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Abstract: We assessed the role of artificial intelligence applied to chest X-rays (CXRs) in support-
ing the diagnosis of COVID-19. We trained and cross-validated a model with an ensemble of 10
convolutional neural networks with CXRs of 98 COVID-19 patients, 88 community-acquired pneu-
monia (CAP) patients, and 98 subjects without either COVID-19 or CAP, collected in two Italian
hospitals. The system was tested on two independent cohorts, namely, 148 patients (COVID-19, CAP,
or negative) collected by one of the two hospitals (independent testing I) and 820 COVID-19 patients
collected by a multicenter study (independent testing II). On the training and cross-validation dataset,
sensitivity, specificity, and area under the curve (AUC) were 0.91, 0.87, and 0.93 for COVID-19 versus
negative subjects, 0.85, 0.82, and 0.94 for COVID-19 versus CAP. On the independent testing I, sensi-
tivity, specificity, and AUC were 0.98, 0.88, and 0.98 for COVID-19 versus negative subjects, 0.97, 0.96,
and 0.98 for COVID-19 versus CAP. On the independent testing II, the system correctly diagnosed
652 COVID-19 patients versus negative subjects (0.80 sensitivity) and correctly differentiated 674
COVID-19 versus CAP patients (0.82 sensitivity). This system appears promising for the diagnosis
and differential diagnosis of COVID-19, showing its potential as a second opinion tool in conditions
of the variable prevalence of different types of infectious pneumonia.

Keywords: artificial intelligence; neural networks; SARS-CoV-2; COVID-19; community-acquired
pneumonia; chest X-ray; sensitivity; specificity; differential diagnosis

1. Introduction

Differential diagnosis of COVID-19 from other types of pneumonia has been a high-
priority research topic and clinical aim since the early stages of the current pandemic [1,2].
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Prompt identification of COVID-19 cases is paramount to ensure proper management and
better patient outcomes [3–5]. Moreover, any tool to be applied for this aim should have a
good cost–benefit ratio for the healthcare service, be able to adapt to heterogeneous set-
tings, and be also useful outside COVID-19 pandemic peak, enabling accurate differential
diagnosis with other types of pneumonia, such as non-COVID-19 community-acquired
pneumonia (CAP) [2,5–8].

The current reference standard for the detection of COVID-19 is the detection of SARS-
CoV-2 by reverse transcription polymerase chain reaction (RT-PCR) [3,9]. However, due to
intrinsic shortcomings of this diagnostic modality and to the high prevalence and clinical
impact of COVID-19, chest imaging has been widely used to triage suspect cases [10–12].
A meta-analysis on the diagnostic performance of computed tomography (CT) showed
a 94% pooled sensitivity, specificity being however under 40% [13]. Moreover, the use of
CT implies higher healthcare costs since CT scanners have relatively limited availability,
even in high-income countries, and CT equipment and rooms need sanitization after
each use involving suspected or confirmed cases unless a continuous series of confirmed
cases has to be studied [14–16]. In this context, the use of chest X-ray imaging (CXR)
has become increasingly commonplace to evaluate patients presenting with symptoms
potentially associated with COVID-19 such as fever, cough, or dyspnea [17–21]. Typical
COVID-19 abnormal findings reported at CXR are portions of the lungs appearing as a
“hazy” shade of grey instead of normal well-aerated parenchyma, representing pneumonia
foci, with fine linear structures representing blood vessels [18], the so-called ground-glass
opacities, which are also well-detected at CT [22]. Since these findings are among the
first radiological manifestations of COVID-19 pneumonia, it could be hypothesized that
an accurate CXR reading could aid the early diagnosis of COVID-19 pneumonia, also
providing the additional benefit of differential diagnosis from CAP.

Recently, artificial intelligence (AI) and deep learning, in particular convolutional
neural networks (CNNs), have been proven an effective and reliable tool to both automate
and improve diagnosis and prognosis of various diseases, including pneumonia, as shown
by competitors at the 2018 Kaggle Challenge for Chest X-ray images [23]. Furthermore, AI
approaches have shown potential in performing differential diagnoses between different
types of pneumonia, namely bacterial and viral CAP [24,25]. Early in the pandemic,
AI was employed in COVID-19 diagnosis by various teams, showing sensitivities and
specificities well over 0.90 by both machine learning [26–28] and deep learning [29–40]
techniques. As already pointed out by Farhat et al. [41], Shi et al. [42], and López-Cabrera
et al. [43], pre-trained CNN-based systems emerge as the most popular and powerful
approaches for the automatic classification of images of suspected COVID-19 patients.
However, most of the published studies so far have focused on CT, only some of them
using CXR [26,28,31,36,40]. Moreover, only the studies by Kana et al. [26] and Ucar et al. [40]
demonstrated the applicability of their models also to the differential diagnosis of COVID-
19 versus other types of pneumonia. Specifically, Kana et al. [26] implemented a transfer
learning model based on CXRs to differentiate healthy individuals, bacterial or viral
pneumonia versus COVID-19 pneumonia, obtaining near-100% accuracy. Ucar et al. [40]
fine-tuned a SqueezeNet using a Bayesian optimization approach, reaching 98% accuracy
in classifying normal subjects, patients with non-COVID-19 CAP and COVID-19 patients.
However, all the aforementioned studies did not use an independent testing set (neither
temporally nor spatially independent) that would allow for an unbiased evaluation of
model performance.

The aim of our study was to evaluate the two-sided role of AI applied to CXR in
patients suspected to be affected by COVID-19 pneumonia, i.e., outright COVID-19 diag-
nosis and differential diagnosis from other CAPs. The general purpose was to present
an effective tool supporting the diagnosis of COVID-19 pneumonia in the perspective of
offering a second opinion to radiologists or a preliminary assessment when a radiologist is
not immediately available. With these aims, taking into consideration the strengths and
limitations of the current literature, which points to a consolidated superior performance
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of CNNs for image classification tasks [44], we trained and cross-validated a ResNet-50
architecture. The model was applied to CXRs for supporting the differential diagnosis of
COVID-19. Model performance was evaluated using two independent testing sets.

2. Materials and Methods
2.1. Study Protocol

The local Ethics Committee approved this retrospective study on 8 April 2020, and
informed consent was waived due to the retrospective nature of the study.

2.2. Population and Datasets
2.2.1. Training, Validation, and First Independent Testing

For the training/validation phase and the first independent testing (independent
testing I) consecutive patients referred to the emergency department (ED) of two hospitals
in Lombardy, Italy (IRCCS Policlinico San Donato, San Donato Milanese, Center 1; ASST
Monza—Ospedale San Gerardo, Monza, Center 2) were included in the study. From these
centers, two groups of patients were assessed according to two different timeframes—the
first group referred to EDs between mid-February 2020 and mid-March 2020 and the second
in the same period during 2019.

The first group included patients with RT-PCR-confirmed SARS-CoV-2 infection
undergoing CXR on ED admission. Digital CXR was performed in two projections (pos-
teroanterior and lateral) in the radiology unit or in one anteroposterior projection at bedside
in the ED. Whenever both the posteroanterior and lateral projections were available, only
the former was included for further analysis.

In the second group, we included patients with suspected CAP undergoing CXR
on ED admission. As for patients of the first group, digital CXR was performed in two
projections (posteroanterior and lateral) in the radiology unit or in one anteroposterior
projection at bedside in the ED. Again, only the posteroanterior projection was considered
when two projections were available.

Radiological labels for both groups were attributed by two radiologists of the two cen-
ters involved in this study (with 8 years and 13 years of experience in CXR interpretation).

2.2.2. Second Independent Testing

For the external testing (independent testing II) of our AI model, a third group of
patients was retrieved from the publicly available dataset “AIforCOVID” [45]. Ethics
Committee approval was obtained also for this study. The AIforCOVID dataset, collected
between March 2020 and June 2020, includes posteroanterior CXRs of RT-PCR-confirmed
COVID-19 patients from six other hospitals in Italy. Patients from this dataset are catego-
rized as having “mild” or “severe” disease according to their clinical outcome—patients
assigned to the “mild” group were either sent to domiciliary isolation or were hospitalized
in ordinary wards without the need of ventilatory support, while the “severe” group
included all hospitalized patients that required ventilation support, intensive care, and/or
died during hospitalization.

2.3. AI System

The TRACE4© radiomic platform (DeepTrace Technologies S.R.L., Milano, Italy) [46]
was used to classify CXRs of the different groups of patients. This platform allows training,
validation, and testing of different AI systems combined with different feature-extraction
methods applied to medical images for classification purposes.

The TRACE4© platform includes full workflow for radiomic analysis (i.e., compliant
to the guidelines of International Biomarker Standardization Initiative [47]); different
feature extraction and selection methods, and different ensembles of machine-learning
techniques such as support vector machines, random forests, deep learning and transfer
learning of neural networks.
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The classification tasks of interest were binary (COVID-19 versus negative, COVID-19
versus CAP), considering the following cases: COVID-19, all patients with positive RT-
PCR; negative, all patients from the second group without any CXR finding; and CAP,
all patients from the second group with positive CXR findings for CAP. The deep-neural-
network classifier proposed in this work was implemented on the ResNet-50 architecture,
i.e., a convolutional neural network composed of 50 layers. The network is able to learn
a rich feature representation of the input classes (more than a million images from the
ImageNet database [48]). To train and test an ensemble of 10 convolutional neural networks
(based on the ResNet-50 architecture), a 10-fold cross-validation procedure was used. The
classification outputs of each of the 10 models concurring to the ensemble were then merged
by sum rule (ensemble-averaging of class probability) to obtain the final classification
output of the ensemble of classifiers.

This feature representation is then used to classify new samples (new images, in this
case) to one of the input classes. In order to specialize the pre-trained ResNet-50 network to
the binary-discrimination tasks of interest in our study (i.e., COVID-19 versus negative and
COVID-19 versus CAP), we applied a fine-tuning process to the last layers of the original
ResNet-50 architecture (COVID-19 versus negative, COVID-19 versus CAP) [48].

CXR images were resized to the input size of the architecture (i.e., 224 pixels by
224 pixels) before being fed into the deep neural network. Automatic data-augmentation
techniques were applied to the resized CXR set during the training of the classifier—this
operation, which includes image rotation, shear, and reflection, aims at increasing CXR
image diversity among different training phases (epochs), thus increasing the performance
of the training procedure. No further data processing was applied to the CXR images used
as input to the deep-learning network nor during the training-and-classification process.

To obtain further estimates of the performance of our AI system, the model resulting
from the training procedure was tested on the two independent sets of patients (indepen-
dent testing I and II); none of these two sets included patients from the cross-validation
procedure.

Performance metrics for both cross-validation and independent testing I are presented
in terms of sensitivity, specificity, and areas under the receiver operating curve (ROC
AUC), with their 95% confidence intervals (95% CIs) reported only for cross-validation
performances. For independent testing II, since no negative controls or CAP patients
are present in this independent cohort, sensitivity only was calculated. In this second
independent testing, subgroup analysis according to COVID-19 severity (“mild” or “severe”
group) was also performed.

3. Results

A total of 162 patients who underwent CXR and tested positive for SARS-CoV-2
infection at RT-PCR in Centers 1 and 2 from 21 February 2020 to 16 March 2020 were
included in our retrospective evaluation (first group of patients). From all patients admitted
to the two hospitals roughly in the same period the year before, 112 patients with CAP
and 158 negative controls were included, accounting for a total of 270 patients in the
second group. For the third group, 820 patients RT-PCR-confirmed COVID-19 patients
were retrieved for our retrospective evaluation from the AIforCOVID database, 384/820
(47%) being categorized in the “mild” subgroup of this database, 436/820 (53%) in the
“severe” subgroup. Table 1 shows the distribution of the 1252-included patients, while
Figure 1 shows examples of CXRs with typical COVID-19 pneumonia (Figure 1a), negative
findings (Figure 1b), and non-COVID-19 viral and bacterial pneumonia (Figure 1c,d).
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Table 1. Patients’ distribution among the included datasets.

Timeframe Center 1
Patients

Center 2
Patients

AIforCOVID
Patients Total

COVID-19 21 February to 16 March 2020 48 114 - 162
CAP 1 February to 16 March 2019 42 70 - 112

Negative 48 110 - 158
COVID-19 March to June 2020 - - 820 820

Total - 138 294 820 1252

COVID-19, patients with COVID-19 pneumonia; CAP, patients with community-acquired non-COVID-19 pneumonia; Negative, patients
with negative chest X-ray exams.
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We trained and validated (cross-validated) the proposed AI system on CXRs of
284/432 (66%) patients from Centers 1 and 2, as follows: 98 COVID-19 patients (48 from
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Center 1, 50 from Center 2) versus 98 negative subjects (48 from Center 1, 50 from Center
2), with a 0.91 sensitivity (95% CI 0.85–0.97), 0.87 specificity (95% CI 0.82–0.92), and area
under the curve (AUC) of 0.93 (95% CI 0.88–0.98); 98 COVID-19 patients (48 from Center 1,
50 from Center 2) versus 88 CAP patients (42 from Center 1, 46 from Center 2) with a 0.85
sensitivity (95% CI 0.76–0.94), 0.82 specificity (95% CI 0.77–0.87), and 0.94 AUC (95% CI
0.90–0.98).

Independent testing I was conducted on the remaining CXRs of 148/432 (34%) patients
from Center 2 (independent testing I), as follows: 64 COVID-19 versus 60 negative subjects
with current sensitivity, specificity, and AUC of 0.98, 0.88, and 0.98, respectively; 64 COVID-
19 versus 24 CAP patients, with current sensitivity, specificity, and AUC of 0.97, 0.96, and
0.98, respectively.

Independent testing II conducted on the CXRs of the 820 COVID-19 patients from
the AIforCOVID dataset (third group of patients) showed 652 COVID-19 patients cor-
rectly classified versus negative subjects (with a sensitivity of 0.80) and 674 COVID-19
patients correctly classified versus CAP (with sensitivity of 0.82). Subgroup analysis on
the “mild” and “severe” COVID-19 patients showed that the proposed AI system for the
discrimination between COVID-19 and negative subjects correctly classified 264 out of
384 patients in the “mild” subgroup (sensitivity 0.69) and 388 out of 436 patients in the
“severe” subgroup (sensitivity 0.89). Conversely, the proposed AI system for the discrimi-
nation between COVID-19 and CAP patients correctly classified 284 out of 384 patients in
the “mild” subgroup (sensitivity 0.74) and 390 out of 436 patients in the “severe” subgroup
(sensitivity 0.89).

Tables 2–4 detail the performance of the proposed AI system, with corresponding
receiver operating curves (ROCs) shown in Figure 2.

Table 2. Training and validation (cross-validation) performance of the proposed AI system.

COVID-19 Versus Negative COVID-19 (n) Negative(n)

Assigned COVID-19 89 13
Assigned Negative 9 85

Sensitivity 0.91 Specificity 0.87

COVID-19 Versus CAP COVID-19 (n) CAP(n)

Assigned COVID-19 83 16
Assigned CAP 15 72

Sensitivity 0.85 Specificity 0.82
CAP, community-acquired non-COVID-19 pneumonia.

Table 3. Independent testing I performance of the proposed AI system.

COVID-19 Versus Negative COVID-19 (n) Negative(n)

Assigned COVID-19 63 7
Assigned Negative 1 53

Sensitivity 0.98 Specificity 0.88

COVID-19 Versus CAP COVID-19 (n) CAP(n)

Assigned COVID-19 62 1
Assigned CAP 2 23

Sensitivity 0.97 Specificity 0.96
CAP, community-acquired non-COVID-19 pneumonia.
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Table 4. Independent testing II performance of the proposed AI system.

COVID-19 Versus Negative COVID-19 (n) Negative(n)

Assigned COVID-19 652 -
Assigned Negative 168 -

Sensitivity 0.80 Specificity -

COVID-19 Versus CAP COVID-19 (n) CAP(n)

Assigned COVID-19 674 -
Assigned CAP 146 -

Sensitivity 0.82 Specificity -
CAP, community-acquired non-COVID-19 pneumonia.
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4. Discussion

Over the last year, the COVID-19 pandemic showed an ever-shifting time- and space-
related epidemiological profile worldwide [49,50]. However, in all phases of pandemic
waves, quick and accurate diagnosis remains of utmost importance [51,52], in particular
when facing viral variants [53,54] and the need to take advantage of the effect of vaccination
campaigns [54,55]. In this context, CXR has emerged as a crucial first-line diagnostic tool for
the detection of COVID-19 pneumonia in the ED setting [18] and beyond [56,57], given its
high availability, low associated costs, and accuracy in pneumonia diagnosis [7,10,18,58,59].

Although COVID-19 pneumonia appears on CXR with characteristic features, many of
them are also shared by other viral types of pneumonia [7,18,60]. The improvement of CXR
diagnostic performance would be paramount to ameliorate decision making regarding
patient management, which strongly relies on the initial assessment, considering both the
intrinsic shortcomings of RT-PCR testing and the difficulties of implementing a CT strategy
for early diagnosis [10,14–16].

For the purpose of diagnosis, we trained and tested an ensemble of ten convolutional
neural networks with CXRs of 98 COVID-19 patients referring to the EDs of two university
hospitals in northern Italy (Center 1 and Center 2) during the first 2020 pandemic wave in
northern Italy and 98 negative subjects from approximately the same period of 2019. We
then tested the proposed AI system on an independent cohort of 148 patients not used
during training coming from one of these two centers (independent testing I). The AI model
was able to automatically classify COVID-19 and negative subjects with a sensitivity of 0.98,
a 0.88 specificity, and a 0.94 AUC. Furthermore, another independent testing (independent
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testing II) on a public dataset of 820 COVID-19 patients showed good generalization
abilities of our AI tool, yielding an average sensitivity of 0.80 for the task of diagnosis
versus negative subjects, with even higher performance when considering COVID-19
patients with severe disease, as expected.

For the purpose of differential diagnosis, we trained and tested the ensemble of
convolutional neural networks with CXRs of 98 COVID-19 patients and 88 patients with
CAP (collected in 2019) from Center 1 and Center 2. The temporal selection criterion for
CAP patients was enforced to ensure that no patient could carry undetected SARS-CoV-2
infection. In independent testing I, this AI model was able to classify COVID-19 and CAP
patients with a 0.97 sensitivity, a 0.96 specificity, and a 0.94 AUC. Of note, independent
testing II confirmed the good generalization abilities of our AI tool, performing with an
average sensitivity of 0.82 for the task of COVID-19 versus CAP patients, with better
performance for COVID-19 patients with severe disease, as expected again.

The presented AI tool yielded an interesting performance for the detection of COVID-
19 compared to negative subjects and for the differential diagnosis with CAP. These per-
formances open promising perspectives for our AI system to be used in clinical practice,
thanks to a relatively high sensitivity (ranging 0.80–0.98 in the independent testing) with
an interesting specificity (0.88). Especially in conditions of variable prevalence [50,61,62],
due to local viral waves, effects of vaccination, and the appearance of viral variants [54,55],
the availability of an AI tool as a second opinion support system may be useful to increase
the diagnostic performance. We imagine a practical possibility of combining human and
AI reading according to the rule of double reading. When one reading (human or AI) is
positive and the other one is negative, in the case of high prevalence, the overall result will
be given as positive; hence, maximizing sensitivity and negative predictive value. Con-
versely, in the same combination of contradictory results but in a low prevalence setting, a
third (human) reader will be asked to take the decision, trying to maximize specificity and
positive predictive value. The next challenge will be to appraise how the human grasp on
different settings, for instance, a pandemic context versus relative normalcy, may interact
with the performance of our AI tool [63].

Our research has some important limitations.
First, concerning the performance achieved by our AI system, in this study, we report

the sensitivity, specificity, and AUC obtained by training the network with only 98 COVID-
19 patients. Overall, our system was able to detect both COVID-19 subjects (sensitivity
ranging 0.80–0.97) and non-infected subjects (negative and CAP, specificity 0.88) with
high and quite balanced performance. Despite this, our AI system could improve these
performances when trained with more CXRs in a larger multicenter setting. Even though
a two-center CXRs set was used to train and validate the AI system (cross-validation),
the first test set of CXRs (independent testing I) was separated from the set used to train
and validate the AI but came from one of these centers, while the second test set of CXRs
(independent testing II) came from different centers and also timeframe with respect to the
training dataset.

Second, our AI model is currently not able to define the stage or to predict the
progression or the prognosis of COVID-19 patients. Other implementations could be
derived from the integration in our system of the “mild” and “severe” classes of COVID-19
images that could stratify the population according to disease severity or patient outcome
(e.g., the need for mechanical ventilation, disease duration, and short-term survival). In
order to develop these models, but also to improve our current model, it will be important
to integrate biological and clinical data in the AI system.

Third, due to various reasons, the prevalence of bedside CXR was higher in the
COVID-19 group than in negative cases. While this may appear as a potential source of
bias, the use of bedside CXR does not underline more severe pneumonia, leading to the
potentially incorrect association between higher severity and COVID-19. In fact, portable
equipment allows for easier management and reduction of infections because they do
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not require infectious subjects to move around the hospital facilities and are easier to
sanitize [56,57].

Finally, it is important to recognize that the role of CXR in evaluating patients depends
on the severity of the infection in the individual patient and COVID-19 prevalence in the
community [61,62]. In individuals who are asymptomatic, the sensitivity of CXR could fall
steeply, in particular in the first 48 h after symptoms onset, since asymptomatic individuals
could test positive at RT-PCR and negative at CXR. Moreover, CXR may prove less useful
in areas with very little circulating SARS-CoV-2. Conversely, CXR is most useful in patients
who are acutely ill and symptomatic in areas with relatively high prevalence. In this
scenario, patients with CXR findings attributable to COVID-19 could be considered as
presumptively infected by the virus when the first RT-PCR test result is still rarely negative.
For the purpose of differential diagnosis, disease severity ought to be considered as a
potential source of bias because COVID-19 pneumonia cases may potentially present as
more severe, on average, than CAP.

5. Conclusions

In subjects with suspected COVID-19, an AI reader applied to CXR achieved a sensitiv-
ity ranging 0.80–0.98 and a specificity of 0.88 in the diagnosis of COVID-19, also attaining a
sensitivity ranging 0.82–0.97 and a specificity ranging 0.82–0.96 in the differential diagnosis
of COVID-19 versus CAP. This system may prove a cost-sustainable and efficient tool
as a second opinion to radiologists in a variable spectrum of clinical and epidemiologi-
cal contexts. It will be held in continuous training with new CXR images to increase its
performance and provide a larger external validation.
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