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Abstract

Studies have shown that the use of artificial intelligence can reduce errors in

medical image assessment. The diagnosis of breast cancer is an essential task;

however, diagnosis can include ‘detection’ and ‘interpretation’ errors. Studies to

reduce these errors have shown the feasibility of using convolution neural

networks (CNNs). This narrative review presents recent studies in diagnosing

mammographic malignancy investigating the accuracy and reliability of these

CNNs. Databases including ScienceDirect, PubMed, MEDLINE, British Medical

Journal and Medscape were searched using the terms ‘convolutional neural

network or artificial intelligence’, ‘breast neoplasms [MeSH] or breast cancer or

breast carcinoma’ and ‘mammography [MeSH Terms]’. Articles collected were

screened under the inclusion and exclusion criteria, accounting for the

publication date and exclusive use of mammography images, and included only

literature in English. After extracting data, results were compared and

discussed. This review included 33 studies and identified four recurring

categories of studies: the differentiation of benign and malignant masses, the

localisation of masses, cancer-containing and cancer-free breast tissue

differentiation and breast classification based on breast density. CNN’s

application in detecting malignancy in mammography appears promising but

requires further standardised investigations before potentially becoming an

integral part of the diagnostic routine in mammography.

Introduction

Screening mammography is the recommended tool for

the early detection of breast cancer in women

experiencing no symptoms and has been shown to

decrease breast cancer mortality rate by 40–63%.1

However, current diagnostic frameworks for assessing

mammograms such as the breast imaging reporting and

data system (BI-RADS), developed by the American

College of Radiology (ACR) used to report findings into

a number of well-defined categories, can be limited by

‘detection errors’ (pathology missed) and ‘interpretation

errors’ (pathology misinterpreted).2 One possible solution

to reduce the errors is utilising artificial intelligence (AI)

tools, which automatically find abnormalities (detection)

and categorise them either as normal or as abnormal

(interpretation).

In general, AI can be defined as a sophisticated

computer program able to carry out tasks usually

requiring human intellect in areas such as visual

perception and decision-making. Over the past few years,

deep learning has dramatically transformed the AI

industry. Deep learning is a subset of machine learning

methods based on artificial neural networks. A

convolutional neural network (CNN) is a class of deep

neural networks, commonly applied to analyse image

data. Similar to conventional machine learning methods,

CNN allows the machine to perform specific tasks by

relying on the inference of decision boundaries rather

than explicit instructions by a user.
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Furthermore, CNNs learn relevant features from the

data, with limited input from a human expert, and make

predictions via heuristics when new data are entered.3

CNNs can be used to assist with the detection of breast

cancer on mammographic images with a high degree of

accuracy as measured by sensitivity and specificity.4 It can

also reduce the time required to assess a large volume of

mammograms.5 These potential benefits have emphasised

the importance of exploring CNN’s ability to accurately

diagnose abnormalities on mammograms promptly.4,5

CNN is faster with similar accuracy when compared to

radiologists without other limiting factors such as a lack

of qualified personnel.6,7

Considering recent advances in AI tools in

mammography, it is essential for the imaging and the wider

health community to better understand current trends and

developments. However, there is a lack of comparisons in

the literature between similar studies that this literature

review aims to address. The purpose of this study therefore

was to compare the recent developments of CNN in the

diagnosis of mammographic images to enable medical

imaging professionals to gain greater insight on how this

technology can assist our patients in future.

Methodology

The focus of this review was to identify the current

developments and uses of CNN in mammography

diagnostics. Due to the review’s narrative nature, results

were described by description and exploration with

qualitative elements rather than systematically.

Using the keywords listed in Table 1, ScienceDirect,

PubMed, MEDLINE, British Medical Journal and

Medscape databases were searched for original English

research studies published between 2011 and 2019. Studies

which used imaging modalities other than mammography

were excluded. A total of 33 relevant peer-reviewed articles

were found.8–40 To compare the results among studies,

relevant features were extracted: (1) author and publication

year; (2) study aim; (3) utilised database; (4) number of

images used; and (5) performance measures including

sensitivity, specificity and area under the curve (AUC).

Results

A total of 33 out of 65 articles were selected under the

inclusion criteria; 32 studies were rejected due to lack of

direct relevance. In the accepted literature, there were

various recurring themes, so articles were further

categorised into four different salient categories:

Category 1. Differentiation between benign and

malignant tissues;

Category 2. Localisation of mass in breast tissue;

Category 3. ‘Cancer-containing’ and ‘cancer-free’

breast tissue differentiation;

Category 4. Breast classification based on breast

density.

A total of 12 studies focused exclusively on Category 1,

primarily testing CNN’s ability to distinguish between

benign and malignant masses. Category 2 had seven

studies that focused on mass localisation. Category 3 had

seven studies which focused on screening images as

‘cancer-free’ and ‘cancer-containing’; Category 4 had

seven studies that used CNN to categorise mammograms

by breast density.

Twenty-two of the 33 articles used the ACR’s BI-RADS

system to report mammograms assigning breast imaging

studies to one of six assessment categories (0 – incomplete

study, 1 – negative, 2 – benign, 3 – probably benign, 4 –
suspicious for malignancy, 5 – highly suggestive of

malignancy and 6 – known biopsy-proven malignancy).41

In all 33 articles, four primary image databases were

used:

1. Digital Database for Screening Mammography

(DDSM) (Digitised Images): This database from the

University of South Florida contains 2500 studies, with

each study containing two images of each breast and

patient information such as age, when the image

biopsy proven, and ACR breast density classification.

All cases are female.42

2. MIAS Mini Mammographic Database (Digital Images):

The mini-MIAS provided by the Mammographic Image

Analysis Society contains 161 pairs of films and has

commonly encountered pathologies and normal cases.43

3. INbreast database (Digital images): This database has

410 images from 115 cases: 90 cases have images of

both breasts and 25 cases from mastectomy patients.

All patients are females. Different pathologies include

masses, calcification, asymmetries and distortions.44

4. Breast Cancer Digital Repository (BCDR) (Digital and

Digitised images): BCDR is a public repository

Table 1. List of keywords used to search for relevant topics related

to the review.

Topic Keywords

Artificial Intelligence Artificial Intelligence; Deep learning; Artificial

Neural Networks; Convolutional Neural

Network

Anatomy; Pathology

of Interest

Breast; Breast Cancer; Breast Lesion; Breast

Carcinoma; Breast Neoplasm

Imaging Modality Mammogram; Mammography

Others Image Reading; Diagnostics; BI-RADS; Breast

Screening
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composed of breast cancer patient’s case studies hosted

by the IMED Project in March 2009.8 Data

classification uses BI-RADS and is subdivided into two

repositories: the Film Mammography Repository and

Full Field Digital Mammography Repository. The

BCDR has been used to train CAD schemes and is still

in development.45 Digitised images contain 1010

patients (998 female and 12 male) ranging from ages

20 to 90, 1125 studies and a total of 3703 images. The

digital database is in development with 724 patients

(723 female and 1 male) ranging from ages 27 to 92,

1042 studies and a total of 3612 images.46

Discussion

Category 1: Differentiation between a
benign and malignant mass

The differentiation between benign and malignant masses

in CNN breast screening was the most prominent

category of study. Akselrod-Ballin’s CNN accurately

diagnosed mammograms classified as BI-RADS 1;

however, it found difficulty diagnosing higher graded

images.19 Importantly, they noted that CNN systems have

issues differentiating benign and malignant masses in BI-

RADS 3 images.19 When BI-RADS 3 images were

excluded, their CNN system improved detection AUC

from 0.60 to 0.72. Aside from this study, other studies

did not mention BI-RADS 3 exclusion.

Furthermore, Carneiro suggested that their CNN’s

inability to diagnose BI-RADS images >1 was due to

training images being annotated for either

microcalcifications or masses, but not for both in a single

image, potentially affecting heuristics.15 Additionally,

automated segmentation made by CNN generally resulted

in lower accuracy, since detection of false-positive masses

impacts the system’s performance in mass classification.15

Category 2: Localisation of masses in breast
tissue

Although many studies focused on benign and malignant

differentiation, tumour localisation was another common

topic. Five studies showed detecting a mass in dense

breast regions and pectoral muscles to be difficult due to

high intensities.21–24,36

Al-Masni et al.47 employed a You Only Look Once

(YOLO) system that uses a singular network for diagnostics

by dividing the input image into multiple subregions,

compared to traditional neural networks requiring multiple

networks for each extracted region. As a result, their system

operated quicker compared to traditional neural networks

and successfully identified masses in pectoral muscles and

dense tissues; they suggested that its ability to localise

masses in radiopaque areas was due to augmented training

by digitally manipulating images to produce more training

images.47

Hwang et al.21 experimented with CNN’s ability to self-

learn via a weakly supervised CNN system, meaning that

images used for training were minimally annotated with a

weak description. Compared to other studies, the results

were poor for AUC, sensitivity, specificity and accuracy

with no results exceeding 0.77.21 This finding suggests

that current CNN’s need highly annotated images for

training for accurate results.

Overall, the results from the studies in Category 2

appear promising in highly supervised training methods,

but weak in lowly supervised systems.

Category 3: ‘Cancer-containing’ and ‘cancer-
free’ breast tissue differentiation

In 2018, a study using a CNN system was designed to

differentiate between normal and abnormal images via

biomarkers such as breast density, presence of mass and

microcalcification.28 Their results indicated that abnormal

images were more accurately identified when

microcalcifications and benign cases were excluded. The

authors suggested that due to the training data having an

uneven number of cases of normal and cancer cases, this

caused overfitting and database dependency. This creates

difficulty distinguishing between benign and malignant

cases due to overreliance on heuristics and an inability to

learn and adapt from new cases.28

Al-Antari modified Al-Masni et al.’s YOLO system to

differentiate between cancer-containing and cancer-free

images, their study demonstrated an accuracy of 95.64%

and noted that a robust CNN system heavily relies on the

deep learning model in segmenting specific region of

masses to reduce potential false positives from surrounding

tissues.30

Category 4: Breast classification based on
breast density

Breast tissue density may increase the likelihood of

developing breast cancer, as increased breast density and

glandular tissue may make it difficult to detect early signs of

breast cancer such as microcalcifications.47 The importance

of classifying breast density for breast cancer risk must be

stressed as the relative risk of developing breast cancer in

women with heterogeneously dense breasts is 1.2 times more

compared to the average women, and for women with

extremely dense breasts, the relative risk is 2.1 times higher.

This is likely due to the masking effect, excess glandular

tissue and breast density as an independent risk factor.48
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Between 2018 and 2019, there were studies that tested

CNN’s capabilities in categorising mammograms by

breast density.37,38,40,49 Ha’s preliminary system

demonstrated an accuracy of 72% in predicting ‘high’-

risk and ‘low’-risk mammograms by generating heat maps

on the mammograms where ‘red’ areas had overlapping

mammographic features suggesting high density, high and

low risk defined as dense and non-dense, respectively.37

They noted that while the red areas on the heatmaps

suggest areas of high density, the pixel map generated

does not necessarily indicate specific areas where breast

cancer may develop.37 Notably, Mohammed’s study

demonstrated a high accuracy on differentiating between

BI-RADS category ‘scattered density’ and ‘heterogeneously

dense’ images, however, noted that their study was a

retrospective study and the images used had little

variation in mammographic vendors and imaging

protocol, suggesting that their system may not guarantee

the same results from different manufacturers and

imaging standards.38

Fonseca et al conducted a preliminary study to

diagnose breast density using the ACR’s breast

composition categories (a – entirely fatty; b – scattered

areas of fibro-glandular density; c – heterogeneously

dense tissue, potentially obscuring small masses; and d –
breasts extremely dense, lowering mammography

sensitivity)41 and achieved a mean accuracy of 0.7305,

similar to a radiologist when categorising breast density.35

The study’s weakness was that the images used were

sourced locally and not from a mainstream database.

Additionally, a study found that inter-reader agreement

regarding breast density classification was only at 49%

and agreement was usually on either fatty breasts or

extremely dense breasts.50 Therefore, there is a great

potential in improving breast density classification in

assessing breast cancer risk using CNN’s capabilities.

Diniz in 201836 classified breast tissue by density and

regions with or without a mass; by combining them, they

localised and detected masses in dense (Cooper’s

ligaments, mammillary glands and ducts) and non-dense

tissue (adipose tissue). Sensitivity was slightly higher in

non-dense tissue (0.9156 vs. 0.9036), yet dense tissue had

significantly higher specificity (0.9635 vs. 0.9073),

meaning that their CNN was better at recognising

negative non-dense images but identified abnormalities

more accurately in dense tissues.36

Sensitivity and specificity, total
accuracy and AUC of CNNs

Basic statistical analyses are employed for simple

comparisons between a study’s AUC, sensitivity,

specificity and total accuracy gathered from Table 2. The

overall mean of CNN’s AUC, specificity, sensitivity and

total accuracy is listed in Table 3. It is important to note

that data sets used in the radiologist studies are not

standardised and images are from patients with vastly

different clinical history.

For sensitivity, minimum and maximum value

disparity is greater for CNN, but the lowest and highest

sensitivity range is more significant. The lowest sensitivity

and specificity are from a study by Hwang and Kim; their

results are lowest across all parameters, reinforcing that a

highly supervised learning requirement is required. They

argued that the training database (DDSM) contained low-

quality images with many artefacts. However, this issue

did not occur for other studies.

Of note, some studies omitted sensitivity and specificity

results, so performance comparisons between the CNN

and the radiologist are rudimentary. Furthermore, every

study used a different number of images to train and test

their systems, making exact comparisons difficult.

From these four parameters, the current development

of CNN appears promising in mammographic diagnostics

but requires highly supervised learning (images that are

highly annotated with regions of interests to learn and be

segmented), sufficient images for training and adjustment

of learning algorithms to ensure overfitting and database

dependency do not occur to achieve good diagnostic

results.

In 2018, a retrospective study compared the

performance of a CNN system to 101 radiologists and

found that the CNN system slightly outperformed the

radiologists with an AUC of 0.840 and 0.814,

respectively.51 However, due to the study’s retrospective

nature, results may suffer from the ‘laboratory effect’ and

may not be applicable in a clinical setting.51

Limitations of this review and
current literature

Although some studies have used the same databases for

training, many have used a different combination of

databases and various numbers of images for training.

Hence, valuable comparisons between studies are difficult

to make as each database uses mammograms from

different hospitals, image parameters and manufacturers,

resulting in a lack of reference standards between data

sets. Since the study outcomes depend significantly on the

database used for training, the variability between these

databases can affect each AI’s performance algorithm.

This variability is called ‘inter-database variability’,

causing optimisation of algorithm and standardised

comparison between studies extremely challenging.52

Additionally, there are several ‘cases’ per database and

studies may not use the same cases. For example, Rouhi

ª 2020 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of
Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology

137

D. J. Wong et al. Artificial Intelligence Assessing Mammographic Images



Table 2. 33 studies listed by category, author, year, database used, number of images, AUC, specificity, sensitivity and accuracy.8–40

Author Year Database #Cases (Images) AUC Specificity Sensitivity Accuracy

Category 1 studies

Ramos-Poll�an et al.8 2011 BCDR 286 0.996 0.77 0.95 0.97

Rouhi et al.9 2014 DDSM 170 (170) 0.951 0.96 0.97 0.96

Arevalo et al.10 2015 BCDR 344 (736) 0.86 – – –

Arevalo et al.11 2016 BCDR 344 (736) 0.7 – – –

Dhungel et al.12 2016 INbreast 115 (410) 0.87 – – 0.91

Huynh et al.13 2016 Custom – (–) 0.81 – – –

Jiao et al.14 2016 DDSM – (–) – – – 0.97

Carneiroet al.15 2017 INbreast 115 (410) 0.72 0.66 0.69 –

Carneiro et al.15 2017 INbreast 115 (410) 0.87 0.92 0.69 –

Carneiro et al.15 2017 DDSM 172 (680) 0.91 0.97 0.94 –

Kooi et al.27 2017 Custom 956 (1804) 0.8 – – –

Teare et al.17 2017 DDSM 0 0.92 0.91 0.8 –

Chougrad et al.18 2018 DDSM 1329 (5316) 0.98 – – 0.97

Chougrad et al.18 2018 INbreast 50 (200) 0.97 – – 0.96

Chougrad et al.18 2018 BCDR 300 (600) 0.96 – – 0.97

Chougrad et al.18 2018 MD*** 1529 (6116) 0.99 – – 0.99

Chougrad et al.18 2018 MIAS 113 (113) 0.99 – – 0.98

Akselrod-Ballin et al.*19 2016 DDSM, INbreast 850 (850) – – – 0.78

Akselrod-Ballin et al.**19 2016 DDSM 850 (850) – – – 0.77

2016 INbreast (without BI–RADS 3) – (–)

Akselrod-Ballin et al.*19 2016 DDSM, INbreast �850 0.6 – – –

Akselrod-Ballin et al.**19 2016 DDSM, INbreast (without BI-RADS 3) �850 0.72 – – –

Ribli et al.20 2018 INbreast 115 (115) 0.85 0.9 – –

Category 2 studies

Hwang et al.21 2016 DDSM and MIAS 10,363 (322) 0.68 0.76 0.58 0.7

Hwang et al.21 2016 DDSM and MIAS 10,363 (322) 0.54 0.66 0.44 0.66

Al-masni et al.47 2017 DDSM �600 – – – 0.9633

Sampaio23 2011 DDSM 566 (566) 0.87 0.86 0.8 0.85

Sun et al.24 2016 Custom �1874 0.8818 0.72 0.81 0.8243

Shen et al.25 2019 DDSM 2223 0.922 – 0.9643 –

Savelli et al.26 2019 INbreast 115 (410) – – 0.763 –

Kooi et al.16 2017 Custom 44,090 0.941 – – –

Category 3 studies

Kim et al.28 2018 Custom 29,107 0.91 0.89 0.76 –

Jadoon et al.29 2017 DDSM and MIAS – (–) 0.85 0.82 0.88 0.82

Al-antari et al.30 2018 INbreast 115 (410) 0.9478 0.9241 0.9714 0.9564

Kaur et al.31 2019 MIAS 20 – 0.88 0.9 0.9

Anitha et al.32 2017 DDSM 300 – – 0.925 –

Anitha et al.32 2017 MIAS 170 – – 0.935 –

Wichakam et al.33 2016 INbreast 216 – – – 0.9727

Suzuki et al.34 2016 DDSM 198 – – 0.899 –

Category 4 studies

Fonseca et al.53 2015 Custom �1157 – – – 0.73

Bandeira Diniz et al.36 2018 DDSM Non-dense; � (1004) – 0.91 0.92 0.91

Bandeira Diniz et al.36 2018 DDSM Dense; – (1482) – 0.96 0.9 0.95

Ha et al.37 2019 Custom 1474 – – – 0.72

Mohamed et al.49 2018 Custom 15,415 0.95 – – –

Ionescu et al.39 2019 Custom 67,520 – – – –

Mohamed et al.38 2018 Custom 22,000 0.926 – – –

Trivizakis et al.40 2019 DDSM 2500 (10,239) 0.548 – – –

Trivizakis et al.40 2019 MIAS 161 (322) 0.798 – – –

*Exp1.

**Exp2.

***MD = DDSM+ INbreast + BCDR.
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et al.’s9 model aimed to differentiate malignant or benign

lesions, while Diniz et al.’s36 design aimed to localise

mass and categorise images based on breast tissue density.

Although both used the same database, the cases used

were different, meaning that direct comparisons are

difficult. Furthermore, current data sets are archaic and

lack realism; many images still use digitised rather than

digital images; the data sets lack clinical history such as

risk factors, ethnicity and age make thorough analysis

difficult. Also, in real-world screening approximately 0.5–
0.8% cases contain cancer, meaning that data sets used

had a high number of malignancies.

Likewise, the number of images used to pre-train and

test the CNN varies between studies and this potentially

affects its calibration. A CNN extensively trained with

small training schemes may lead to overfitting and

database dependency which causes the CNN to be over-

reliant on heuristics taught in training, resulting in weak

future predictions, analysis and adaptation to new

images.3 To improve comparisons between CNN and

radiologists, their performance must be examined on the

same data set and investigations to identify overlapping

errors between AI and humans are recommended.

To solve these issues, mainstream databases should be

selected and standardised with the same cases and images

used so meaningful statistical analysis can be performed

between studies such as ROC curve analysis and

homogeneity.

Conclusion

CNN diagnosis in mammography has been demonstrated

as an expanding field in artificial intelligence diagnostics.

The most significant limitation of the current studies is

the lack of standardisation between studies. Despite this

limitation, the mean accuracy across the studies is

promising, showing the potential reliability of CNN in

mammography diagnostics.

Current innovation in CNN diagnostics for

mammography includes the differentiation of benign and

malignant masses, the localisation of masses, cancer-

containing and cancer-free breast tissues differentiation

and breast classification based on density. Literature

indicates that the differentiation of benign and malignant

masses has the most developments, and the consensus

suggests that CNN is comparable in performance to a

radiologist. However, there are still some significant

weaknesses within the 33 studies due to the inter-

database variability, inadequate original data reports and

other aspects of AI training such as unsupervised learning

and training schemes. Therefore, as promising as the

introduction of a CNN application in detecting

malignancy in breasts seems, it does not currently appear

ready for the real clinical environment and requires

further standardised investigations before it can be a part

of the diagnostic routine for mammography imaging.

With the current developments, instead of solely

investigating CNN performance versus radiologists, the

real opportunity is to examine CNN’s potential to

support radiologist’s performance both for training

purposes and as a computer aid to help them to further

improve medical image diagnosis.
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