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Abstract

The 2007-2008 financial crisis solidified the consensus among policymakers that a macro-prudential approach to
regulation and supervision should be adopted. The currently preferred policy option is the regulation of capital
requirements, with the main focus on combating procyclicality and on identifying the banks that have a high systemic
importance, those that are “too big to fail”. Here we argue that the concept of systemic risk should include the
analysis of the system as a whole and we explore systematically the most important properties for policy purposes of
networks topology on resistance to shocks. In a thorough study going from analytical models to empirical data, we
show two sharp transitions from safe to risky regimes: 1) diversification becomes harmful with just a small fraction
(~2%) of the shocks sampled from a fat tailed shock distributions and 2) when large shocks are present a critical link
density exists where an effective giant cluster forms and most firms become vulnerable. This threshold depends on
the network topology, especially on modularity. Firm size heterogeneity has important but diverse effects that are
heavily dependent on shock characteristics. Similarly, degree heterogeneity increases vulnerability only when shocks
are directed at the most connected firms. Furthermore, by studying the structure of the core of the transnational
corporation network from real data, we show that its stability could be clearly increased by removing some of the links
with highest centrality betweeness. Our results provide a novel insight and arguments for policy makers to focus
surveillance on the connections between firms, in addition to capital requirements directed at the nodes.
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Introduction

The increasing complexity and globalization of financial
markets, together with excessive leverage, have been singled
out jointly by the Financial Service Authority and the Financial
Stability Board as major contributors to the financial crisis of
2007-2009 [1,2]. In response to this crisis the consensus
among policymakers increased that a macro-prudential
approach to regulation and supervision should be adopted.
Macro-prudential regulation seeks to stabilize the financial
system by taking into account risks arising from the interactions
between financial institutions. Correspondingly, there is a clear
demand from policy makers to the scientific community for new
mathematical and computational tools that emphasize the
analysis of crises rather than of calm periods [3], a context in
which understanding the performance and vulnerabilities of
economic networks stands out as a major challenge [4].

The currently preferred policy option is the regulation of
capital requirements. The Basel III accords establish higher
overall equity requirements and combat pro-cyclicality by
forcing banks to build up an extra capital conservation buffer of
2.5% during good times. In the cross-sectional dimension,
much effort is currently concentrated in the “too big to fail” (or
better, “too central to fail” [5]) debate. This debate is about
assessing the amount of systemic risk that can be attributed to
an institution from its size and network position, and the
amount of higher loss absorbency (HLA) that should be
required from the systemically important financial institutions
(SIFIs). Using an analogy from epidemics: tame the super-
spreaders [6].

A related research strand focus on the effects of the network
topology as a whole. The baseline discussion here is on the
effects of network connectivity on its shock resistance. On one
hand, higher interconnectedness can reduce the probability of
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default, as it allows adverse shocks to dissipate quicker [7,8].
Higher interconnectedness, on the other hand, results in larger
effects once the shock size has crossed a critical threshold. In
short, high interconnectedness provides “robust yet fragile” [9]
properties to the network. Many other aspects of network
properties have been studied, starting with the seminal work of
Freixas et al. [10], who arranged firms in a star like manner (as
opposed to complete networks), showing the effects of indirect
exposure. Subsequent models focused on heterogeneity either
in network structure (mainly degree distribution, assortativity
and clustering, e.g. [11-14]) or in bank sizes [15]. In some
cases the link between two factors was studied, such as
heterogeneity in individual vulnerability versus shock size [16],
or diversification versus level of capitalization [17,18].

On the other hand, most theoretical models of financial
networks rely on extreme examples, such as complete
networks. The most often used counterparts used are ring and
star networks, assuming complete degree homogeneity or
heterogeneity, respectively. While these are important
cornerstones, real networks have intermediate values with
corresponding resistances that are still to be explored.
Numerical simulations have been mostly based on Erdös-Renyi
random graphs, whereas most real networks have much more
heterogeneous and often scale-free degree distributions [19].
Furthermore, one relevant aspect of network topology has
received very little attention in finance network theory:
modularity. Modularity indicates how many links lie within a
given community compared to the expected (random) links for
a given link density of the network. High modularity (or similar
measures such as clustering and compartmentalization) has
been shown to act as a damper in epidemics spread [20,21]
and propagation of extinctions in food webs [22]. In this
respect, it is worth noting that the analytical foundations of the
model we will describe below [23] show that, when the
distribution of the shocks displays “fat” tails, extreme
segmentation is optimal, while minimal segmentation and high
density are optimal when the distribution exhibits “thin” tails.
Globalization has drastically decreased the modularity of the
financial network as the financial borders of national markets
have vanished [24] and this can be sensed as a contributing
factor to the dimension the 2007-2009 crisis had acquired.

Taking into account its implications on society, the available
information on the effects of network topology on its shock-
resistance is surprisingly scarce and fragmented. Furthermore,
most of these studies have been carried out either categorically
or varying one parameter at a time (OAT). However, OAT
sensitivity analysis should only be used when the model is
proven linear [25], as it misses interactions between model
parameters and makes it difficult to assess their relative
importance. The most famous example of interaction in
network theory is the one that takes place between degree
distribution and directedness of attack: Thus, it has been
shown that in comparison with Erdös-Renyi networks, scale-
free networks are more robust to random failure but more
vulnerable to directed attacks [26].

Here we present a thorough study on contagion resulting
from overlapping risk exposure, aimed to provide insights on
the interplay of different network features. Our research starts

from an analytical foundation and then explores the
hyperspace of network topology features with numerical
simulations. Finally, in order to make the connection with real
world systems, we collect empirical data examples from the
literature and assess the robustness of the core-group of the
transnational corporate ownership network [27]. As will be
shown below, our results provide important insights on hitherto
unnoticed, joint effects of network parameters, insights that
translate into relevant policy recommendations.

Model-Overview

We consider an environment with N risk-neutral financial
firms (“banks”). At any given point in time, each firm has an
investment opportunity – a project – which requires an initial
payment (I) and yields a random gross return R at the end of
the period. The resources needed to undertake the project are
obtained by issuing liabilities (e.g. deposits or bonds) on which
a deterministic rate of return must be paid. This means that, as
the return on a firm’s investment is subject to random shocks,
when the firm is hit by one such shock it may be unable to
meet the required payments on its liabilities, in which case it
must default (Figure 1). One important assumption of the
model is that the largest possible shock will necessarily
bankrupt all the participants of the network if they are
connected at all. This will definitely hold with unbounded
distributions.

A firm may benefit from entering risk sharing arrangements
with other firms which allow it to diversify risks. The specific
pattern of exchanges among firms is represented as a network,
where a direct linkage between two firms reflects the fact that
each firm holds a part of the asset of the other. Indirect
exposure results from taking into account that a firm ends up
having claims on the returns of projects of firms who hold
assets of the firms it trades with, and so on. As a consequence
a pair of firms lying at a certain distance in the network will
have some reciprocal exposure to the yields of each other’s
projects provided they are linked by a path through the
network.

The contagion process derives from the exposure of
common assets losses; it is not a default-cascade with self-
enhancing mechanism such as those described in {{607 Upper,
Christian 2011}}. However, unlike most classical common
exposure models, it does include indirect exposure, exemplified
by this simply case: Firm A owns 50% of firm B who again
owns 50% of firm C. If firm C is hit by a shock that reduces its
value to cero, firm A would lose 25% of the original value of C.
The process of asset exchange in our model is analogous to
the transmission of pathogens in disease contagion. A “bad”
asset (think of an eventually unpaid mortgage) will expose all
common owners to a shock. This is transmitted from the
originator bank to others who purchase its mortgage-backed
securities, and further down the line to the bondholders of the
companies which purchase those securities.

In an earlier theoretical paper [23], Cabrales et al. explored
several cornerstones of the network structure of our model. A
first variable is the size of the (disjoint) components into which
the network is divided, i.e. the degree of segmentation of the
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system. A second dimension is the relative density of
connections within each component. The third dimension is
heterogeneity, opposing a star-like network to a regular
network. The work we present in this paper allows us to extend
significantly this model by exploring the parameter space
between these extremes, to distinguish between size- and
degree- heterogeneity and to assess the effect of capitalization
level, going much further than what is amenable within
analytical approaches.

Throughout the whole paper, the term “optimal” is referring to
the least number of mean defaults.

Results

Analytical results
For the sake of completeness, we find it important to give a

brief summary here of the main analytical findings about our
model. The reader is referred to [23] for details. To begin with,

when the probability distribution places high enough mass on
relatively small shocks (“thin tails”), the best configuration has
all firms arranged in a single and fully connected component.
The main aim in this case is to achieve the highest level of risk
sharing. Instead, in the opposite case where the probability
distribution of the shocks exhibits “fat tails” (i.e., it attributes a
high mass to large shocks), the optimal configuration involves a
maximum degree of segmentation (that is, components should
be of the minimum possible size). This reflects a situation
where the priority is to minimize contagion. It is worth noting
that these two polar cases, however, do not exhaust all
possibilities. For more complex specifications of the shock
structure (e.g. mixtures of fat and thin tails) intermediate
arrangements are optimal, i.e. the optimal degree of
segmentation involves medium-sized components.

Regarding heterogeneity, the main finding is that
heterogeneity tends to favor assortative matching, that is, firms
facing similar shock distributions should band together. This

Figure 1.  Schematic representation of the exposure network.  Node size represents the asset volume of a firm, node color its
level of capitalization (green: healthy, yellow: critical, red: default). Arrows thickness represents the amount of direct exposure. A)
Firm 1 is hit by a relatively large shock and defaults. B) Firms 2 and 3 default due to their direct exposure to firm 1, the capitalization
level of firm 4 drops to a critical level. C) Including the effect of indirect exposure, firm 4 defaults and the shock spreads until firm 8.
Note that firm 5 and 7 can propagate the shock without having to default themselves. Nodes 9 and 10 are in an isolated cluster and
are not affected.
doi: 10.1371/journal.pone.0077526.g001
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does not necessarily mean that they differ because one type of
distribution is necessarily more “risky” or more correlated than
another one. They could be different without being ordered in a
first or even second order stochastic sense. But the fact that
they are different means that the optimal structure to deal with
shocks could be different between the two of them, and mixing
firms of different types would lead to inferior risk-sharing
properties. That means, in practice, that some activities should
be isolated from others, for instance by separating the banks’
retail and investment activities. In this respect, it was also
found that the symmetric structure is optimal when the shocks
are not too large (because this maximizes risk-sharing
possibilities) while the star structure is optimal for larger
shocks.

Numerical Results
Let us now present the main results of our paper, namely

those obtained from our numerical simulation program (see
Materials and Methods below for details on our procedure and
analysis). Figure 2 summarizes the analysis made through a
regression of our Monte Carlo simulations. As can be seen
from the plot, a first conclusion is that the level of capitalization
stands out as the most important individual parameter affecting
network resistance to external shocks (Figure 2). It sets a clear
upper limit to the mean number of defaults, which decays
sharply for low capital requirements (maximum default is
halved with ~10% capital requirement). However, the amount
of capital required to achieve a given number of mean default

depends greatly on network properties (Figure 3) and low
mean default values are also obtained with very low capital
requirements (see Figure S3).

The trade-off between diversification and contagion found in
the analytical results could be confirmed and extended to other
parameters. When shocks are sampled from a small tailed
distribution, the optimal structure is well connected and
uniform: default probability increases with the number of
connections and decreases with modularity and size
heterogeneity. But when shocks are sampled from a fat tailed
distribution, the optimal structure is the opposite, sparse and
heterogeneous (Figure 2). The effect of size heterogeneity,
however, is highly depending on the shock target: when shocks
are directed preferentially at the biggest firm, high
heterogeneity enhances vulnerability independently of their
size distribution. Surprisingly, degree heterogeneity increases
vulnerability only when attacks are directed at the most
connected firm and has no effect otherwise. Importantly, all of
these results were robust to other statistical analysis
techniques such as partial correlation coefficients and rank
transformation.

All response curves present high concavity. Once a given
degree of density, modularity and heterogeneity is reached,
further changes of these parameters result in little variation of
default probability (Figure S3, S4 and S5). Accordingly, the
variance explained by each parameter was improved when
using rank transformations in most cases (see Figure S6).
Important non-linearities resulted also from the interaction

Figure 2.  Standard regression coefficients (SRC) under different assumption on shock distributions.  Shock sizes are
sampled from a Pareto distribution with a scale parameter of either 0.5 (“fat”), 1.5 (“small”) or with 5% probability 0.5 and 1.5 with
probability of 95% (“mix”). Shocks are either directed at the largest firm (“Size”), the most connected firm (“Degree”) or at a random
firm (“Random”). Significance in linear regression is indicated by the border line, solid: p<0.01, dashed: p<0.05, dotted: p<0.1.
doi: 10.1371/journal.pone.0077526.g002
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between parameters. For instance, modularity had no effect on
mean default values when density was very high, as all nodes
are effectively connected, or very low, as most nodes were
isolated anyway (Figures 3 and 4, top panels). Similarly, the
number of defaults increased much more steeply with density
when modularity was low. Important non-linear interactions
were also observed between size heterogeneity and density.
The number of defaults could be limited by both density and
level of capitalization (Figure 3).

With constant network topology, default probability could be
predicted from the fraction of shocks sampled from a fat-tailed
distribution. The relationship was linear and the slope
increased with density (Figure 4). An intersection point existed
(approximately a 2% sample from fat-tailed distributions for
random-graphs) where link density did not affect systemic risk.
For fractions of fat tailed shocks below this value, risk
diversification was beneficial, whereas above this level it turned
out to be detrimental. Higher capital requirements lowered the
intercept of the curves. A high modularity drastically reduces
the slope at intermediate densities, but once more there was

little effect for very dense or very sparse networks. Degree
heterogeneity had no significant effect on slope or intercept
(Figure 4).

After completing the numerical study summarized above, we
moved towards a closer connection with real systems by
considering the core-group of the transnational corporate
ownership network [27]. Thus, we studied the effect of
removing links in the network, which implies severing
ownership relations among firms. In this manner, we found that
the relationship between vulnerability and the number of
removed connections was linear when they were removed
randomly or with preference for the links that contributed most
to heterogeneity. The slope was negative when shocks were
sampled from fat-tailed distributions and positive under small
tailed shock distributions. However, when the links with the
highest betweeness centrality were preferentially selected for
removal, the decay was exponential (Figure 5) with fat-tailed
shock distributions.

Figure 3.  Effects of interactions on the number of mean defaults.  The upper panel shows the interaction between connectivity
and modularity, the lower panel the interaction between connectivity and level of capitalization. Blue contour lines represent the
interpolation using a loess-function. Note that the number of mean defaults has been normalized for the range of each panel, and
hence quantitative comparisons between panels are not possible.
doi: 10.1371/journal.pone.0077526.g003
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Discussion

The numerical results obtained here support and extend
significantly the underlying analytical findings of [23]. Our
simulation program allows us to better understand the trade-off
between diversification and contagion, which we have seen
holding for a large variety of networks. We also showed that
the transition from safe to risky regimes can be very sharp en
two aspects: 1) a small fraction of shocks sampled from fat-

tailed distribution can easily change the optimal structure from
well connected to isolated and 2) a critical range exists where
adding or rewiring a few links has disproportionate effects on
the mean number of defaults. This range is situated at low link
densities and high values of modularity and size heterogeneity.
Crucially, all real world examples found in the literature show
precisely these characteristics. Since establishing connections
is costly, real world networks tend to be rather sparse (see
Table S2). Yet they are not immune to shock propagation: For

Figure 4.  Mean defaults as a function of the fractions of shocks sampled from a fat-tailed distribution.  The line colors
represent different levels of mean degree (<k>).Continuous lines represent the trends for random graphs without capital buffer,
Dashed lines represent the effect of the applied modifying factor: a 10% capitalization level (top), the highest possible degree
heterogeneity (middle) and the highest possible modularity (bottom).
doi: 10.1371/journal.pone.0077526.g004
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instance, the network density measured in [28] was a very
sparse 3 percent, but all nodes had a 97 percent influence

domain, meaning that no matter where a contagion starts, it
could reach nearly all banks.

Figure 5.  Default probability as a function of the number of edges removed edges from the core of the network of
corporate ownership.  Removal was done randomly (black squares), or preferentially at the edges with the highest betweeness
centrality (red circles) or the highest degree heterogeneity (grey diamonds). Shock were sampled from a small-tailed Pareto
distribution (σ=1.5, lower panel) or a fat-tailed Pareto distribution (σ=0.5, upper panel).
doi: 10.1371/journal.pone.0077526.g005
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As interconnectedness allows for higher risk diversification,
many studies e.g. [7,29,30] reach the general conclusion that
banks are most exposed to systemic risk when density is low,
and most resistant in a complete network. But
interconnectedness is a two edged sword, as it can exaggerate
the magnitude of default cascades. The combination of
beneficial and adverse effects can lead to a non-monotonic
relationship with an optimum at intermediate connectivity
[9,17,31,32] as diversification gains are often more than offset
by the costs of increased exposure to volatile activities [33] .
The location of this optimum depends on the expected shock
size distribution; both analytical work [23] and our results in
Figure 4 show that the optimal density depends on the fraction
of shocks that result from fat-tailed distribution. We therefore
have to distinguish the vulnerability to financial distress in
response to normal-sized shocks from that to large shocks [34].
The resulting incentives for the market left on its own are
procyclical, as diversification increases the default probability of
the banking system in case external assets pay a negative
cash-flow (downturn) and decreases the default probability in
case of positive cash-flows (upturn) [35]. This can be observed
in the example of the global bank network [36]: the density of
the network steadily increased during the “good times”, tending
towards a small-tail shocks equilibrium that resulted to be
dangerous in the “bad times” with fat-tailed shock distribution
(see Table S2). Albeit density came down rapidly after the
2007-2009 crisis, the damage was already done. An analytical
stress test [37] showed that the size of the default cascade
generated by a macroeconomic shock across balance sheets
may exhibit a sharp transition when the magnitude of the shock
reaches a certain threshold. Here we show that even the
qualitative response of the system changes when as few as 2%
of the shocks are sampled from a fat-tailed distribution (Figure
4). However, it is almost impossible to distinguish one
distribution from another in practice (see Figure S5). Note that
since in our model contagion results only from shared asset
losses, the existing firm network can be maladapted to the
underlying economic uncertainty even without taking into
account the different channels of shock amplifications [38], or
conflicts between individual and systemic risk [39], but simply
by a “black swan” [40] effect.

Considering the risk exposures that result from indirect
neighbors greatly enhances the “effective” connectivity of the
network. This accentuates the effects of the parameters that
influence segmentation. An infinitely big shock could bring to
bankruptcy every firm that can be reached by a path through
the network. Real world shocks are not infinite but neither is
network size and shocks can be several orders larger than the
level of capitalization of many firms. This leads to a percolation
phenomenon: when a giant cluster forms, almost all firms are
susceptible to large shocks. Higher modularity increases the
density at which the giant cluster forms and therefore
decreases systemic risk.

Heterogeneity in degree distribution has received much
attention in the literature during the last decade. In line with the
seminal results of [26], our model network was more vulnerable
to attacks directed at the most connected nodes. Degree
heterogeneity is a crucial parameter in networks of infections

as pathogens spread much faster and are more likely to
become epidemics in scale-free than in random or regular
networks. However, in our model, when attacks were not
directed at highly connected nodes, no change in resistance
could be observed. Note that our model does not simulate
default cascades; stress can propagate through nodes even if
they do not default. The most comparable statistics from
epidemic would be epidemic size, an outcome much less
sensitive to degree heterogeneity [41]. This has also important
policy implications: higher capital requirements on systemically
important financial institutes (SIFIs) might not prevent the
spread of all shocks. Using again the analogy of epidemiology,
one cannot tame the super-spreaders [6] by avoiding their
infection, if they can propagate the disease without noticing the
illness. This result also shows the importance of global
parameter analysis: as a side effect, higher degree
heterogeneity reduces the density at which a giant component
forms; however, this effect vanishes when analyzed together
with modularity which directly aims at the crux of the matter.

Higher size heterogeneity can be considered as a different
way of isolation since it leads to a more unequal distribution of
the number of defaults. Consider the extreme case where
nearly all of the investments are realized by one single firm
connected (directly or indirectly) to many very small firms; In a
regular network a large enough shock would result in the
default of most firms, independent of which firm was hit. In a
heterogeneous network no firm defaults when a small firm is hit
which is much more likely given their larger number. Therefore
size heterogeneity provides safety in the presence of large
shocks. On the other hand, small shocks that would not result
in any default under a regular size distribution can lead to a
default of all firms when the biggest firm is hit. However, this
effect is important only for very extreme heterogeneity and is
only socially beneficial under the assumption of linearity
between number of defaults and system cost [39]. If this
function is assumed to be convex the optimal degree of size
heterogeneity depends on the shape of this function. Our
results are in line with [42] as a combination of high density,
low modularity and similar sized firms leads to homogeneity in
risk exposure. Connectivity and homogeneity have also been
pointed out as early warning indicators of system collapse in
finance and other networks [43]. Also complexity of financial
derivates is now seen as a risk factor [44].

Our results confirm that capital requirements are an
important tool (at least when the requirement are actually
fulfilled and not eluded with accounting tricks), however the
level of capital requested should depend on macro-prudential
criteria. In that sense the Basel II and III accords establish
higher capital requirements for SIFIs. The analysis of different
national banking systems has shown that the SIFIs not
necessarily are the biggest firms. Also, local measurements,
such as number of links of a financial institution, are insufficient
[45], as the magnitude of the shock propagation depends on
the structure of the whole network, and identifying most central
ones [5,11] is a much more promising approach. However, the
knowledge of topology of the financial network is very
fragmented and incomplete. When data is available, it is
generally confined within one country. The global financial
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network is not homogeneous, as it has grown in segmented
sub-networks limited by national borders and other historic
reasons [46]. Globalization has increased the links between
these national and functional clusters [47], reducing the
modularity of the network. Again, this is a “natural” adaptation
when shocks are supposed to come from a purely small-tailed
distribution. However, this builds bridges that have allowed the
financial crisis to become global. In connection with this, our
study of the empirical data shows that the stability of the core
enterprises of transnational corporate control could be greatly
enhanced removing a small fraction of its links, if choosing the
ones with the highest betweeness centrality values (Figure 5).
If only local information on bank connections is available, we
therefore recommend that the externality produced from links
between countries or sectors should be taxed. As pointed out
in [42], the Volcker rule in the United States, quarantining risky
hedge fund, private equity and proprietary trading activity from
other areas of banking business, is one example of enhancing
modularity in practice. Our results imply that macro-prudential
policies should target not only the firms, but also the links
between them. This supports the idea of a “systemic risk
charge”, where financial institutions pay into a fund proportional
to their contribution to systemic risk. This is a complementary,
not opposed, measure to increase capital requirements on
SIFIs which might prove most relevant in preventing future
crises.

Materials and Methods

We consider an environment with N risk-neutral financial
firms and a continuum of small investors. At any given point in
time, each firm has an investment opportunity - a project -
which requires an initial payment I and yields a random gross
return R at the end of the period. It is assumed that the firm
invests all the available funds besides a capital buffer. The
resources needed to undertake the project are obtained by
issuing liabilities (e.g. deposits or bonds) on which a
deterministic rate of return must be paid.

The gross return of the project is random, as with some
probability q the firm is hit by a negative shock. If no shock hits,
the return equals some normal level R. The loss Lb is a random
variable, with a Pareto distribution function.

Since the return on a firm's investment is subject to shocks,
while the return promised to its creditors is deterministic, when
the firm is hit by a shock it may be unable to meet the required
payments on its liabilities, in which case it must default. Default
costs are assumed to be substantial, so that the value of a firm
is maximized when its probability of default at any point in time
is minimized.

There is a large set of investors, who are the source of the
supply of funds to firms. Investors are risk neutral and require
an expected gross rate of return equal to r in order to lend their
funds in any given period. Since firms may default, in which
case creditors receive a payment equal to zero, the nominal
gross rate of return M on the deposits to the firms must be
greater or equal than r. Specifically, if we denote by φ the ex
ante probability that any given firm defaults (an endogenous
variable), we must have:

M= r
1−ϕ (1)

Since, as stated above, default entails a significant cost for a
firm, a firm may benefit from entering risk sharing
arrangements with other firms and hence diversify risks. Here
we consider the case where these arrangements take the form
of shares of assets between firms, that is, of claims to the
yields of the firms' investments, prior to the realization of the
uncertainty. The possibly iterative procedure through which
each firm exchanges shares on its whole array of asset
holdings can be viewed as a securitization process of the firms'
claims.

More precisely, let us posit that each firm exchanges a
fraction 1-ϕ of its standing shares, giving rights to the return on
its investments, for shares held by other firms. The specific
pattern of exchanges among firms is formalized by a network,
where a direct linkage between two firms reflects the fact that
they undertake a direct exchange of their assets. These
exchanges are symmetrical in the analytical model where all N
firms are identical ex ante. However in the numerical model this
symmetry is broken, supposing that the shares have been
issued against a value that is not necessarily present in the
system anymore, i.e. we just represent a present state without
reconstruction the history that lead to it. We allow for these
asset swaps to occur repeatedly. Indirect connections are then
also formed. In the analytical model, these asset swaps are
allowed to occur, whereby a firm ends up having claims on the
returns of projects of firms who swapped assets with the firms it
exchanges assets with, and so on. As a consequence a pair of
firms lying at a certain distance in the network will have some
reciprocal exposure to the yields of each other's projects
provided the number of exchange rounds is high enough - in
particular, as high as their network distance.

In the numerical model, we represented the financial network
of exposures as a directed weighted graph that was
constructed by a variant of the preferential attachment
algorithm. We started from a given set of nodes (firms)
connected with a few (~1%) random edges between them.
Subsequent links were added until obtaining the desired
network characteristics repeating the following algorithm for
each link:

• Calculate current network properties (modularity and
heterogeneity)

• Compare these results to the desired network properties
• Assign probabilities to each pair of (unconnected) nodes

in order to reduce distance between actual and desired
properties.

• Sample link from these probabilities

A more detailed description is given in Materials S1. Once
the links between nodes are established, their firm sizes are
sampled and assigned to the nodes taking into account the
correlation between firm size and number of links. A fraction of
the operational result (fE) is assigned to an external entity,
emulating private investors whose default would not affect
systemic risk. The rest is split evenly between the original node
and all its neighbors. The result is an adjacency matrix A,
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where each entry aij represents the fraction firm i holds of the
investment results of firm j (rj).

To calculate the overall exposure we followed [48] and
expressed the value Vi of firm i as:

V i=∑kDikrk+∑kai jV j (2)

where the matrix D equals zero in all entries but the diagonal
ones, that take a value 1-external control (fE). Equation 1 can
be written in matrix form and solved for V as:

V= 1−A −1Dr (3)

The values of r are obtained from the firms investments, that
is their size (Si) minus their capital buffer (Ki) and a risk
adjusted return rate q. Some firms are hit by a shock (l)
sampled from a Pareto distribution.

ri= Si−Ki • q− li (4)

The Pareto distribution has a fat-tail when its shape
parameter (γ) is <1 and a small tail otherwise. The shock can
affect either one single or several firms and be directed either
at the most connected, biggest or randomly chosen firms. The
shock is limited to the total size of the affected firm (l≤1). A firm
defaults if its value is below its level of capitalization.

Monte Carlo simulations and analysis
We ran the model for 1,000 parameter sets that were

structured as Sobol-sequences [49] to equally cover the
sampling space (Table S1). For each parameter set we
constructed 10 networks and exposed each to 1000 shocks for
each shock distribution, resulting in a total number of model
runs of 107. Standardized regression coefficients (SCR) were
calculated using the sensitivity package of the R-project [50].

Topology indices
Degree heterogeneity was calculated following [51] as a

function of the degrees of the nodes of each link. Modularity
expressed the number of links than fall within a given
community (cluster) compared to the expected (random) value
[52]. Size heterogeneity has been expressed using the Gini
coefficient [53], which corresponds to the ratio of the area of
the Lorenz curve to the area below the diagonal. Details are
given in the Materials S1.

Supporting Information

Figure S1.  Clustering distance calculated as the decimal
equivalent of a bitwise XOR operation.
(TIF)

Figure S2.  Screenshot of the graphical user interface of
the model.
(TIF)

Figure S3.  Scatter-plots of the mean number of defaults
against all parameters varied in the Monte Caro

simulations with attacks directed at the largest firm. The
blue lines indicate the trend line obtained from a loess
smoothing function.
(TIF)

Figure S4.  Scatter-plots of the mean number of defaults
against all parameters varied in the Monte Caro
simulations with attacks directed at the most connected
firm. The blue lines indicate the trend line obtained from a
loess smoothing function.
(TIF)

Figure S5.  Scatter-plots of the mean number of defaults
against all parameters varied in the Monte Caro
simulations with attacks directed at a random firm. The
blue lines indicate the trend line obtained from a loess
smoothing function.
(TIF)

Figure S6.  Rank transformed standard regression
coefficients (SRRC) under different assumption on shock
distributions. Shock sizes are sampled from a Pareto
distribution with a scale parameter of either 0.5 (“fat”), 1.5
(“small”) or with 5% probability 0.5 and 1.5 with probability of
95% (“mix”). Shocks are either directed at the largest firm
(“Size”), the most connected firm (“Degree”) or at a random
firm (“Random”). Significance in linear regression is indicated
by the border line, solid: p<0.01, dashed: p<0.05, dotted:
p<0.1.
(TIF)

Table S1.  Range of model input parameters compared to
the properties of the core of the corporate ownership
network.
(TIF)

Table S2.  Network properties of financial networks found
in the literature.
(TIF)

Material S1.  Detailed description of the network
construction procedure, model use and data source.
(DOCX)
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