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Abstract
Middle East respiratory syndrome-associated coronavirus (MERS-CoV) has
been a significant research focus since its discovery in 2012. Since 2012, 2,040
cases and 712 deaths have been recorded (as of August 11, 2017),
representing a strikingly high case fatality rate of 36%. Over the last several
years, MERS-CoV research has progressed in several parallel and
complementary directions. This review will focus on three particular areas: the
origins and evolution of MERS-CoV, the challenges and achievements in the
development of MERS-CoV animal models, and our understanding of how
novel proteins unique to MERS-CoV counter the host immune response. The
origins of MERS-CoV, likely in African bats, are increasingly clear, although
important questions remain about the establishment of dromedary camels as a
reservoir seeding human outbreaks. Likewise, there have been important
advances in the development of animal models, and both non-human primate
and mouse models that seem to recapitulate human disease are now available.
How MERS-CoV evades and inhibits the host innate immune response remains
less clear. Although several studies have identified MERS-CoV proteins as
innate immune antagonists, little of this work has been conducted using live
virus under conditions of actual infection, but rather with ectopically expressed
proteins. Accordingly, considerable space remains for major contributions to
understanding unique ways in which MERS-CoV interacts with and modulates
the host response. Collectively, these areas have seen significant advances
over the last several years but continue to offer exciting opportunities for
discovery.
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Introduction
Middle East respiratory syndrome associated-coronavirus 
(MERS-CoV) was first isolated from a patient with severe, fatal 
pneumonia in Saudi Arabia in September 20121 and was retro-
spectively identified in Jordan in April 20122. To date, the vast  
majority of the 2,040 confirmed cases and 712 deaths (as of August 
11, 2017) have occurred in the Kingdom of Saudi Arabia (World 
Health Organization), and one large travel-associated outbreak 
occurred in South Korea3. MERS-CoV has a large (about 30 kb) 
positive-sense RNA genome characteristic of coronaviruses,  
encoding conserved replicase and structural genes, and lineage- 
specific accessory genes are found in the 3′ 10 kb of the genome4.

MERS-CoV research has branched out in several parallel direc-
tions. Given its unusually high case fatality rate (about 36%), a  
paramount concern has been to understand the ecology and emer-
gence of MERS-CoV in order to assess its pandemic potential.  
Equally important in the interests of developing vaccines and 
therapeutics is understanding how MERS-CoV actually causes dis-
ease, and this has driven extensive work on developing large and 
small animal models as well as studies of the molecular virus-host  
interactions that contribute to viral replication and virulence.

This review will examine several of these areas to assess the state of 
the field as of mid-2017. Specifically, we will focus on four areas: 
(1) the emerging clarity on the zoonotic origin and evolution of 
MERS-CoV in bats and camels, (2) development of non-human  
primate models, (3) generation of transgenic mouse models for 
studies of pathogenesis and testing of vaccines and therapeutics,  
and (4) studies attempting to elucidate mechanisms by which 
MERS-CoV evades or counteracts the host innate immune  
response. Though not exhaustive, discussion of these areas will  
provide a clear picture of the state of knowledge in the field and 
where important gaps remain.

Outstanding questions remain, particularly considering the source 
of MERS-CoV infections in humans. Although a large percentage 
of cases report contact with camels, many do not. Large-scale sero-
surveys suggest rare but widespread subclinical infection5, but it is 
unknown whether asymptomatically infected individuals can trans-
mit the virus. Notably, seropositive rates among dromedary camels 
exceeding 90% have been detected in several sub-Saharan African 
countries in addition to the Middle East, but not a single active 
MERS-CoV infection has been identified in sub-Saharan Africa. 
In 2016, sampling of more than 1,000 individuals in Kenya identi-
fied two seropositive individuals6, although most of the individuals 
tested, including the two who tested positive, had little contact with 
camels. It is unclear whether the absence of cases reported in Africa 
is due to under-reporting or different ecology of the virus, but  
further, intensified sampling may fill these gaps.

Origin and evolution of MERS-CoV
Since the discovery of MERS-CoV, identifying the source of 
human infections has been considered essential to interrupting 
zoonotic transmission. Almost immediately, suspicion fell on bats 
as a likely reservoir. MERS-CoV was classified genomically as a 
lineage C betacoronavirus, a relatively novel lineage typified by 
the bat coronaviruses HKU4 and HKU5, complete sequences of 

which had been recovered from bats of the species Tylonycteris  
pachypus and Pipistrellus abramus in China, respectively, in  
20077. Extensive global surveys since the discovery of MERS-
CoV have revealed a remarkably wide distribution of lineage C  
betacoronaviruses in bats, and lineage C betacoronaviruses have 
since been identified in bats in Italy8,9, Mexico10,11, and Thailand12. 
Most recently, a 2017 global study by Anthony et al.13 found that  
91 of the 100 phylogenetic coronavirus lineages identified in  
diverse mammalian orders were found in bats, suggesting that bats 
are a source of not only lineage C betacoronaviruses but possibly 
the vast majority of global coronavirus diversity.

In 2013, Memish et al.14 surveyed bats in the vicinity of a small 
human outbreak in Saudi Arabia and reported the identification of a 
190-nucleotide (nt) fragment with 100% identity to the MERS-CoV 
polymerase in a single bat, providing limited evidence that  
MERS-CoV or a closely related virus circulates in the Arabian 
Peninsula. However, such a virus could not be isolated from 
other local or regional bats then or later. Other work appears to be  
closing in on an origin in sub-Saharan Africa for MERS-CoV.

Also in 2013, Ithete et al.15 described a short, 816-nt fragment of 
coronavirus RNA isolated from a Neoromicia zuluensis bat in South 
Africa that differed by only one amino acid from the equivalent 
MERS-CoV fragment, a much closer relationship than between 
MERS-CoV and any other previously described virus16. Analysis  
of the complete genome sequence of this virus (NeoCoV) by  
Corman et al.17 revealed that it shares 85% nt identity with  
MERS-CoV across the entire genome and more than 90% amino acid  
identity, placing the two viruses within the same species. Most 
recently, a second virus (PREDICT/PDF-2180) in this species 
was described by Anthony et al.18, further supporting the idea 
that MERS-CoV is descended from an ancestral virus of African 
bats. Despite the close similarity and conspecific classification of 
NeoCoV and PREDICT/PDF-2180 with MERS-CoV, the two bat 
viruses are highly divergent from MERS-CoV in the S1 subunit 
of the Spike glycoprotein (less than 45% nt amino acid identity), 
but highly similar to each other (91%), with evidence of recombi-
nation between the S1 and S2 subunits, and PREDICT/PDF-2180  
was unable to infect human cells. This is consistent with the idea 
that MERS-CoV has a common ancestor with these viruses but itself 
arose through the acquisition of a new Spike S1 subunit conferring 
the ability to infect human cells through its receptor, DPP418.

Although a bat origin seems likely, there is no epidemiological  
link between human MERS-CoV infections and bats, but the epi-
demiological, genetic, and phenotypic links between dromedary 
camels and human infection seem conclusive5,19–24. Serological 
evidence of MERS-CoV infection in dromedary camels dates 
back to at least 1983. In 2014, Müller et al.25 reported 81% sero-
positivity for MERS-CoV in banked dromedary serum samples 
obtained between 1983 and 1997 in Somalia, Sudan, and Egypt, 
the first two countries being major exporters of dromedary camels  
to the Arabian Peninsula. This supports extensive circulation of  
MERS-CoV in dromedary camels long predating known human cases.  
Corman et al.26 reported similarly high seropositive rates in Kenyan  
camel serum banked in 1992, and contemporary serum collec-
tion shows that high percentages of dromedary camels are also  
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seropositive for MERS-CoV in Nigeria, Tunisia, and Ethiopia27 
as well as Burkina Faso and Morocco28. Phylogenetic analysis 
of MERS-CoV sequences suggests an evolutionary history of 
MERS-CoV in camels. Sabir et al.29 isolated complete MERS-CoV 
sequences representing five genetic lineages from Saudi Arabian 
camels. These lineages, including one recombinant lineage that 
spawned a human outbreak, appeared ancestral to human isolates.

MERS pathogenesis: insights from humans and  
non-human primates
Despite intensive research over the last five years, remarkably  
little is known about MERS-CoV pathogenesis. Owing to  
religious restrictions on autopsies in MERS-CoV endemic regions, 
only one post-mortem report has been published30, and no autopsy 
reports have emerged from outbreaks elsewhere. In the absence of 
robust post-mortem data from humans, numerous attempts have 
been made to establish non-human primate models that recapitu-
late severe human disease caused by MERS-CoV. Although these 
attempts have been only partially successful, work to this point has 
illuminated the cellular tropism of MERS-CoV in vivo and shed 
some light on the types of damage and inflammatory responses it 
causes and elicits in the airway.

The lone autopsy report, stemming from an April 2014 case in the 
United Arab Emirates30, identifies type 2 alveolar pneumocytes  
and respiratory multinucleated syncytial cells of uncertain origin 
as the primary targets of MERS-CoV. Consistent with tropism 
for cells in the lower airway, the primary pathology observed was  
diffuse alveolar damage, and there was evidence for immune- 
mediated pathology in uninfected areas of the lung. No evidence of 
systemic dissemination of MERS-CoV was found, but data from 
a single patient cannot rule out the possibility of spread beyond  
the airway. Animal models are inconsistent on the question of 
whether MERS-CoV causes systemic infection, and renal failure is 
a known complication in severe human cases.

Rhesus macaque model
The earliest MERS-CoV animal model established used rhesus  
macaques. In 2013 and 2014, de Wit et al.31 and Yao et al.32,  
respectively, reported that rhesus macaques infected with  
MERS-CoV experience self-limiting transient lower respiratory tract  
infection involving mild to moderate pneumonia, therefore not 
mimicking severe human disease associated with MERS-CoV. 
However, these studies match observations from the lone autopsy 
report that MERS-CoV targets primarily alveolar pneumocytes. 
They conflict on whether lung endothelial cells are infected, which 
has been observed in cell culture and could facilitate systemic  
dissemination by allowing viral escape from the lungs33.

Common marmoset model
Efforts by several groups to develop a non-human primate model 
of severe MERS-CoV–induced disease have used common  
marmosets. Falzarano et al.34 first reported that infection of mar-
mosets with MERS-CoV causes severe pneumonia, lethal in some  
subjects, that appears to recapitulate human disease. Both this 
group35 and Yu et al.36 have subsequently compared MERS-CoV 
infection of marmosets with that of rhesus macaques and observed 
more severe disease, more robust viral replication, and more severe 

pathology and inflammatory cell lung infiltration in marmosets 
than in rhesus macaques. These reports indicate that marmosets 
can serve as a suitable model for severe human disease caused by 
MERS-CoV and support a role for immune-mediated pathology in 
the lungs as a factor in severe disease.

However, confounding these results, Johnson et al.37 reported that 
intratracheal infection of marmosets with MERS-CoV results 
in only mild pneumonia and minimal viral replication in the 
lungs. They found no significant differences in disease between  
MERS-CoV–infected marmosets and marmosets inoculated with 
inactivated MERS-CoV, suggesting that the volume of the intrat-
racheal viral inoculum itself might result in airway pathology.  
However, Yu et al. infected solely by the intratracheal route, 
rather than through multiple routes as Falzarano et al. did, and  
inoculated the marmosets with 10-fold less virus than Johnson 
et al. did. Like Johnson et al., Yu et al. compared pathology in  
MERS-CoV infected marmosets and mock-infected marmo-
sets, seemingly confirming the original finding by Falzarano et 
al. that viral infection induces the observed severe pathology in  
MERS-CoV infected marmosets. Resolving the differences between 
these studies will require considerably more work, but in the interim, 
the common marmoset appears to be a useful model organism for 
studying the pathogenesis of severe MERS-CoV disease, while 
the rhesus macaque may be appropriate for studying milder, likely 
under-reported human disease as well as for vaccine studies.

Mouse models of MERS-CoV
MERS-CoV does not replicate in mice, because mouse DPP4 
(mDPP4) does not support MERS-CoV entry38, and this is due to 
two amino acid differences relative to human DPP4 (DPP4) in the 
region that interacts with Spike39. Therefore, the development of 
mouse models has largely involved replacement of mouse Dpp4 
with human DPP4 or modification of mDPP4 to render it compat-
ible with Spike40. The first mouse model established, before the 
generation of transgenic mice, used adenovirus-mediated transient 
expression of hDPP4 in the mouse airway via adenovirus-vectored 
transduction. Zhao et al.41 reported that transient hDPP4 expres-
sion rendered mice susceptible to MERS-CoV replication in the 
lungs and the development of signs and symptoms of pneumonia.  
However, mice recovered and cleared the virus by 8 days post-
infection, failing to recapitulate severe human disease.

Subsequently, several models using transgenic human DPP4-
expressing mice were developed yet suffered from significant  
limitations in their ability to recapitulate human disease. The first 
transgenic mouse model was described by Agrawal et al.42 in 
2015 and further characterized in 201643 and used mice globally 
expressing hDPP4. These mice do develop pneumonia as seen in 
humans, but the virus disseminates systemically, including robust 
viral replication in the brain. Also in 2015, Zhao et al.44 described 
a similar transgenic mouse model, which likely has limited utility 
for pathogenesis studies due to systemic dissemination and severe 
neurological disease, but is suitable for studying the efficacy of  
vaccines and antiviral drugs. Similar results were reported in 2016 
by Li et al.45, although this group also used hDPP4 expressed under 
control of a lung-specific promoter, observing no disease following  
MERS-CoV infection.
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More recently, three models using transgenic mice that appear to 
better recapitulate severe human disease have been published. The 
first of these, described in 2015 by Pascal et al.46 and further detailed 
in 2017 by Coleman et al.47, uses mice with the full-length mouse 
Dpp4 gene replaced by its human equivalent. hDPP4 tissue distri-
bution and expression levels in this system were largely equivalent 
to that of mDPP4 in wild-type mice. These mice support robust 
MERS-CoV replication in the lungs with little or no dissemination 
of the virus to other organs. All mice infected with the highest dose 
tested—2.5 × 104 plaque-forming units (pfu)—developed severe 
lung pathology, lost 20% of body weight by day 7 post-infection, 
and were euthanized. Notably, and unlike in models described 
below, these mice succumb to infection with wild-type, rather than 
mouse-adapted, MERS-CoV. This may make it particularly useful 
for extension of in vitro studies of mutations found in clinical iso-
lates such as a 48-nt deletion in ORF4a48 or of mutations engineered 
into other viral proteins intended to disrupt their interactions with 
host immune responses.

Two mouse models, published in late 2016 and early 2017, use mice 
with Dpp4 modified using CRISPR/Cas9 to serve as a functional 
receptor for MERS-CoV. Cockrell et al.40 made two amino acid 
substitutions in mDPP4 previously determined to enable its usage 
by MERS-CoV39, at positions 288 and 330. These mice support 
robust replication in the lungs following intranasal inoculation with 
5 × 105 pfu of wild-type MERS-CoV or MERS-CoV adapted on 
mouse NIH-3T3 cells expressing the chimeric mDPP4 with substi-
tutions of amino acids 288 and 330. However, these mice exhibited 
no clinical signs of disease and minimal lung pathology. Despite 
the robust replication, 15 serial passages of virus were required to 
achieve lethality, significant declines in respiratory function, and 
severe lung pathology. The mouse-adapted virus contained several 
mutations, as expected, as well as a large deletion in ORF4b. This 
deletion may suggest that this protein is non-essential in the mouse, 
or its loss may represent an adaptation to virulence possibly because 
loss of this putative interferon (IFN) antagonist results in enhanced 
immune-mediated pathology.

Li et al.49 developed a similar model in which they replaced exons 
10–12 of mouse Dpp4 with their human equivalents, rendering 
mDPP4 a functional receptor for MERS-CoV. As with the model 
developed by Cockrell et al., wild-type MERS-CoV replicated 
robustly in the lungs of these mice but did not cause disease. Virus 
serially passaged 31 times was lethal to 80% of mice infected with  
2 × 106 pfu. Notably, and supporting the emerging picture of 
immune-mediated pathology playing a significant role in disease, 
mouse-adapted MERS-CoV used in this model induced signifi-
cantly more robust activation of innate immune and inflammatory 
genes than wild-type MERS-CoV and increased infiltration of the 
airway by innate immune cells.

Innate immune suppression
Like many viruses, coronaviruses encode proteins to enable  
evasion or suppression of the host innate immune response,  
particularly that driven by the expression of antiviral type I and 
type III IFNs. Notably, however, the IFN response to corona-
virus infection occurs remarkably late compared with many 
other viruses. MERS-CoV induces little detectable IFN or  

IFN-stimulated gene (ISG) expression early in infection of primary 
airway epithelial cells50, ex vivo lung cultures51, or immortalized  
airway-derived epithelial cells52. In Huh7 hepatoma cells, no  
type I IFN transcript could be detected even 48 hours post-infection  
(hpi)53, although Menachery et al.54 have shown that Calu-3  
airway-derived cells do mount an IFN response by 24 hpi with a 
high concentration of MERS-CoV.

Accordingly, considerable research has been conducted to identify 
the viral proteins which so dramatically delay the host immune 
response. Of particular interest are the lineage-specific accessory 
proteins (NS3, NS4a, NS4b, NS5, and NS8b) encoded in the 3′ 
end of the MERS-CoV genome. Conserved MERS-CoV proteins 
such as nsp155, the nsp3 papain-like protease domain56,57, and the  
structural M protein58,59 may also counteract the host immune 
response but likely do so by similar mechanisms as their closely 
related orthologs in other coronaviruses. The lineage-specific 
accessory proteins, in contrast, lack homology to known viral 
or host proteins, making them of particular interest as their  
mechanisms of action may be unique among coronaviruses.  
Notably, NS4a and NS4b have been demonstrated by multiple 
groups to have IFN antagonism capabilities, and NS5 may as well58. 
However, few of these studies have investigated the role of these 
proteins during infection. Instead, most studies have used ectopi-
cally expressed viral proteins, an experimental approach which 
offers the advantage of avoiding the need for high containment and 
isolation of a protein’s activity from those of other viral proteins.

The accessory proteins NS4a and NS4b, translated from the same 
bicistronic mRNA4, have also been identified as innate immune 
antagonists. NS4a was rapidly identified as a double-stranded RNA 
(dsRNA) binding protein which, though unique to MERS-CoV and 
MERS-like coronaviruses, has an RNA binding domain homolo-
gous to that of several cellular proteins60. NS4a antagonism of IFN 
gene expression has been demonstrated by three research groups 
using very similar luciferase reporter assays58,60,61 but, like M, not 
during actual virus infection. Notably, Niemeyer et al.61 showed 
that NS4a binds the dsRNA mimic polyI:C and co-localizes with 
dsRNA during MERS-CoV infection, whereas Siu et al.60 dem-
onstrated that IFN antagonism is dependent on dsRNA binding. 
More recently, in 2016, Rabouw et al.53 reported that ectopically 
expressed NS4a inhibits activation of the antiviral dsRNA binding 
protein PKR, preventing translation arrest and stress granule for-
mation. However, infection with recombinant MERS-CoV∆ORF4 
did not induce stress granule formation, and whether this virus  
activated PKR was not reported, leaving open the question of 
whether NS4a functions as a PKR antagonist during MERS-CoV 
infection.

NS4b was initially identified as a putative IFN antagonist by Yang 
et al.58 in 2013 and Matthews et al.62 in 2014, using luciferase 
reporter assays for IFNβ gene expression, and Yang et al. showed 
that NS4b—along with NS4a, M, and NS5—inhibited nuclear 
translocation of IRF3. Notably, Matthews et al. found that, although 
NS4b localizes primarily to the nucleus, deletion of the N-terminal 
nuclear localization sequence did not abrogate NS4b inhibition of 
IFNβ promoter-driven luciferase expression, a result confirmed by 
Yang et al.63 in 2015. In that 2015 study, Yang et al. expanded on 
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their earlier work, showing that ectopically expressed NS4b inhib-
ited IFNβ promoter-driven luciferase expression as a consequence 
of overexpression of the IFN activators MDA5, RIG-I, MAVS, 
IKKε, TBK1, IRF3, and IRF7. MDA5 and RIG-I are cellular sen-
sors of viral dsRNA, whereas MAVS transduces their recognition 
of dsRNA through the kinases IKKε and TBK1 to phosphorylate 
IRF3/7 and induce IFN. They demonstrate that NS4b associates 
with several of these antiviral proteins, preventing the formation of 
an IKKε/MAVS complex required to induce IFN, yet the authors 
identify, but do not characterize, an IFN antagonist function medi-
ated specifically in the nucleus. Finally, in 201664, we identified 
NS4b as a 2′,5′ phosphodiesterase (PDE) with structural homology 
to the mouse hepatitis virus (MHV) NS2 protein as well as a larger 
host protein family known as 2H-phosphoesterases. We previously 
characterized MHV NS2 as an RNase L antagonist65 and showed 
that NS4b can functionally replace MHV NS2. Additionally, we 
used recombinant live MERS-CoV to demonstrate that a mutation 
in an NS4b catalytic residue (H182R) that abrogates its enzymatic 
activity results in RNase L activation in Calu-3 cells late during 
infection.

Conclusions
Collectively, a great deal of progress has been made in this areas 
over the last several years, but it is also clear that the field of  
MERS-CoV research is still in its infancy. With respect to the 
origins of MERS-CoV, these are increasingly understood, yet 
it remains true that no virus directly ancestral to MERS-CoV, or  
containing a Spike S1 subunit with high similarity to MERS-CoV,  
has been either isolated or identified by sequence. Addition-
ally, while the host switch from bats to dromedary camels likely 
occurred in Africa, banked Saudi Arabian camel serum dating to 
1993 is seropositive for MERS-CoV66, suggesting that the virus was 
also circulating there over 20 years ago, as in Africa.

Recent experimental work in camels supports their status as a 
MERS-CoV reservoir. A hallmark feature of a virus-reservoir host 
interaction is that for the virus to be maintained in a reservoir host 
population it should cause minimal to no disease in that host. Exper-
imental infection of Jamaican fruit bats by Munster et al.67 resulted 
in replication and shedding without clinical disease, although the 
ability to extrapolate from these conclusions is limited as these 
bats are not a putative MERS-CoV reservoir. More notably, and in  
support of the identification of dromedary camels as a reservoir 
seeding human infections, MERS-CoV infection of camels in  
natural and experimental settings results in either subclinical or 
causes only mild, transient upper respiratory tract disease68–70.

Further work to better understand the ecology of MERS-CoV  
should include continued intensive serosurveys, efforts to iso-
late bat coronaviruses, and acquisition and analysis of additional  
camel-derived MERS-CoV sequences to date and geolocate 
MERS-CoV evolution and host-switching. Such work will further 
our understanding of processes underlying zoonotic emergence of 
novel viruses, an ever-growing threat in a changing climate.

With respect to animal models, useful non-human primate and 
mouse models have been developed, yet work remains to reconcile  
the differences between them. Rhesus macaques may be more  
readily available than marmosets yet, because they develop only 
mild disease, may be less useful for studies of pathogenesis and 

therapeutics. Additionally, strikingly conflicting results of mar-
moset MERS-CoV infection, depending on the research group,  
require further reconciliation before this model should be widely 
adopted.

The development of MERS-CoV mouse models is an impressive 
scientific achievement, but the differences in infection outcome 
between the mice expressing hDPP4 in the mDPP4 locus and the 
mice expressing chimeric DPP4s require further study. Notably, 
the latter two models required mouse adaptation of the virus and 
still require 10- to 100-fold more virus to achieve severe disease.  
It is possible that full replacement of mDPP4 disrupts its non-
MERS-CoV–related functions, including T-cell homeostasis, that 
could affect the course of disease, and the use of different MERS-
CoV strains may also affect outcome. A side-by-side comparison 
of these models will help in elucidating and reconciling these dif-
ferences. With respect to pathogenesis, all three models appear to  
recapitulate the pneumonia observed in humans, but the model 
using wild-type virus may offer certain advantages. Particularly, 
it will better allow studies of naturally occurring and engineered 
mutations in viral proteins, on the genetic background of human 
isolates, particularly the accessory proteins in the 3′ end of the 
genome. Several of these proteins have been identified in vitro  
as putative innate immune antagonists, and the potential to 
extend these studies to characterizing the role of these proteins in  
pathogenesis offers exciting opportunities for the field.

The area of what unique mechanisms MERS-CoV uses to evade 
and counteract the host immune response remains ripe for further 
study. None of the MERS-CoV accessory proteins shares sig-
nificant amino acid identity or similarity with known coronavirus  
proteins, suggesting that their interactions with the host may be 
unique to the lineage C betacoronaviruses. In contrast, replicase 
and structural genes that interfere with the immune response 
do remain of interest but, owing to their conservation among  
coronaviruses, are less likely to act in unique or newly recognized 
ways. Although NS4a, NS4b, and NS5 have been reported to  
interfere with the innate immune response, most of this work, 
including that related to IFN induction, has been done using  
ectopically expressed protein and reporter assays. Exclusive use 
of ectopically expressed protein raises concerns about whether 
results may be skewed by non-physiological expression levels,  
mislocalization, or loss of possible interactions with other viral  
proteins. Although studies using live virus are more cumbersome 
and require biosafety level-3 containment, they are essential and 
feasible given the existence of multiple systems for generating 
recombinant MERS-CoV.
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