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A B S T R A C T

Background: Uncorrected refractive error is a major cause of vision impairment worldwide and its increasing prevalent necessitates effective screening and man-
agement strategies. Meanwhile, deep learning, a subset of Artificial Intelligence, has significantly advanced ophthalmological diagnostics by automating tasks that
required extensive clinical expertise. Although recent studies have investigated the use of deep learning models for refractive power detection through various imaging
techniques, a comprehensive systematic review on this topic is has yet be done. This review aims to summarise and evaluate the performance of ocular image-based
deep learning models in predicting refractive errors.
Main text: We search on three databases (PubMed, Scopus, Web of Science) up till June 2023, focusing on deep learning applications in detecting refractive error from
ocular images. We included studies that had reported refractive error outcomes, regardless of publication years. We systematically extracted and evaluated the
continuous outcomes (sphere, SE, cylinder) and categorical outcomes (myopia), ground truth measurements, ocular imaging modalities, deep learning models, and
performance metrics, adhering to PRISMA guidelines. Nine studies were identified and categorised into three groups: retinal photo-based (n ¼ 5), OCT-based (n ¼ 1),
and external ocular photo-based (n ¼ 3).
For high myopia prediction, retinal photo-based models achieved AUC between 0.91 and 0.98, sensitivity levels between 85.10% and 97.80%, and specificity levels
between 76.40% and 94.50%. For continuous prediction, retinal photo-based models reported MAE ranging from 0.31D to 2.19D, and R2 between 0.05 and 0.96. The
OCT-based model achieved an AUC of 0.79–0.81, sensitivity of 82.30% and 87.20% and specificity of 61.70%–68.90%. For external ocular photo-based models, the
AUC ranged from 0.91 to 0.99, sensitivity of 81.13%–84.00% and specificity of 74.00%–86.42%, MAE ranges from 0.07D to 0.18D and accuracy ranges from 81.60%
to 96.70%. The reported papers collectively showed promising performances, in particular the retinal photo-based and external eye photo -based DL models.
Conclusions: The integration of deep learning model and ocular imaging for refractive error detection appear promising. However, their real-world clinical utility in
current screening workflow have yet been evaluated and would require thoughtful consideration in design and implementation.
1. Introduction

Uncorrected refractive error (URE) is one of the leading causes of
vision impairment (VI) globally,1–3 accounting for 101.2 million cases of
moderate to severe visual impairment and 6.8million cases of blindness.4

Left untreated, URE reduces quality of life and productivity and increased
risk of falls.5–8 The number of VI due to uncorrected refractive error is
expected to rise.5–8 This escalating trend underscores a growing public
health concern, highlighting the need for effective screening and
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Deep learning, a subset of artificial intelligence, has significantly
influenced ophthalmology. It demonstrates high efficacy in diagnosing
various eye conditions such as diabetic retinopathy,10,11 age-related
macular degeneration,12–14 cataract15,16 and glaucoma.17 Deep learning
has the potential to enhance screening efficiency. Remarkably, their
performance often match or even surpass that of expert-level assess-
ments. Additionally, deep learning enhances diagnostic accuracy and
efficiency, offering early disease detection. It can potentially facilitate
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remote screening and integration with telemedicine, thus expanding
access to eye care, particularly in underserved regions. However, in the
domain of refractive error detection, although several research groups
have explored using deep learning models with various imaging modal-
ities such as fundus images, ultra-widefield fundus images, photo-
refraction images, ocular appearance images, and optical coherence
tomography (OCT) images,18–26 a comprehensive systematic review of
these efforts has not yet been performed.

Therefore, this review evaluates deep learning for detecting refractive
errors using ocular images, highlighting its significance and practical
utility, and providing insights for future research and clinical
applications.

2. Methods

This systematic review was written in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analysis (PRISMA)
guidelines. The protocol was registered in PROSPERO (reg.
CRD42023395772). Institutional review board approval was not
required for this study as it involved the use of data extracted from the
literature available in the public domain.
2.1. Search strategy and inclusion criteria

In this systematic review, we searched the databases (PubMed, Sco-
pus and Web of Science) from inception till June 13, 2023. Search terms
specific to the domains of this systematic review were identified by the
team. Firstly, search terms of "Artificial intelligence" and "Deep learning"
were used. Secondly, for search terms related to refractive error, we used
terms such as "Myopia", "Hyperopia", "Myope", "Hyperope" and "Astig-
matism". Lastly, for search terms related to ocular images, we used terms
such as "Retinal images", "Retinal", "Retina", "Fundus", "OCT", "Optical
Coherence Tomography", and "Ocular images". Boolean operators of "OR"
and "AND" were utilised to enhance the scope of studies eligible for
screening. Details of the search terms are listed in Table. 1.

As part of our inclusion criteria, included studies had to be available
in full text, published in English and reported refractive error outcomes.
The year of publication was not restricted. We excluded studies that were
reported as surveys, case reports, editorials, opinions. Studies which only
reported findings on detection of pathological myopia disease, were also
Table 1
Search Strategies Deployed in this Systematic Review.
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excluded.

2.2. Data extraction and analysis

Screening of reports and data extraction were performed and cross-
checked by SYME and CYB. If there were disagreements between
YSME and CYB, senior author (TYC) was consulted. Data extracted
included study setting details (first author, year of publication), study
population (sample size of training database, internal database, and
external database), input modalities [fundus images, ultra-widefield
fundus images, photorefraction images, external ocular appearance im-
ages and, OCT images], output modalities (e.g. spherical equivalent (SE),
sphere, cylinder, classification of myopia, high myopia, etc), types of
deep learningmodel used (name of neural network), types of models (e.g.
binary, regression, and classification), and study results (performances of
the reported deep learning algorithm). From the included studies, the
area under the receiver operating characteristic curve (AUC), accuracy,
sensitivity, specificity, mean absolute error (MAE), and coefficient of
determination (R2) were summarised in Tables 2-4.

During the initial literature search, a total of 417 records were
retrieved. 111 were from PubMed, 163 from Scopus and 143 were from
Web of Science. Among the 417 records identified, 116 duplicate records
were removed, leaving 301 articles for review based on the titles and
abstract. We excluded 114 articles from this process, leaving 187 articles
to be assessed for eligibility. We further excluded 178 articles due to it
not relating to refractive error outcomes. After further review, 9 studies
were ultimately included in this systematic review paper (Fig. 1).

2.3. Risk of bias

We tailored the QUADAS-2 tool specifically for this review to assess
the quality of the included studies. Data extraction and risk of bias
assessment were independently conducted by two authors (YSME and
CYB), with discrepancies reviewed and resolved by a senior author (TYC)
to ensure the integrity and reliability of the assessment process.

3. Results

Of the 9 included studies, 3 were retinal photo-based deep learning
algorithms, 2 were based on ultra-wide field fundus photo, 1 was based



Table 2
Summary of the characteristic of the included studies.

Author, Year AI Output GT Measurement GT Definition Input Modalities Deep Learning Model Used Models type

1 Tan et al.,
202120

High myopia Non-cycloplegic
autorefraction and
subjective
refraction

High myopia: SE of
�6.00D or higher
and/or AL of 26.0
mm or more

Retinal fundus images ResNet-101 Binary

2 Varadarajan
et al., 201821

SE
Sphere
Cylinder

Non-cycloplegic
autorefraction and
subjective
refraction

NA Retinal fundus images Combined ResNet and Soft-
attention

Regression

3 Zou et al.,
202226

Sphere
Cylinder

Cycloplegic
subjective
refraction

NA Retinal fundus images Fusion model-based deep
learning system (FMDLS)

FMDLS (using
eigenvector
without age
parameter)

4 Shi et al.,
202119

SE Cycloplegic
refraction

NA Ultra-widefield fundus images Attention Dense block that
combines the advantages of
dense connection and
Residual Squeeze-and-
Excitation (Res-SE1)

Regression

5 Yang et al.,
202223

SE Non-cycloplegic
subjective
refraction

NA Ultra-widefield fundus images ResNet-50, InceptionV3
Inception-ResNet-v2

Regression

6 Yoo et al.,
202225

SE
High myopia
and moderate
myopia and
wore

Non-cycloplegic
subjective
refraction

High myopia: SE �
�6.00 D Moderate
myopia and worse:
SE � �3.00D

OCT images ResNet50, inceptionV3,
and VGG16 as feature
extractors.

Regression and
Multiclass-
classification

7 Chun et al.,
202018

Different
classes of
refractive
error

Cycloplegic
retinoscopy

7 classes of
refractive error:
High myopia:
��5.00D
Moderate myopia:
>�5.00D and
��3.00D
Mild myopia:
>�3.00D and
��0.50D
Emmetrope:
<�0.50D and
<þ0.50D
Mild hyperopia:
�þ0.50D and
<þ3.00D
Moderate
hyperopia:
�þ3.00D and
<þ5.00D
High hyperopia:
�þ5.00D

Photorefraction images, acquired
using a smartphone

ResNet-18 Multiclass-
Classification

8 Xu et al.,
202222

SE
Sphere
Cylinder
High Myopia

Non-cycloplegic
autorefraction

Photorefraction images, acquired
using a Basler ace 2 camera

Refractive Error Detection
Network (REDNet),
combining CNN and
recurrent CNN.

Regression and
Binary

9 Yang et al.,
202024

Myopia Non-cycloplegic
autorefraction

Myopia is defined as
SE � �0.50D

External eye photographs, with 3
angles taken (from the side, 45-de-
gree angle front, and front), acquired
using smartphones and a digital
single-lens reflex (DSLR) camera

VGG-Face model Binary

AI ¼ artificial intelligence. AL ¼ axial length. GT ¼ ground truth. SE ¼ spherical equivalent. OCT ¼ ocular coherence tomography.
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on OCT image, and 3 were based on external ocular images. All of the 9
studies evaluated the performance of deep learning models in predicting
refractive error, however, the outputs differ slightly. Of these, 4 studies
investigated the use of deep learning algorithms to predict continuous
outcomes such as SE power, sphere, cylinder and axis. 3 studies explored
the predictive capabilities of these models for binary or categorical out-
comes (e.g. high myopia, myopia and, classification of myopia and hy-
peropia). The remaining 2 studies assessed the efficacy of various deep
learning models in predicting both binary/categorical and continuous
outcomes. The characteristics and datasets used in these 9 included
studies were summarised in Tables 2 and 3
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3.1. Retinal photo-based deep learning algorithms for detection of
refractive error

It is known that refractive error is associated with retinal fundus
changes (e.g. tessellated fundus, myopia-related fundus changes
etc.).27,28 Based on this rationale, several retinal photo-based deep
learning algorithms were developed for automated detection of refrac-
tive error. In our literature review, 3 deep learning studies reported the
use of standard fundus images (30–50� imaging field of view) as input
modalities to detect refractive error. These results are summarised in
Table 4.



Table 3
Source of dataset and number of images reported in the included studies.

Author, Year Train (data source, images) Internal Test (data source, images) External Test (data source, images)

1 Tan et al., 202120 Total:
13751
SEED: 13482
SNEC: 269

Total:
5840
SEED: 5750
SNEC: 90

SE of -6.00D or worse
Total: 206080
Test Dataset 1: BES: 5673
Test Dataset 2: HES: 11985
Test Dataset 3: CIEMS: 6,552, UEMS: 7781,
and CGMH: 776
Test Dataset 5: UKBB: 173313
AL of 26.0 mm or more
Total: 17658
Test Dataset 1: BES: 5673
Test Dataset 2: HES: 11985

2 Varadarajan et al.,
201821

Total:
226870
UKBB: 96081
AREDS: 130789

Total:
31155
UKBB: 23520
AREDS: 7635

NA

UKBB: 96081 UKBB: 23520 NA
3 Zou et al., 202226 Tianjin Eye Hospital of Nankai University, China:

7086
Tianjin Eye Hospital of Nankai University, China:
787

NA

4 Shi et al., 202119 China Aier Eye Hospital & Southern Medical
University, China: 22692

China Aier Eye Hospital & Southern Medical
University, China: 600

NA

5 Yang et al., 202223 Eye & ENT Hospital of Fudan University, China:
790

Eye & ENT Hospital of Fudan University, China:
197

Eye & ENT Hospital of Fudan University,
China: 133

6 Yoo et al., 202225 B&VIIT Eye Center, Korea: 688 B&VIIT Eye Center, Korea: 248 NA
7 Chun et al., 202018 Samsung Medical Center, Korea: 213 Samsung Medical Center, Korea: 61 NA
8 Xu et al., 202222 Unknown source: 3907 Unknown source: 1000 NA
9 Yang et al., 202024 Myopia Artificial Intelligence Program, China:

1763
Myopia Artificial Intelligence Program, China:
587

100

SEED¼ Singapore Epidemiology of Eye Disease. SNEC¼ Singapore National Eye Center. SE¼ Spherical Equivalent. BES¼ Beijing Eye Study. HES¼Handan Eye Study.
CIEMS ¼ Central India Eye and Medical Study. UEMS¼ Ural Eye and Medical Study. CGMH¼ Chang Gung Memorial Hospital. UKBB¼ United Kingdom BioBank. AL¼
axial length. AREDS ¼ Age-Related Eye Disease Study.
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Using retinal photos, Tan et al. (2021) developed ResNet-101 binary
model to detect presence of high myopia.20 In this study, high myopia
was defined based on SE of �6.00D or worse or based on axial length
(AL) of�26 mm. For SE-defined high myopia detection, using an internal
test set of 5840 images, the reported system achieved an AUC of 0.98,
sensitivity of 91.30% and specificity of 94.50%. In 4 external test sets
consisting of a total 206,080 images, the model achieved AUCs ranging
from 0.91 to 0.97, sensitivity values of 85.30%–92.70%, and specificity
values of 80.80%–95.50%. For detection of AL-defined high myopia,
based on the same internal test set, the model achieved an AUC of 0.95,
sensitivity of 85.10% and specificity of 91.30%. In two external test sets
of total 17568 images, the model achieved AUC of 0.96–0.97, sensitivity
of 94.4%–97.8%, and specificity of 76.4%–88.1%.

In another study, Varadarajan et al. (2018) developed Combined
ResNet and Soft-attention regression model to predict refractive error
power (SE, sphere, and cylinder).21 For SE power prediction, based on 2
internal test sets consisting of 31155 images, the model achieved MAE of
0.56D to 0.91D, and R2 of 0.69–0.90. For sphere power prediction, using
an internal test set of 23520 images, the model achieved MAE of 0.63D
and R2 of 0.88. For cylinder power prediction, using the same internal
test set of 23520 images, the model achieved MAE of 0.43D and R2 of
0.05. However, there was no external validation performed in this study.

Zou et al. (2022) developed a fusion model-based deep learning
system (FMDLS) to predict cycloplegic sphere and cylinder power.26 The
FMDLS was built using both a regression and classification model. For
sphere power prediction, using an internal test set of 787 images, the
model achieved a MAE of 0.63D and R2 of 0.66. For cylinder power
prediction, using the same internal test set, the model achieved a MAE of
0.31D and R2 of 0.65. External validation was not performed in this
study.

On the other hand, there were 2 studies which used ultra-widefield
fundus images as input modalities to detect refractive error (Table 2).
Ultra-widefield fundus provides a wider imaging field of view (up to
200�) and contains more peripheral fundus information (e.g. peripheral
degenerative changes in myopes). Shi et al. (2021) used Attention Dense
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Block regression model to predict cycloplegic SE.19 For SE power pre-
diction, based on an internal test set of 600 images, the model achieved a
MAE of 1.12D. There was no external validation in this study.

In addition, using ultra-wide field fundus images, Yang et al. (2022)
reported the performances of ResNet-50, Inception-v3 and Inception-
ResNet-v2 models in predicting SE power.23 Based on an internal test
set of 197 images, the ResNet-50 model achieved an MAE of 1.72D and
R2 of 0.96; the Inception-v3 achieved model achieved an MAE of 1.75D
and R2 of 0.96; and the Inception-ResNet-v2 achieved an MAE of 1.76D
and R2 of 0.96. Based on an external test set of 133 images, the ResNet-50
model achieved MAE of 1.94D and R2 of 0.93; the Inception-v3 model
achieved a MAE of 1.79D and R2 of 0.92; and the Inception-ResNet-v2
model achieved a MAE of 2.19D and R2 of 0.93.
3.2. OCT-based deep learning algorithms for detection of refractive error

Past studies had shown that degree of refractive error can influence
OCT measurement.29–31 Based on this rationale, using OCT images as
input modalities, Yoo et al. (2022) developed deep learning algorithms to
detect refractive error (Table 2). Using horizontal and vertical OCT
B-scan images as inputs, Yoo et al. (2022) reported the performances of
developed CNN models which included the ResNet50, InceptionV3, and
VGG16 in predicting SE power, and classifying moderate and high
myopia.25

For SE power prediction, using an internal test set of 248 horizontal
OCT B-scan images, the ResNet50 model achieved aMAE of 2.66D and R2

of 0.35, the InceptionV3 model achieved a MAE of 2.68D and R2 of 0.34;
and the VGG16model achieved aMAE of 2.71D and R2 of 0.34. Similarly,
based on 248 vertical OCT B-scan images, ResNet50 achieved MAE of
2.75D and R2 of 0.33; InceptionV3 achieved MAE of 2.76D and R2 of
0.32; and VGG16 achieved MAE of 2.79D and R2 of 0.32. For detection of
moderate myopia and worse, using an internal test set of 248 horizontal
OCT images, ResNet50 achieved an AUC of 0.79, accuracy of 79.80%,
sensitivity of 82.30%, and specificity of 68.90%. Based on the same in-
ternal test set, for high myopia detection, the ResNet50 model achieved



Table 4
Results of deep learning performance in detecting refractive error reported in the included studies.

Author, Year Outcome Performance

Internal External

AUC Se (%) Sp (%) MAE (D) R2 Acc (%) AUC Se (%) Sp (%) MAE (D) R2 Acc (%)

1 Tan et al., 202120 Binary:
SE of �6.00D or higher

0.98 91.3 94.5 NA NA NA 0.91–0.97a 85.3–92.7a 80.8–95.5a NA NA NA

Binary:
AL of 26.0 mm or more

0.95 85.1 91.3 NA NA NA 0.96–0.97b 94.4–97.8b 76.4–88.1b NA NA NA

2 Varadarajan et al., 201821 Continuous:
SE (Train on UKBB and AREDS)

NA NA NA 0.56–0.91c 0.69–0.90c NA NA NA NA NA NA NA

Continuous:
Sphere (Train on UKBB only)

NA NA NA 0.63 0.88 NA NA NA NA NA NA NA

Continuous:
Cylinder (Train on UKBB only)

NA NA NA 0.43 0.05 NA NA NA NA NA NA NA

3 Zou et al., 202226 Continuous:
Sphere

NA NA NA 0.63 0.66 NA NA NA NA NA NA NA

Continuous:
Cylinder

NA NA NA 0.31 0.65 NA NA NA NA NA NA NA

4 Shi et al., 202119 Continuous:
SE

NA NA NA 1.12 – NA NA NA NA NA NA NA

5 Yang et al., 202223 Continuous:
SE (Model: ResNet-50)

NA NA NA 1.72 0.96 NA NA NA NA 1.94 0.93 NA

Continuous:
SE (Model: Inception-v3)

NA NA NA 1.75 0.96 NA NA NA NA 1.79 0.92 NA

Continuous:
SE (Model: Inception-ResNet-v2)

NA NA NA 1.76 0.96 NA NA NA NA 2.19 0.93 NA

6 Yoo et al., 202225 Continuous:
SE (Model: ResNet50)

NA NA NA 2.66–2.75d 0.33–0.35d NA NA NA NA NA NA NA

Continuous:
SE (Model: Inception-v3)

NA NA NA 2.68–2.76d 0.32–0.34d NA NA NA NA NA NA NA

Continuous:
SE (Model: VGG16)

NA NA NA 2.71–2.79d 0.32–0.34d NA NA NA NA NA NA NA

Binary:
Moderate and worse myopia (Model: ResNet50)

0.79 82.3 68.9 NA NA 79.8 NA NA NA NA NA NA

Binary:
High myopia (Model: ResNet50)

0.81 87.2 61.7 NA NA 71.4 NA NA NA NA NA NA

7 Chun et al., 202018 Multiclassification:
7 different classes of refractive errore

NA NA NA NA NA 75.0–83.3f NA NA NA NA NA NA

8 Xu et al., 202222 Binary:
High myopia

0.99 97.19 96.97 NA NA 97.13 NA NA NA NA NA NA

Continuous:
Sphere

NA NA NA 0.17 – 89.5 NA NA NA NA NA NA

Continuous:
Cylinder

NA NA NA 0.07 – 96.7 NA NA NA NA NA NA

Continuous:
SE

NA NA NA 0.18 – 89.38 NA NA NA NA NA NA

9 Yang et al., 202024 Binary:
Myopia

0.93 81.13 86.42 NA NA NA 0.91 84.0 74.0 NA NA NA

AUC¼ Area Under Curve. Se¼ Sensitivity. Sp ¼ Specificity. MAE ¼ Mean Absolute Error. R2¼ Coefficient of determination.
a ¼ Range of performance across the 4 datasets.
b ¼ Range of performance across the 2 datasets.
c ¼ Range of performance across UKBB and AREDS.
d ¼ Range of performance across horizontal and vertical OCT B-scan.
e ¼ The 7 different classes are � �5.00D, > �5.00D and � �3.00D, > �3.00D and � �0.50D, < �0.50D and < þ0.50D, � þ0.50D and <þ3.00D, � þ3.00D and < þ5.00D, � þ5.00D.
f ¼ The accuracy range in the 7 different classes.
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Fig. 1. PRISMA flow diagram.
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an AUC of 0.81, accuracy of 71.40%, sensitivity of 87.20%, and, speci-
ficity of 61.70%. There was no external validation in this study.
3.3. External ocular photo-based deep learning algorithms for detection of
refractive error

In addition, these were 3 studies which used external eye images
(photorefraction images and ocular appearance images) as input mo-
dalities to detect refractive error. These results are shown in Table 4.

Chun et al. (2020) captured external eye photographs using a
smartphone coupled with flash illumination. The acquired photos
showed the type and position of ocular reflectance images known as
photorefraction images. Using these photorefraction images as inputs,
Chun et al. (2020) developed a ResNet-18 multiclass-classification model
to detect cycloplegic refractive error.18 In this study, refractive error was
further classified into 7 classes. High myopia was defined as � �5.00D;
moderate myopia as > �5.00D to � �3.00D; mild myopia as > �3.00D
to � �0.50D; emmetrope as < �0.50D to < þ0.50D; mild hyperopia
defined as � þ0.50D to < þ3.00D; moderate hyperopia as � þ3.00D to
< þ5.00D; and high hyperopia as � þ5.00D. For all classes of refractive
error, internal test set of 61 images were used. Based on a 5-fold
cross-validation method, the system achieved 80.0% accuracy for high
myopia, 77.8% accuracy for moderate myopia, 82.0% accuracy for mild
myopia, 83.3% accuracy for emmetrope, 82.8% accuracy for mild hy-
peropia, 79.3% accuracy for moderate hyperopia, and 75.0% accuracy
for high hyperopia. The overall accuracy of the multiclass-classification
model reached 81.6% and mean accuracy reached 80.03%. However,
no external validation was performed in this study.

On the other hand, using the Basler ace 2 camera device with infrared
illumination, Xu et al. (2022) acquired photorefraction images and
developed a REDNet model to predict sphere and cylinder power, and
detect presence of highmyopia (SE<�6.00D).22 Using an internal test of
1000 photorefraction images, REDNet-sphere power prediction achieved
a MAE of 0.17D and accuracy of 89.5%, REDNet-cylinder power pre-
diction achieved a MAE of 0.07D and accuracy of 96.7% and REDNet-SE
prediction achieved a MAE of 0.18D and accuracy of 89.38%. Using the
same internal test, for the detection of high myopia, the model achieved
AUC of 0.99, accuracy of 97.13%, specificity of 97.19%, and sensitivity of
169
96.97%.
In addition, Yang et al. (2020) utilised external eye images taken from

3 different angles (from the side, 45-degree angle front, and front) and
developed a VGG-Face model for detection of myopia (defined as SE of�
�0.50D).24 Using an internal test set of 587 images, the model achieved
an AUC of 0.93, sensitivity of 81.13%, and specificity of 86.42%. Based
on an external test set of 100 images the model achieved an AUC of 0.91,
sensitivity of 84.0%, and specificity of 74.0%.
3.4. Risk of bias

Supplementary Fig. 1 shows a summary of the quality assessment. In
the patient selection domain, one of the nine studies were assessed as
having an unclear risk of bias due to unspecified sources of photo-
refraction images used in algorithm development. The remaining studies
clearly described their data sources and exclusion criteria, resulting in a
low risk of bias. Applicability concerns for patient selection were low
across all studies.

In the domain of index tests, all the studies were evaluated as having a
low risk of bias and low applicability concerns because the tests used
were appropriate and relevant for the study conditions. In the reference
standard domain, all studies provided clear and adequate ground truth
labels for refractive errors. These labels were based on established
diagnostic criteria, indicating a low risk of bias and low applicability
concerns. Similarly, in the flow and timing domain, all studies were
considered to have a low risk of bias and applicability concerns, as all
subjects received the reference standard and were included in the
analysis.

Overall, the quality assessment indicates that the studies included in
this review generally maintain high methodological standards with low
risks of bias and low concerns regarding the applicability of their
findings.

4. Discussion

4.1. Main findings

Through rigorous evaluation of the currently available literature, we
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have analysed and summarised its performance. Overall, majority of the
aforementioned papers reported promising performances, with standard
retinal fundus images and external eye photo-based deep learning models
producing better performances as compared to other imaging modalities
such as wide-field retinal imaging and OCT.

We noted that the ultra-widefield-regression-based predictive accu-
racy (Shi et al., 2021: MAE: 1.12D for SE; Yang et al., 2022: 1.72 to 1.76D
for SE) is poorer compared to standard-regression-based retinal images
(Varadarajan et al., 2020: MAE: 0.56 to 0.91D for SE, MAE: 0.63D for
Sphere; Zou et al., 2022: MAE: 0.63D for Sphere). Several factors could
explain this discrepancy. Firstly, we postulated that ultra-widefield
fundus imaging captures a broader field of view ultra-widefield fundus
imaging captures a broader field of view, the peripheral regions tend to
have more artefacts, which may inherently produce more noise, thus
resulting in higher MAE value. Yang et al. (2022) encountered artefacts
such as shadows and colour casts, which are common in ultra-widefield
imaging. In contrast, Shi et al. (2021) cropped their images, resulting in a
loss of resolution. These issues introduce noise, leading to poorer results.
Secondly, the models using ultra-widefield images had smaller training
sample sizes (790–22692 images) compared to those using standard
images (7086 to 226870 images), which may have contributed to the
poorer performance of ultra-widefield-based deep learning models.
Moreover, we observed that Yang et al. (2022) reported high MAE
values, yet also showed high R2 values (�0.92), which seems contra-
dictory. It is unlikely for a model with large prediction errors (high MAE)
to also explain a large portion of the variability in the data (high R2).
Typically, high MAE indicates large prediction errors, which would
correspond to lower R2 values, thus further analysis is needed to eluci-
date this aspect in the study. Consequently, the results should be inter-
preted with caution.

The OCT-based deep learning model study by Yoo et al. (2022) re-
ported the poorest performance in detecting refractive error. Critically,
axial length, a key factor strongly associated with myopia,32 was not
considered in their analysis. This significant exclusion may impact the
model's accuracy. Incorporating axial length into model development or
post-analysis may improve predictive accuracy.

Lastly, deep learning models based on external eye photos, using
photorefraction images18,22 (taken with infrared cameras and smart-
phones) and anterior eye images24 (taken with various types of cameras,
including smartphones), have good results, Notably, Xu et al. (2022)
reported exceptional performance in predicting refractive error,
achieving a high AUC of 0.99 and a low MAE ranging from 0.07D to
0.18D. Although anterior eye images are not commonly used in clinical
settings, they offer the convenience of home acquisition. The widespread
use of smartphones could potentially improve accessibility and afford-
ability of vision care, especially in resource-limited settings. This method
is also beneficial for young patients and those with mobility issues.
Nonetheless, photorefraction imaging requires precise distances, angles,
and specific infrared illumination, which may hinder widespread
adoption.
4.2. Strengths

To our knowledge, this is the first systematic review to comprehen-
sively evaluate the performance of various ocular image-based deep
learning models in detecting refractive error. We identified appropriate
search terms and carefully reviewed and extracted the relevant literature.
We tailored the QUADAS-2 tool specifically for this study. Data extrac-
tion and risk of bias assessment were performed by two review authors
(YSME and CYB), with any discrepancies reviewed by a senior author
(TYC), thereby ensuring a robust and unbiased evaluation process.
Through the QUADAS-2 assessment, all included studies demonstrated a
low risk of bias, indicating high methodological quality. All studies had
appropriate patient selection, index test, reference standard, and flow
and timing, ensuring the reliability of their findings.
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4.3. Limitations

As summarised in , the definition of myopia and the measurement of
refractive error (e.g., with or without cycloplegia) vary across the
models. Additionally, the performance metrics (e.g., AUC, MAE, etc.) for
refractive error predictions differ among the nine included studies. Due
to these discrepancies, direct comparison of these deep learningmodels is
challenging. Some studies also have relatively smaller sample sizes in
both training and testing datasets, which may affect the robustness of
their algorithms. Furthermore, although all the studies did conduct in-
ternal test, the lack of external validation shows uncertainty in the
generalization of models. Therefore, further validation work is needed to
evaluate their performance.

The resolution of input images is critical for algorithm performance,
with higher-quality images yielding better results.33 However, in a
community or primary care setting, images may be taken with different
cameras, resulting in varying image quality. Most of the cameras
mentioned in the included papers are traditional non-portable fundus
camera, raising concerns about the generalizability of these algorithms.
Future work should evaluate the utility in real-world settings, such as
community screenings, primary care, and tertiary eye hospitals. In this
regard, further refinement is needed to ensure that algorithm's perfor-
mance can remain intact even when images are acquired from different
camera types. Addressing these issues would help to further enable
real-world deployment in the future.
4.4. Future outlook

In light of these findings, potential future implementation of refrac-
tive error-based deep learning model may concentrate on utilising stan-
dard retinal photos as image inputs. Ocular imaging techniques play a
fundamental role in the diagnosis andmanagement of a wide range of eye
conditions. Standard retinal fundus imaging is widely used in global
vision screening programs for diabetic retinopathy, notably in countries
like the United Kingdom and the United States.34 This paves the way for
opportunistic screening. Within environments where retinal imaging
infrastructure is already in place, the same images originally intended for
use can be harnessed for the assessment of refractive errors using deep
learning algorithms. This complementary approach can potentially
enhance screening effectiveness, particularly in distinguishing between
visual impairments arising from refractive errors or underlying eye dis-
eases. This could help improve screening efficiency, provide early
detection and treatment, and improve quality of life. Conversely, OCT
imaging demonstrated the least effective performance, followed by
ultra-widefield imaging, and both are less accessible for screening.
Additionally, external eye imaging is not commonly practiced in clinics.
Therefore, standard retinal imaging, being more widely used, could be
more viable for opportunistic screening.
4.5. Remaining gaps and challenges

The practicality of integrating retinal images and deep learning al-
gorithm for refractive error prediction warrants careful consideration.
Traditional methods such as auto-refraction and visual acuity tests are
affordable and user-friendly. However, challenges persist, particularly in
rural areas, due to the need for well-lit spaces, good communication
skills, and skilled clinical staff to perform these tests. A streamlined
approach involving a single, user-friendly device, such as a portable
fundus camera incorporated with deep learning, may improve screening
efficiency. This approach requires only one operator and could be
effectively adapted for opportunistic screening of refractive errors.
Overall, while deep learning models are capable of detecting refractive
errors, it is prudent to explore the practicality and effectiveness of this
innovative approach in a real clinical setting to fully ascertain its po-
tential benefits.
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5. Conclusions

Findings from this review offers a thorough insight into the capabil-
ities of various ocular image-based deep learning algorithms for detect-
ing refractive errors. The performance of each ocular imaging method
varies. Retinal imaging demonstrated superior performance, emerging as
more viable choice for opportunistic screening.

From a technical standpoint, further research is necessary to validate
these algorithms in broader populations and in practical screening en-
vironments, where image acquisition often presents greater challenges.
Exploring various types of deep learning models could also address po-
tential biases arising from imbalanced datasets.

Overall, while the integration of deep learning model and ocular
imaging for refractive error detection appear promising, especially for
opportunistic screenings, their real-world clinical utility and imple-
mentation still demand further thoughtful design and implementation
planning.
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