product addiction should
pose no or limited basal fitness cost. A system designed for con-
trolling microbial growth potentially reduces cellular fitness even
at the permissive ideal conditions of active production by resource
depletion or stresses (21, 22) or suboptimal expression tuning.
Such fitness costs might lower biosynthetic performance and could
positively select for mutations that inactivate the addiction system,
which in turn would permit subsequent production declines.
To render the growth control system nonconditional (design

criterion 1), we targeted genes encoding cellular enzymes outside
of the primary metabolism and chose the chromosomal gene
operon of glmM and folP (Fig. 1B) after testing the direct ad-
diction ability of four different essential operons or single genes
(SI Appendix, SI Text 1). Not previously applied for selections,
both phosphoglucosamine mutase (GlmM) and dihydropteroate
synthase (FolP) are necessary for cell growth in complex and min-
imal medium. GlmM supplies essential glucosamine-1-phosphate

for biosynthesis of lipopolysaccharide and peptidoglycan of
the cell envelope (23). FolP is involved in tetrahydrofolate
biosynthesis (24), and thus is also a possible nonconditional
growth regulator.

Dose-Sensitive Metabolite Addiction with Minimal Burden. We first
tested the dose-sensitivity of the folP-glmM operon for regulating
growth when transcriptionally controlled by the AraC tran-
scription factor in response to its well-characterized inducer
L-arabinose (25). In our designs, we assumed that careful mo-
lecular titration of the actuating essential gene is critical for ef-
ficient control of growth: too high basal expression may result in
limited or no control of growth, whereas contrasting low basal
expression causes growth reductions (fitness cost) even in the
presence of intentional intracellular product concentrations.
Therefore, to limit the basal burden of the system (design cri-
terion 3) and also balance expression to a level of dose-sensitive
growth regulation, we generated a small pool of translational and
transcriptional variants in the ribosome-binding site (RBS)
strengths for folP and the product-responsive promoter (Fig. 2A).
We thus generated clone candidates by swapping the native es-
sential gene operon promoter with two responsive promoter
(pBAD) variants using lambda Red recombineering (26) (Materials
and Methods). Within the integration DNA constructs, we simul-
taneously introduced four different RBSs (SI Appendix, Table S4)
for folP, selected to span an interval in the low-expression region
(Fig. 2A) (27) to further increase chances of selecting an ideally
tuned clone. Due to our intended, nonconditional product de-
pendency, we directly fed the transformed clone candidates with
0.1–0.5% L-arabinose in LB agar plates and liquid medium (Ma-
terials and Methods). Indeed, in minimal M9 medium, we
observed different growth rates of the resulting clones, which
matched the different RBS strengths (Fig. 2B and SI Appen-
dix, Table S4). This indicated that folP was regulating growth
at dynamic levels. Three clones with high fitness, e3.5, e3.5m,
and e3.6, displayed addiction to L-arabinose in liquid cultures
(Fig. 2B) with various degrees of system fitness cost, com-
pared with the control strain AraC with wild-type folP-glmM
promoter. Clones with lower predicted folP RBS strength
were still L-arabinose–responsive yet screened out due to
much slower growth and, consequently, higher escape pro-
pensity. In the absence of L-arabinose, e3.5m displayed >40%
reduction in average growth rate (Fig. 2B), indicating signif-
icant addiction to L-arabinose. Furthermore, e3.5m appeared
to accommodate our design criterion 3 by very little growth
restriction in the presence of the sensed metabolite (Fig. 2B).
We further validated the growth response in complex tryptone-based
(2xYT) medium to demonstrate that addiction was not dependent
on nutrients lacking in our M9 minimal medium (SI Appendix,
Fig. S1).

Synthetic Addiction to Mevalonic Acid Biosynthesis. Utilizing the
least fitness-costly design for L-arabinose addiction (e3.5m), we
next wanted to develop a mevalonic-acid–addicted production
strain by shifting the biosensor to the mevalonic-acid–responsive
AraCmev (28). Mevalonic acid is an attractive chemical building
block for products such as fragrances and plastics and with
available high-performance heterologous pathways in Escherichia
coli (29, 30). AraCmev responds to mevalonic acid starting at
10 mM (1.5 g/L) exogenous mevalonic acid (28). Since in-
tracellular requirements should be lower, we hypothesized that
this system could match the productivities of current E. coli
mevalonic acid pathways at around 0.3 g/L/h (30). Due to our
nonconditional mevalonic acid addiction design, we wanted to
ensure early, sensor-saturating levels of mevalonic acid in the
production strain. We therefore engineered a constitutive ver-
sion of a known mevalonic acid pathway based on overexpressed
E. coli atoB and Lactobacillus casei mvaS and mvaE (30). Next,
we also supplied araCmev and finally recombineered the pBAD-
RBS-folP-glmM design of e3.5m into the chromosome. The
resulting strain, e3.9, would readily form colonies in the absence
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Fig. 1. Concept and design criteria of product addiction to prevent evolution
of an engineered pathway. (A) In product addiction, production cells are
equipped with a genetically encoded product biosensor that drives expression
of essential cell processes in response to product presence. This limits growth
of spontaneously nonproducing mutant cells, preventing evolution. (B) The
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in cell-wall peptidoglycan biosynthesis, as these processes function indepen-
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of supplied mevalonic acid, likely owing to efficient biosynthesis
of mevalonic acid (21 mM in broth) (Materials and Methods).

Product Addiction Prevents Production Declines on a Long-Term
Scale. To test the performance of our mevalonic acid addiction
system, we experimentally simulated durations of scale-up
from the master cell bank to large production bioreactors
(>200 m3 volume) by serial passaging (8) and compared the
addicted e3.9 strain to the nonaddicted control strain pe1 with
wild-type folP-glmM promoter. To avoid stationary-phase cul-
tures not commonly desired in industrial processes, we passaged
the four parallel lineages of each strain in exponential phase
strictly every 16 h for a total of 14 times, while freeze-storing
samples for subsequent analysis (Materials and Methods). A 2%
volume was transferred at each passage (0.3 × 108–0.9 × 108
cells) (Materials and Methods) to minimize the diversity-limiting
effects of passaging bottlenecks and hence also the potential bias in
evolutionary dynamics. At the beginning of the experimental sim-
ulation, pe1 and e3.9 displayed equal growth rates, dividing on av-
erage 5.5 times (generations) per passage (SI Appendix, Table S5)
in agreement with design criterion 3; however, toward the final
passages, pe1 lineages accumulated slightly more biomass per
passage (SI Appendix, Table S5), indicating a gain of fitness that
was absent for the product-addicted strain e3.9. To investigate
these dynamics, we quantified the population maximum growth
rates over the long-term experiment (Materials and Methods).
All pe1 lineages gradually increased maximum growth rates
until they reached a new stable plateau of nearly double max-
imum growth rates around generation 80 (Fig. 3A). This new
fitness state could result from a production load alleviated by

subpopulations of detrimental genetic variants as previously
described in long-term cultivations (8).
Next, we recultivated the stocked cell samples to investigate

the mevalonic acid production dynamics over the long-term ex-
periment. As designed for criterion 2, initial production in
product-addicted and nonaddicted strains was equal at, re-
spectively, 2.9 and 3.1 g/L mevalonic acid (Materials and Methods
and Fig. 3 B and D), corresponding to a yield of 0.38 g/g glu-
cose (70% of the theoretical maximum). However, in accor-
dance with their rising growth rates during the long-term
experiment (Fig. 3A), the pe1 lineages gradually lost mevalonic
acid production (Fig. 3B), likely due to selective enrichment of
nonproducing cells in the populations (8). Overall, these pro-
duction declines corresponded to a half-life of the population pro-
ductivity of 50 generations. In all four nonaddicted lineages,
mevalonic acid production ultimately fell to below 5% within the
accumulated 95 generations studied. In contrast, the four product-
addicted lineages of e3.9 retained their initial low growth rates and
effectively endured 95 generations without statistically significant
improvements of maximum growth rates (Fig. 3C). Coherent with not
gaining fitness, the four product-addicted lineages remained >95%
productive at the end of the large-scale simulated fermentation at
generation 95 (Fig. 3D). Thus, these addicted populations maintained
the functional metabolic pathway for a significantly prolonged culti-
vation period, postponing the beginning of a decline from 50 to at
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least 85 generations (Fig. 3 B and D). This gain corresponds to a
massive increase in terms of functional working volume due to ex-
ponential growth: 60 generations of cultivation would match the cell
divisions required to saturate a 200-m3 bioreactor at high cell density.
This evasion of otherwise evolving production declines strongly indi-
cates that the product addiction design functioned in the manner
intended, synthetically confining the cells to the otherwise unfavorable
state of high-yield metabolite production.

Product Addiction Limits Accumulation of Genetic Pathway
Heteroge-neities. Genetic heterogeneities in populations of
engineered bioproduction strains can be uncovered by matching
mathematical models with deep sequencing and algorithms for
population-level assessment of structural genetic variation and
SNPs (8). We wanted to explore whether the product addition
system suppressed accumulation of such genetic heterogeneities
in the population. Accordingly, we deep-sequenced (>1,000-fold
average coverage, SI Appendix, Table S6) the pathway populations
at three time points during the long-term experiment using short-
read (Illumina) DNA sequencing. We found that mobile elements
in the populations of the nonaddicted production lineages
enriched over the course of the simulated fermentations. They
reached 94–100% presence in the production plasmid populations
at the final sampling time (Fig. 4A), explaining well the simulta-
neous phenotypic observations of production decline (Fig. 3 A and
B). The plasmid disruptions were mediated by several different
mobile element subtypes from the host XL1 genome, yet were
mainly driven by insertion sequences (ISs) IS1 and IS10, which is
in agreement with our previous observations for bacterial meva-
lonic acid production, by a differently encoded production path-
way (8). In contrast, the pathway populations of the product-
addicted cells remained genetically intact, and mobile elements
were only observed at frequencies below 2% at the experimental
end point (Fig. 4A). These genetic observations support the hy-
pothesis that the product addiction system provides a sufficient
synthetic selection pressure to select against accumulation of the
otherwise detrimental mobile element insertions that abolish
biosynthetic capacity in full agreement with the observed
phenotypic dynamics (Fig. 3).
All 14 major position-resolved disruptions (Fig. 4) were me-

diated by IS1 (0.2–56%) and IS10 (36–93%), while 10 additional
mobile element subtypes had transposed from the host chro-
mosome into the plasmid populations at generation 86, however,
at frequencies below 0.1% (SI Appendix, Fig. S2).
In the populations of the product-addicted lineages, we de-

tected only four low-frequency disruptions (0.1–1.2%) at the
sequenced end point (Fig. 4B). One of these disruptions (IS1 in
atoB) was already present in equal frequencies at generation 46,
indicating that this allele can reside stably in the populations,
perhaps since atoB also exists in a complementary native chro-
mosomal copy and IS1 is known to transcriptionally activate
downstream genes (8, 31). These low-frequency disruptions do
not appear to affect population-level fitness and mevalonic acid
production (Fig. 3 C and D); however, such deep genetic dy-
namics could indicate the onset of future escapes.
We also analyzed the sensor plasmid populations by DNA

sequencing at high depth, as sensor mutations or disruptions
might render the essential gene operon constitutive since AraC
acts as both a repressor and an activator (32); however, in
agreement with the observed production stability, we did not
detect genetic heterogeneities in the sensor populations that
would explain an escape from engineered addiction.

Discussion
Synthetic product addiction is a concept for linking costly, high-
yield metabolite production to cellular growth by a product-
responsive biosensor regulating nonconditionally essential genes.
We have engineered and shown that such a design can prevent
formation of detrimental genetic heterogeneity and be implemented
without use of classical selection phenotypes (nutrient prototro-
phies or antibiotic resistance). Previous biosensor-based designs for

product monitoring have harnessed classical conditional selection
genes in library-wide selections (18, 19) and for enrichment of
phenotypic overproducing subpopulations (5); however, medium
amendments such as antibiotics are not feasible for most fermen-
tation products due to cost and regulatory restrictions (33). Instead,
using the endogenous selective pressure of carefully tuned essential
genes, we have shown that an addiction design can significantly
stabilize mevalonic acid production to industrially relevant cul-
tivation scales, despite a considerable production load of a high-
yielding pathway.
Although difficult to detect at a population level and on a

laboratory scale, evolution is a constraining factor in the per-
formance of bio-production strains (8, 12). Biosensor-based
product addiction is agnostic to the mechanisms of production
declines: By assessing the product, the concept works at the level
of the intended phenotypic outcome and thus redirects evolu-
tionary forces for the benefit of an engineered strain design.
Addressing such production declines mechanistically is normally
a research-intensive step in bioprocess development that faces
two fundamental biological factors, namely the spontaneous es-
cape rate from the engineered pathway (e.g., by mobile element
transposition, recombination, and replication errors) and the se-
lective production load (e.g., by metabolic toxicities and burdens
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of biosynthesis). A genome-reduced E. coli strain, MDS42, free of
mobile elements may, e.g., provide significant life-time extension
to dispensable heterologous pathways (34), although not neces-
sarily better starting-point production (8). Classic selection
schemes with biosensors (PopQC) can enrich phenotypically bet-
ter subpopulations (5), although this requires medium amend-
ments while the necessary tuning and potential to ensure favorable
evolutionary stability of such systems are unknown. Pathway
toxicities may be addressed using adaptive laboratory evolution
strategies or dynamic pathway activation (1, 35). Combined,
these approaches require significant strain redesign and insight
into the specific error modes, which makes systems for continu-
ously maintaining correct fermentation populations appealing.
Dynamic, nonconditional addiction to production is therefore an
attractive alternative strategy to avoid unpredictable, detrimental
error modes from limiting bioprocesses at scale.
Synthetic population maintenance should fundamentally re-

quire milder growth penalties than library-wide genetic screens,
which prompted our use of endogenous cell processes as growth
regulators, which are nonconditional in contrast to classical se-
lection genes (design criterion 1). We successfully used the folP-
glmM operon; however, other nonconditionally essential pro-
cesses such as polymerases, gyrases, or toxin/antitoxin systems
might also be useful. In designs for biocontainment of genetically
engineered organisms, cells have been addicted to supplemented
molecules, thereby preventing unintended environmental release
(36–39). Such systems have utilized conditional expression of
essential genes in circuits that rendered cells strictly viable only
under certain conditions such as enzyme redesign for synthetic
dependency on a nonconventional amino acid (37). Using en-
dogenous cell processes, we have demonstrated that synthetic
biology can be used to confine a cell to an engineered, costly
production genotype. To not unduly compromise bioprocess
economics, we evaluated the biosynthetic consequence of our
essential process perturbation to ensure that the initial isogenic
population did not lose production performance by pleiotropic
effects (design criterion 2).
An important consideration for synthetic selection designs are

the evolutionary forces that promote mutation of critical control
nodes. This risk has previously pointed to a need for redundantly
layered or toggled selections to prevent escapes due to a single
mutation (18, 19, 36). In product addiction, we aimed for such
redundancy by the coupling of two systems (production and its
addiction), which must mutate individually before escape, while
only the production system confers significant reduction in fitness
(design criterion 3). Growth restrictions would also delay biomass
formation and hence lower the overall process productivity, which
effectively increases the required bioreactor capacity (9). A
weakness of our system is the concurrent regulation of two es-
sential genes in an operon, which means that a single mutation in
the sensor promoter could cause escape despite two actuating
genes. However, we did not observe this in the present study,
likely due to our tuning of the system to minimize fitness cost.
Product addiction is best suited as a sentinel of product path-

ways that are active during phases of cellular growth and therefore
costly to maintain. This relation is also important since addiction
depends on sufficient sensor saturation. Pathways strictly active in
stationary growth phase may inherently experience lower genetic

instability and be incompatible with a product addiction scheme.
Implementation of product addiction systems requires a product-
responsive biosensor with a sensitivity that dynamically matches
the operational intracellular concentrations in the ideally
biosynthetic cells. Sensitivity becomes especially important as
extracellular product theoretically might diffuse to cross-feed
nonproducing cheater cells and consequently bypass the addic-
tion system. We therefore also searched for nonproductive
subpopulations by time-lapse deep sequencing and phenotypic
characterization of the fermentation lineages (Figs. 3 and 4) yet
did not observe evolving escapes in the addicted lineages. In-
dustrial practice of passing cultures to seed trains of increasing
volumes before final scale likely dilutes the product at early stages
(9). However, to bridge the sensitivity gap, sensor tuning may also
become important to selectively match the high intracellular
concentrations of commercialized cell factory strains, e.g., by di-
rected sensor evolution (40) or signal-processing buffers (41). Fur-
thermore, sensor mutagenesis by rational and random approaches
have lately shown success in changing transcription factor specificity
for recognition of new biological ligands (42, 43). This will be im-
portant to enable more matching pairs of sensors with high-yielding,
loaded metabolic pathways and bring molecular biosensors to work
in large-scale fermentations. Not only sensing for the pathway end
product, recent molecular or whole-cell biosensors may indeed
prove their worth in bioprocessing by, e.g., monitoring of lactate,
glycolytic flux or pH levels, and accordingly expand the applicability
of product addiction strategies (44, 45). In conclusion, we have
demonstrated the concept of a synthetic product addiction system,
which prevents genetic heterogeneities of nonproducing subpopu-
lations from forming in long-term fermentation with a high-yielding
mevalonic acid pathway. We anticipate that utilization of such
product addiction systems could significantly aid the robust in-
dustrial scale-up of bio-production pathways to maintain a wide
range of chemicals and cellular states.

Materials and Methods
Plasmids. Plasmids listed in Table 1 were used to generate E. coli strains, as
listed in Table 2. pBAM18spec was assembled by uracil excision cloning (SI
Appendix, SI Text 2).

Strains and Their Construction. E. coli XL1 (“XL1 Blue,” Agilent) was used as
host: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F′ proAB lacIq ZΔM15
Tn10 (Tetr)].

Standard chemical transformation or electroporation was used to
introduce plasmids to the strains listed in Table 2, while linear DNA was
introduced as described below.

Media. Standard M9 medium was M9 medium with 0.8% glucose and 0.4%
casamino acids. All media recipes given in SI Appendix, SI Text 3.

Cloning of Integration DNA for Promoter Replacement. Linear DNA for re-
placement of the essential gene promoter including four RBS variants was
generated by uracil-excision cloning of PCR fragments (SI Appendix, SI Texts
1 and 2).

Table 1. Plasmids used to generate strains

Plasmid Genetic features Source

pMVA1 PJ23100:atoB-mvaS-mvaE:t,
camR, p15A

8

pBAD18 araC, ampR, 25
pBAD18-Cm araC, camR 25
pBAM18spec araCmev, specR, This study
pKD46 L-Arabinose-inducible

lambda recombineering, orits, ampR
26

Table 2. Strains generated and analyzed in this study from an
E. coli XL1 parent

Strain Plasmid Encoded sensor
folP-glmM

promoter and RBS

araC pBAD18-Cm AraC WT
e3.5 pBAD18 AraC pBAD-RBS1
e3.6 pBAD18 AraC pBAD-RBS2
e3.5m pBAD18 AraC pBAD*-RBS1
e3.9 pMVA1, pBAM18spec AraCmev pBAD*-RBS1
pe1 pMVA1, pBAM18spec AraCmev WT

RBS sequences are specified in SI Appendix, Table S4.
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Chromosomal Engineering for Biosensor-Dependent Expression of Essential
Genes. Cells were engineered for biosensor-based metabolite-dependent
growth by recombineering assistedwith pKD46 by transformationwith linear
PCR-generated integration DNA encompassing the variants of responsive
pBAD and homologous targeting flanks (SI Appendix, SI Text 3).

Measurement of Growth Response to L-Arabinose. All strains were streaked on
LB agar supplemented with 0.2% arabinose to allow growth of addicted
strains, from which single colonies were grown to exponential phase and
inoculated in microtiter plate growth assay (SI Appendix, SI Text 3).

Continuous Growth of Mevalonic-Acid–Producing Strains. Four parallel line-
ages of pe1 and e3.9 were inoculated from single colonies into M9 medium,
which was cultured at 30 °C with horizontal shaking (250 rpm) in a Labnet
311DS incubator. For initial synchronization, individual first cultures were
taken out of the incubator for a few hours to reach approximately the same
OD600 at the time of passaging. Each culture was 25 mL in volume and was
grown for 16 h at 30 °C with horizontal shaking (250 rpm) in a Labnet 311DS
incubator. After 16 h, 0.5 mL of broth was passed into 25 mL of fresh medium
and incubated under the same conditions for another 16 h. An OD600 reading on
the Synergy H1 plate reader was taken to monitor growth progression (SI Ap-
pendix, Table S5) and ensure that the culture was still in exponential growth
phase and avoid a subsequent lag phase. Upon each passage to fresh medium, a
glycerol stock of each culture was stored at −80 °C. Broth culture (1.8 mL) was
freeze-stored for subsequent deep DNA sequencing.

Deep DNA Sequencing and Analysis. Production plasmid populations were
purified from chosen time points. The plasmid populations were prepared for
Miseq sequencing using the Nextera XT v2 set A kit (Illumina) according to the
manufacturer’s instructions with the addition of two extra “limited-cycle
PCR” cycles. Sequencing was performed in a pooled run with a 150-bp
paired-end reading (SI Appendix, SI Text 3).

Measurement of Mevalonic Acid Production and Population Growth Rate. Fol-
lowing the simulated fermentation, each population sample from a 25-μL
glycerol stock was used to inoculate 15 mL of M9 medium, and the culture
was incubated at 30 °C with shaking at 250 rpm in a Labnet 311DS in-
cubator for 100 h. Subsequently, mevalonic acid was quantified on an
Ultimate 3000 HPLC running a 5-mM sulfuric acid mobile phase on an
Aminex HPX-87H ion exclusion column (SI Appendix, SI Text 3). Maximum
population growth rates were measured in a microtiter plate reader in-
oculated from the production cultures (SI Appendix, SI Text 3).
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