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Abstract

Background: Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It
can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization
defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of
the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic
potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive
studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology,
phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently
low, thus limiting global surveillance and epidemiological monitoring.

Methods: We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients
treated in different operative units of an ltalian paediatric hospital over a timespan of 3 years, including both
methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We
typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal
Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL),
and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance
genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed
phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone.
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Results: The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80
different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these
clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by
variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic
resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types,
with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent
strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were
conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially
explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmeclV-
t127 PVL— clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this
hypothesis and suggested that this quickly emerging lineage was acquired independently by patients.

Conclusions: Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S.
aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors
and clones are specific of disease types, but the variability and dispensability of many antigens considered for
vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to
develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more
hospitals would allow the identification of specific strains representing the main burden of infection and therefore
reassessing the efforts for the discovery of new treatments and clinical practices.
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Background
Staphylococcus aureus is a bacterium commonly found on
the skin (15%), in the nostrils (27%), and in the pharynx
(10—20%) of healthy adults [1-3], but it is also the cause of a
number of diseases, whose severity ranges from common
community-associated skin infections to fatal bacteraemia
[3-5]. S. aureus is a leading cause of surgical, device-related,
and pleuropulmonary infections, which can result into
life-threatening infective endocarditis or even sepsis [6]. The
mortality of S. aureus invasive infections was extremely high
(>80%) in the pre-antibiotic era [6, 7], and only the intro-
duction of penicillin at the beginning of the 1940s was able
to contain it. However, resistant strains carrying a penicillin-
ase/beta-lactamase quickly emerged [8-10], and more than
90% of current human-associated isolates are resistant to
penicillin  [6]. Similarly, the introduction of the
penicillinase-resistant antibiotic methicillin was quickly
followed by the emergence of methicillin-resistant S. aureus
(MRSA) clones [11-13]. S. aureus is capable of acquiring re-
sistance to virtually every antibiotic that has entered clinical
use [14, 15], including recently developed agents like
daptomycin and linezolid [16, 17] and the last resort anti-
biotic vancomycin [18, 19]. In 2017, the World Health
Organization has listed vancomycin-intermediate and
vancomycin-resistant MRSA among the high priority patho-
gens for research and development of new antibiotics [20].
S. aureus’s ability to spread worldwide and to cause
outbreaks in both hospitals and the community [21, 22]
has fostered the study of its global epidemiology [3, 15,
23-25]. Some lineages are very prevalent worldwide (e.g.

CC5 and CC8) [24], whereas others have a more
localised spreading range, like the CC5 ST612 clone,
which has been found only in South Africa and Australia
[24, 26]. MRSA prevalence is also highly geographically
variable, ranging from < 1% in some Northern European
countries to >50% in some American and Asian coun-
tries, with livestock-associated MRSA disseminating in
the last two decades [24]. Newly emerging highly
pathogenic and pandemic clones have also been globally
characterised [27, 28] and are often the results of recom-
bination events as in the case of the ST239-SCCmecIll
clone [25, 27, 29]. S. aureus investigations have however
often underestimated the importance of non-MRSA
clones, usually considering only hypervirulent or specif-
ically relevant methicillin-sensitive S. aureus (MSSA) lin-
eages [15], even though MSSA is the most common
cause of surgical site infection [30, 31] and one of the
major nosocomial pathogens [15].

Untargeted profiling of the entire S. aureus population
in a given site or area is as important as its global epi-
demiology, and it is crucial for surveillance and preven-
tion of local outbreaks. Some studies have for instance
unbiasedly assessed the local epidemiology of nosoco-
mial S. aureus, suggesting that this pathogen is only
rarely transmitted from nurses to hospitalised patients in
presence of adequate infection prevention measures [32]
and that the community acts as major source of nosoco-
mial MRSA [33]. Studies surveying the whole S. aureus
population in hospitals have however focused on single
aspects, like the diversity of the population, its virulence
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and resistance traits, and its transmission in presence of
an outbreak [34-39] or in non-emergency conditions
[40—42]. Despite the large body of researches on S. aur-
eus, studies addressing a whole S. aureus infective popu-
lation at a given site through whole genome sequencing
to simultaneously look at the epidemiology, phylogenetic
reconstruction, genomic characterisation, and transmis-
sion pathways of infective clones are currently limited
[43]. Expanding these types of studies will be crucial for
an in-depth global monitoring of S. aureus.

Here we report an in-depth epidemiological and gen-
omic investigation of S. aureus infections in a paediatric
hospital in Italy. With a whole-genome sequencing ap-
proach, we reconstructed the phylogenies of the clones in
the cohort, characterised known clones and variants,
screened for resistance and virulence genes, and tested for
the presence of an outbreak. This allowed us to appreciate
the high diversity of the S. aureus community, with 80 dif-
ferent lineages, variability of the resistance cassettes, and
uneven conservation of various antigens previously clinic-
ally tested for vaccine development. We further report an
increased prevalence of highly resistant and lowly virulent
clones in chronic infections, and the rise of a newly emer-
ging clone already reported in other hospitals. Overall, our
results highlight the complexity of S. aureus epidemiology
and advocate the need for wider genome-based analysis.

Materials and methods

Sample collection and S. aureus isolation

Samples were collected at Anna Meyer Children’s
University Hospital (Florence, Italy) from 160 patients
from January 2013 to December 2015. Metadata were also
collected (Additional file 1: Table S1). We analysed sam-
ples obtained from the most common sites of infection for
S. aureus, namely airways (bronchial aspirates, sputum or
oropharyngeal and nasal swabs) or from soft-tissue and
skin lesions. All samples were processed for the detection
of bacteria using selective (Mannitol Salt Agar 2, bioMér-
ieux) and chromogenic culture media for MRSA (BBL™
CHROMagar™ MRSA II, Becton Dickinson). In order to
confirm species-level identification, mass spectrometry
analysis was performed using matrix-assisted laser desorp-
tion/ionisation time of flight (MALDI-TOF) (VITEK® MS,
bioMérieux). Antibiotic susceptibility was evaluated using
the automated system VITEK®2 (bioMerieux) with the
card AST-P632 (see Additional file 1: Table S1 for antibio-
grams). All identified strains were stored at — 80 °C for the
following molecular analysis.

Molecular characterisation of S. aureus and MRSA isolates
DNA extraction was performed from pure S. aureus cul-
tures after 24 h of incubation at 37 °C on Columbia agar
+5% sheep blood (bioMérieux) using QIAamp DNA
Mini Kit (cat. num. 51306, QIAGEN, Netherlands)
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according to the manufacturer’s specifications. DNA was
purified using Agencourt AMPure XP (Beckman Coulter,
California, USA) according to the manufacturer’s specifi-
cations. Extracted DNA was stored at — 20 °C for further
analyses.

In order to determine the potential virulence of SA/
MRSA strains, a specific PCR assay for the presence of the
gene (lukS-lukF) encoding for the Panton-Valentine
Leukocidin (PVL) was set up following a previously pub-
lished protocol [44]. The mecA gene and other loci of the
SCCmec cassette were analysed using different multiplex
PCR. The protocol suggested by Milheirico et al. [45] has
been used as a screening test for most frequent SCCmec
cassettes types (types I, II, III, IV, V, and VI) and then con-
firmed with other methods in equivocal cases [45—48].

PCR-based multilocus sequence typing (MLST) was car-
ried out with 25 pl reaction volumes containing 2 ul of
chromosomal DNA, 20 uM of each primer, 1 U of Taq
DNA polymerase (Super AB Taq, AB analitica), 2.5 pl of
10x PCR buffer (supplied with the Taq polymerase),
1.5 uM MgCl,, and 250 uM each deoxynucleoside triphos-
phates. The PCR was performed with an initial 5-min de-
naturation at 95 °C, followed by 30 cycles of annealing at
55 °C for 1 min, extension at 72 °C for 1 min, and denatur-
ation at 95 °C for 1 min, followed by a final extension step
of 72 °C for 5 min. The amplified products were purified
and then amplified with the BigDye® Terminator v3.1
Cycle Sequencing Kits (Applied Biosystem) with the
primers used in the initial PCR amplification. The se-
quences of both strands were determined with an ABI
Prism 310 DNA sequencer. Isolates with the same ST
have identical sequences at all seven MLST loci.

Isolates sequencing and data pre-processing
DNA libraries were prepared with Nextera XT DNA Li-
brary Preparation Kit (Illumina, California, USA). Qual-
ity control was performed with Caliper LabChip GX
(Perkin Elmer) prior to shotgun sequencing with MiSeq
(llumina, California, USA), with an expected sequencing
depth of 260 Mb/library (expected coverage > 80x). One
hundred twenty-nine million reads were generated
(704 thousand reads/sample s.d. 349 thousand).
Sequences were pre-processed by removing low-quality
(mean quality lower than 25) or low-complexity reads,
reads mapping to human genome or to large and small
ribosomal units of bacteria, fungi and human, and known
contaminants (e.g. phiX174, Illumina spike-in). All ge-
nomes are available at the NCBI Sequence Read Archive
(BioProject accession number PRJNA400143).

Genome assembly and annotation

Pre-processed reads were de novo assembled using
SPAdes version 3.6.1 [49] and discarding contigs shorter
than 1000 nt. We selected for our analysis only
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reconstructed genomes with an N50 >50,000. We ob-
tained high-quality genomes (N50 > 50,000 and less than
150 contigs) for 135 of the 160 patients enrolled. Ge-
nomes belonging to the remaining 25 patients were ex-
cluded from further analyses. Genomes were annotated
with Prokka version 1.11 [50] using default parameters
and adding --addgenes and --usegenus options.

Genome alignment/phylogenetic analysis

The sets of 1464 concatenated genes used as input for con-
structing whole cohort (Fig. 1) and strain (Fig. 2) phylogen-
etic trees were generated using Roary version 3.4.2 [51].
Maximum likelihood trees were inferred with RAXML ver-
sion 8.0.26 [52] using a GTR replacement model with four
discrete categories of Gamma. Support at nodes was esti-
mated using 100 bootstrap pseudo-replicates (option “-f
a”). The phylogenetic tree in Additional file 2: Figure S1
was inferred using the presence-absence binary matrix of
the core and accessory genes computed with Roary version
3.4.2 [51] in RAXML version 8.0.26 [52] with option “-m
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BINGAMMA”. Phylogenetic analyses were conducted
using only one single isolate per patient; when multiple
isolates from different timepoints of the same patient
were available, the reconstructed genome with the
highest N50 and the lowest number of contigs was
selected. In most cases (n=30), patients maintained
the same ST over time; in discrepant cases (n=2), we
selected the most prevalent clone.

In silico sequence type (ST), SCCmec, and spa-type
identification

In order to assign SCCmec type also to equivocal cases
and to confirm PCR-based SCCmec typing, the same set
of primers [45] and other primer sets [53, 54] were
mapped to reconstructed genomes by BLAST [55]. In
most cases, the two methods were consistent. In dis-
cordant cases, PCR was repeated. Sequence typing and
spa-typing were conducted using MetaMLST [56] and
the DNAGear software [57] respectively.

mple type

\——EY,L ;resen::e -
SCCmec type
# Virulence genes

Fig. 1 Phylogenetic tree of the whole cohort. Phylogenetic tree based on the 1464 core genes (1,194,183 bases) of the 135 single-patient S. aureus
isolates. STs are distinguished by means of numbers and background colours in the inner ring. Sample type, operative unit, PVL presence, and SCCmec
type are colour-coded in the following rings. On the outermost ring, the number of virulence genes is reported as bar plot (total considered = 79)
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Fig. 2 Whole-genome maximum likelihood phylogenetic trees of the four most relevant STs. All available reference genomes for ST22, ST121, and
ST228 have been included. For ST5, 1478 reference genomes were available, but only 24 were included for the sake of clarity. The phylogenetic
tree of ST1 and available reference genomes was also produced, but it is not reported here to avoid overlapping with Figure 5
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Many isolates were not assigned a spa-type because of
the limitations of short-read shotgun sequencing in re-
peated regions, which cause problems in genome
assembly.

Virulence factors and resistance gene analysis

Selected virulence factors and resistance genes (as in
[58]) were searched for by mapping reference genes
(Additional file 3: Table S2) to all reconstructed genomes
with BLAST [55] with the following parameters [-evalue
le—10 -perc_identity 90 -gapopen 5 -gapextend 5] with a
match >75%. Virulence genes to be searched for were
selected on the basis of a careful literature review for
their clinical relevance [59-84].

Analysis of genes with available vaccine targets

Genes of interest were identified as those S. aureus vac-
cine candidates that had already entered clinical trials
(according to http://clinicaltrials.gov as of January 2018),
and those candidates that showed promising results in

preclinical trials. For each genome, we extracted the ref-
erence sequences using BLAST [55] with default param-
eters. Extracted genes were pairwise globally aligned
with the reference and evaluated for synonymous and
non-synonymous single-nucleotide variation (SNVs), in-
sertions, and/or deletions.

Bayesian divergence estimates

We estimated divergence times of ST1 SCCmeclV t127
PVL- clones using BEAST2 [85] and the core genome
(core genes = 1464). We defined the best fitting model
priors by testing the combination of three clock models
(uncorrelated relaxed exponential, uncorrelated relaxed
lognormal, and strict), three demographic models
(birth-death, coalescent Bayesian skyline, and constant),
and two substitution models (HKY - Hasegawa, Kishino,
Yano and generalised time reversible). Bayesian Markov
chain Monte Carlo were run for 500 Mio. generations
and sampled every 1000 generations. We chose the com-
bination of models that resulted in the highest Bayes
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factor after parameter correction using AICM in Tracer
(see Additional file 4: Table S3).

Statistical tests

Associations between STs/virulence genes/antibiotic re-
sistance markers and sample/operative unit types were
found by performing Fisher’s exact test between the class
of interest and the remaining set of samples.

Results and discussion

We investigated the epidemiology and the whole-genome
genetics of S. aureus isolated from multiple operative units
of the same paediatric hospital in Italy (Meyer’s Children
Hospital, Florence). Two hundred thirty-four S. aureus
isolates from 160 patients were retrieved from diverse
clinical specimens, tested for antibiotic susceptibility, and
subjected to whole-genome sequencing (see Materials and
methods). The study produced 184 high-quality recon-
structed S. aureus genomes with a N50 larger than 50,000
and less than 250 contigs (Additional file 1: Table SI).
Downstream analyses are focused on the 135 high-quality
strains recovered from distinct patients.

Genome sequencing highlights the presence of common
clonal complexes and five newly sequenced clones

We first performed a whole-genome phylogenetic ana-
lysis to investigate the population structure of S. aureus
in our cohort. The phylogeny was built using one isolate
for each patient (n = 135) and using the 1464 core genes
representing a core genome of >1.19 M bases (see
Materials and methods and Fig. 1). The genomic diver-
sity of S. aureus is highlighted by the relatively large
number of accessory genes even in a limited cohort of
clinical isolates (n=6909 from a pangenome of 8373
(Additional file 2: Figure S2), in concordance with a re-
cent study based on the pangenome of 64 strains from
different ecological niches [86]. The gene presence/ab-
sence phylogenetic model considering both core and
genes confirmed the structure of the one built on the
core genome alone, with however a slightly higher
strain-diversity for isolates belonging to the same ST
(Additional file 2: Figure S1). Despite this diversity, we
found the presence of a reduced set of closely related
strains in the cohort (Fig. 1) mostly associated with
distinct multilocus sequence typing clones (STs) [87]
(see Materials and methods). We identified a total of 29
different STs, with five of them—ST228, ST22, ST5,
ST121, and ST1—found in at least 12 patients (Table 1
and Additional file 1: Table S1) with evidence of ST re-
placement in only one patient (Patient 091 switching
from ST228 to ST22) of the 32 patients sampled at mul-
tiple timepoints. This longitudinal strain consistency was
confirmed by whole-genome analysis (mean intra-patient
variability = 56.42 SNVs), for which the replacing event
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in Patient 091 accounted for 6238 SNVs between the
2013 and 2016 isolates, 0.22% of the genome. The 29
identified STs belong to 14 clonal complexes (CCs), with
the five most prevalent CCs (CC5, CC22, CC8, CC1, and
CC121) comprising more than 60% of the isolates. Spa--
typing [57] further refined the typing resolution: we
found 44 distinct spa-types (Additional file 1: Table S1),
with t001, t002, t008, and t127 being the most preva-
lent (i.e. present in >4 isolates, Table 1). We also in-
vestigated the presence of the Panton-Valentine
Leukocidin (PVL), a two-component prophage viru-
lence factor allowing S. aureus to escape from the
host immune system, that was found in 27.4% of the
samples (Additional file 1: Table S1).

According to both antibiotic susceptibility testing
(oxacillin and cefoxitin susceptibility, Additional file 1:
Table S1) and genome analysis (presence of the SCCmec
cassette, see Materials and methods), 63.7% of the iso-
lates were classified as methicillin-resistant S. aureus
(MRSA). Most strains (n =54) belonged to SCCmeclV;
type I cassettes were also abundant (n =19), whereas
cassettes type V (n=8) and II (n=1) were less repre-
sented. Methicillin resistance was unevenly distributed
across the phylogenetic tree (Fig. 1) and partially inde-
pendent from the STs. All CC1 isolates (n =14, ST1 and
ST772) were MRSA, and so were the isolates belonging to
CC5 (n=30, ST5 and ST228) and CC22 (n=16, ST22
and ST1327). All CC121 (=12, ST121) and CC10 (n =3,
ST10 and ST1162) isolates were instead methicillin-sensi-
tive (MSSA), and other clonal complexes (CC8, CC30,
CC45) showed balanced proportions of sensitive and re-
sistant strains. SCCmecl (1 = 19) was the most CC-specific
cassette, as it was found almost exclusively in CC5 isolates
(ST5 and ST228), with the exception of one ST15 and one
ST8 isolates, while neither SCCmecIV nor SCCmecV were
associated with specific STs.

For five of the recovered STs, namely ST241, ST942,
ST1162, ST1327, and ST1866, no sequenced genome is
publicly available (as genomes of S. aureus in RefSeq [88]
version 2017 [89]). Although a large number of S. aureus
genome sequences are available in NCBI, these are biased
toward a limited set of clinically relevant STs [43, 90], with
many others being neglected. This underrepresentation of
less-pathogenic or less-known strains may lead to a poor
understanding of the host—pathogen interactions at the
genomic level, and to an underestimation of emerging or
re-emerging pathogenic strains [25, 43].

Co-presence of local, global, animal-associated, and
hypervirulent clones

We combined the four characterisation methods (MLST,
SCCmec-, spa-, and PVL typing) to identify specific
known clones in the cohort, yielding 80 different line-
ages. The most prevalent were the South German/Italian
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Table 1 Genomic characteristics of the different STs, including SCCmec and spa-type, presence of PVL, genome length, N50
(shortest sequence length at 50% of the genome), and number of contigs, coding DNA sequences (CDS), and genes

ST CC  #isolates Predominant SCCmec  Predominant #PVL+ Avg.genome Avg.#  Avg.N50  Avg. #CDS Avg. #

(MRSA) type (# isolates) spa-type (# isolates) length (bp) contigs genes
1 1 12 (12) IV (11) t127 (3) 0 2,814,074.3 294 3261930 26013 2666.8
772 22 V() 657 (2) 2 2,768,135.0 460 2082825 25380 2605.0
5 5 14 (13) vV (10) t002 (5) 8 2,785,946.1 394 2506603 2580.1 2640.5
228 16 (16) 1 (16) t001 (5) 0 2,8379184 819 87,6884 2639.8 2700.7
228 6 (M V(1) 5238 (1) 0 2,796,820.0 400 1502710 25840 26480
7 7 300 n.a t1743 (1) 0 2,747478.7 66.0 147,7170 25213 2588.0
8 8 11 (6) IV (6) t008 (6) 5 2,821,267.1 52.7 2593315 26252 2681.8
293 2(2) V(1) t037 (1) 0 2,900431.5 90.5 90,0365 2697.5 2762.0
241 (1) nd. t030 (1) 0 2,884,707.0 87.0 1053250 27070 2768.0
247 (1) I (1) t197 (1) 0 2,776,359.0 76.0 74,230.0 2567.0 2630.0
10 0 10 na. na. 0 2,799,287.0 1100 52,8190 26340 26980
1162 2 (0) na. na. 0 2,867,105.0 580 184,821.5 27020 2767.0
15 15 502 IV (1); 1(1) t084 (1); t853 (1) 1 2,719/481.8 456 2263940  2496.2 2556.6
22 22 15(14) IV (13) t852 (1); t1977 (7); 3 2,7934433 56.0 1249183 25995 26624

223 (1); t005 (1)

1327 (M) IV (1) na. 0 2,758,892.0 420 1672900 25470 26120
25 25 2(0) na. 1258 (1); 12242 (1) 0 2,758,786.5 16.5 6974590 25545 26175
30 30 70 IV (3) t019 (2) 5 2,792,1089 58.1 1399136 26033 2666.1
34 2(0) na. 3905 (1) 0 2,821,562.0 57.5 1400570 26655 27305
45 45 8(2) IV (2) t015 (2) 0 2,762,2034 344 390,455.1 25915 2654.6
59 59 303 V(1) 216 (1); t437 (1) 1 2,799,567.0 530 1308173 25957 2662.0
88 88 1(1) IV (1) t4701 (1) 0 2,791,324.0 36.0 2062830 25750 2642.0
96 % 10 na. na. 1 2,783,146.0 390 1418770 25910 26520
97 97 202 IV (2) 359 (1) 0 2,756,222.0 27.0 401,3020 25700 26355
121121 12(0) na 3274 (1); 1314 (1); 12530 (1) 9 2,814,764.5 480 1460413 26313 2694.3
152152 3(2) V(2 355 (1) 2 2,753,826.7 310 267,2087  2551.0 2608.0
395 395 1(0) na. na. 0 2,759,659.0 220 5746570 25740 2640.0
398 398 2(1) V(1) t011 (1) 0 27,540,1200 575 20,645,930 25240 2589.5
942 942 1 (0) na. na. 0 2,813,978.0 820 61,1740 26540 27180
- na.  3(1) V(1) na. 0 2,739,763.7 46.0 157,7540 25350 2599.3

The combination of the four methods (MLST, SCCmec-, and spa-typing, and PVL presence) yielded 80 different lineages. Three isolates were not assigned to any

specific ST and are reported in the last row of the table

ST228-SCCmecl clone (n=16, 11.85%) and the
E-MRSA-15 ST22-SCCmeclV clone (n=13, 9.63%),
followed by the USA400 ST1-SCCmeclV t127 (n=11,
8.15%) clone, the USA800 paediatric clone ST5-SCCmecIV
t002 (1 =10, 7.41%), and the USA500 E-MRSA-2/6 clone
ST8-SCCmeclV t008 PVL- (1 = 4, 2.96%) (Additional file 5:
Table S4). Several other clones, including the highly viru-
lent USA300 ST8-SCCmeclV PVL+ clone (=2, 1.48%),
were also found, confirming a heterogeneous clone
composition in Italian hospitals [91, 92]. Surprisingly,
we did not isolate any ST80, the most prevalent com-
munity-associated MRSA clone in Europe [93].

We moreover identified two isolates (1.48%) belonging
to the livestock-associated MRSA (LA-MRSA) ST398
clone [24, 94] (Table 1). This clone has already been re-
ported in patients that had regular exposure to livestock in
several countries [24, 95, 96] including Italy [97-99], but
our results and other reports [96, 100—102] of infections in
non-exposed subjects suggest that the within-subject trans-
mission for these clones is not rare. Similar conclusions
can be drawn for another LA-MRSA, namely ST97 (n=2,
1.48%, Table 1), which is the leading cause of bovine mas-
titis, but is only rarely reported in humans [103-106]. This
growing incidence of LA-MRSA strains (n =4, 2.96% in
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our cohort) causing zoonotic infections highlights the ex-
istence of underestimated reservoirs of S. aureus strains
that could become epidemic [28, 107, 108].

One isolate was assigned to ST395, which is an un-
usual strain unable to exchange DNA via bacteriophages
with other S. aureus strains because of a modification in
the wall teichoic acid (WTA) [109, 110]. The same
modification, however, enables ST395 to exchange DNA
with coagulase-negative staphylococci (CoNS) [110],
making it particularly prone to exchange SCCmec ele-
ments and others with other commonly found staphylo-
cocci, e.g. S. epidermidis.

Genomic signatures of chronic versus acute S. aureus
infections
In order to investigate the potential association of clones
and antibiotic resistance with specific hospital operative
units, we cross-checked the prevalence of SCCmec types,
STs, and PVL+ clones with both OUs and sample types
(see Materials and methods). Strains from the cystic fibrosis
(CE, n=76) unit were positively associated with the pres-
ence of SCCmecl (n =19, ten from CF unit; p value = 0.03),
a cassette known to be hospital-associated [111, 112].
Strains from the same unit were also associated with ST1
(n=12, seven from CF unit; p value = 0.04), whereas we
noted a reduced prevalence of the PVL genes (n = 37, only
two from CF unit; p value = 0.0002) and of ST121 (n =12,
none from CF unit; p value = 0.02). This reflects the rela-
tively attenuated virulence which is a well-known
phenomenon in long-term S. aureus infections [113-116].
Similarly, sputum samples (n=33; 88.7% from CF unit)
were associated with ST228 (n =16, nine from sputum; p
value =0.004) and SCCmecl (n=19, 11 from sputum; p
value = 0.0008), and negatively correlated with PVL (n = 37,
only two from sputum; p value = 0.001). The high correl-
ation of ST228 with lung isolates and specifically with CF
has already been observed in Spain [111]. A similar pattern
of increased resistance and lowered virulence has been ob-
served for another sample type linked with long-term lung
infections, namely broncho-aspiration material (n =23;
78.2% from intensive care unit). Strains from this sam-
ple type were associated to SCCmecIV (n =54, 14 from
broncho-aspiration material; p value = 0.008), and with
PVL- (n=98, 23 from broncho-aspiration material; p
value = 0.0005) and MRSA clones (n=83, 21 from
broncho-aspiration material; p value = 0.002), highlight-
ing once again the loss of virulence and the acquisition
of resistance in long-term lung infections [113-116].
On the contrary, patients from both emergency room
(n=5) and the infectious disease unit (#z = 15) show an
overrepresentation of PVL+ clones (n=37, four from
emergency room and nine from infectious diseases; p
values = 0.02 and 0.005, respectively), indicative of acute
rather than chronic infections. Lesion swabs (# = 31) are
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strongly associated with MSSA (n=49, 31 from lesion
swabs; p value =3e-08). This sample type was also
associated to the hypervirulent ST121 clone [117, 118]
(n=12, 11 from lesion swabs; p value = 2e-05) and to
the presence of the PVL (n =37, 14 from lesion swabs; p
value = 3e-07), suggesting that in our cohort skin and
soft tissue infections (SSTIs) are predominantly caused
by hypervirulent MSSA strains. Lesion swabs from chil-
dren in care at the infectious diseases unit (7 =12, 80%
of the samples from this operative unit) are also charac-
terised by high prevalence of the virulent ST45 clone
[119, 120] (n = 8, three from lesion swabs; p value = 0.04)
that is known to be associated with SSTIs [121-124].
The expected [125] association between PVL (n=37)
and ST121 (n=12, nine PVL+; p value =0.001) and
ST30 (n=7, five PVL+; p value = 0.003) supports once
again the observed increased virulence of these STs [117,
118, 126, 127], which is partially in conflict with the hy-
pothesis of lesion colonisation by commensal strains
present in the skin microbiome [128, 129].

Discovery of novel variants of SCCmeclV with kanamycin,
trimethoprim, and bleomycin resistance

We next investigated the specific genetic variants of the
four types of SCCmec cassettes identified and discussed
above. This is relevant because the epidemiology of this
genetic element is disentangled by that of the rest of the
genome by virtue of its high horizontal mobility [130,
131]. Moreover, the SCCmec can host genes encoding not
only for resistance to beta-lactams [132, 133], but also for
other antibiotic resistances or virulence factors [131].

More than a half of the MRSA isolates in our collec-
tion (n=86) carried SCCmeclV (62.8%). This cassette
type has spread widely in the last decades, often substi-
tuting the previously more prevalent nosocomial
SCCmec types I and II [24, 134], and it is now common
especially in European clinical isolates [24, 92]. Another
cassette that has spread in recent years following a simi-
lar path is SCCmecV [134, 135], the third most prevalent
cassette type in our cohort (10.5% of the MRSA isolates)
after the more traditionally hospital-associated SCCmecl
[24, 112] (22.1% of the MRSA isolates). We moreover
isolated one MRSA carrying SCCmecll, which is widely
diffused in the USA but only rarely found in Italy/Eur-
ope [25, 136]. Consistently, the SCCmecll isolate was re-
covered from Patient 115, which is consistent with the
personal history of the patient. For two isolates, it was
not possible to classify the cassette neither with PCR nor
with in silico PCR using standard primers [45].

By aligning reconstructed SCCmec with reference cas-
settes (see Materials and methods), we observed a cer-
tain degree of variability inside the same cassette type,
specifically in type IV (Fig. 3). Subtypes IVa, IVb, and
IVc were identified, with some SCCmec elements
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showing insertions. Two cassettes in particular were not
consistent with the already described subtypes: the
SCCmec type IVc carried by MF062, which was enriched
with genes for kanamycin [137] and bleomycin [138,
139] resistance, and the type IVa carried by MR090 that
showed insertion of genes involved in resistance to tri-
methoprim [140, 141] (Fig. 3).

Non-SCCmec resistance profiles show different patterns in
chronic and acute infections

S. aureus can easily acquire a number of resistances, in-
cluding those to the last resort antibiotics vancomycin
[142, 143] and daptomycin [144]. According to results
presented in previous paragraphs and elsewhere [145],
resistances can occur by gene acquisition in the SCCmec
cassette. Most resistances are however encoded by genes
that are found in other parts of the genome or that have
been horizontally transferred through different genetic
elements [25]. Given the high importance of multi-drug
resistance in S. aureus [20], we therefore tested the pres-
ence or absence of specific resistance genes in our co-
hort [146] (Fig. 4 and Additional file 3: Table S2).
Consistently with previous literature [6], most of the iso-
lates tested positive for blaZ (81.5%), responsible for
penicillin resistance (96.3% concordance with antibiotic

susceptibility test, as per presence of the pbp and/or
mecA genes). No isolates were found positive for genes
encoding resistance to vancomycin (van, 100% concord-
ance with antibiotic susceptibility test) and to fusidic
acid (fusB and far, 94.1% concordance with antibiotic
susceptibility test). Antibiotic resistances were some-
times associated with specific CCs, as for the increased
representation of aacA.aphD (gentamicin resistance,
92.6% concordance with antibiotic susceptibility test)
and ermA (erythromycin resistance, phenotypic resist-
ance not tested) in CC5 isolates, whose genomes tended
to lack instead the blaZ gene (penicillin resistance)
(Fig. 4). Overall, two isolates from acute skin infections
were negative for all the resistance genes tested, while
six CF and intensive care unit isolates were positive for
six (33.3%) of them. This pattern of increased resistance
in long-term infections, together with their observed re-
duced virulence, completes the scenario of reduced viru-
lence and increased resistance that has been observed in
this and previous studies [113-116].

Emergence and disease-associated diversity of clinically
relevant virulence factors

S. aureus has a large repertoire of virulence genes, and it
is able to evade the host immune system through a
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variety of strategies. Some of the genes usually involved
in immune evasion were present in almost all our iso-
lates (Fig. 4 and Additional file 3: Table S2). These in-
clude genes encoding the phenol-soluble modulin alpha
and beta and the delta-haemolysin HId, responsible for
leukocytes and erythrocyte lysis respectively [60]; the
immunoglobulin-binding protein Sbi that inhibits IgG
and IgA [61, 62]; and some genes part of the Gla gen-
omic island (ssl6 and ss/9).

Other genes belonging to the immune evasion island
IEC2 were present in many but not all isolates, for ex-
ample, the one encoding for the antiplatelet extracellular
fibrinogen binding protein Efb [63, 64] and those encod-
ing various haemolysins (hla, hlg) [59, 60] (Fig. 4 and
Additional file 3: Table S2). In addition to the 27.4%
prevalence of the [ukF and [ukS PVL genes discussed
above, one sample (MR029, from emergency room) was

positive for the epidermal cell differentiation inhibitor
Edin, which has been found to promote the transloca-
tion of S. aureus into the bloodstream [65]. One of the
two USA300 isolates (MR047, from nasal swab) tested
positive for the arginine catabolic mobile element
(ACME), another important virulence factor (gene arcA)
that has been shown to be responsible for the increased
pathogenicity of S. aureus and specifically of USA300
clones [66, 67].

Many virulence genes were associated to specific STs
(Fig. 4 and Additional file 3: Table S2). ST22 (n = 15), for
instance, was associated with the toxic shock syndrome
toxin TSST-1 (n =38, three from ST22; p value =0.04;
present in 20% of the ST22 clones) [60, 68, 69], other
pyrogenic toxin superantigens known as staphylococcal
enterotoxins (SEs, mean 7 = 34.9 + 28.1 s.d; p value < 0.02
for seg, sei, sem, sen, seo, present on average in 86.7% of
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ST22 and 49.5% of non-ST22), and various ss/ immune
evasion genes (mean 7 = 57.4 + 40.2 s.d; p value < 0.01 for
ssl1, ssl3, ssl4, ssl7, ssl11, ssl12, present on average in
93.3% of ST22 and 21.1% of non-ST22) [70, 71]. ST22-IV
EMRSA-15 clones positive for tst1 are usually described
as “Middle Eastern variant” [72-74], but a high prevalence
in an Italian neonatal intensive care unit [76] and
pre-school children living in Palermo, Italy [75], has been
observed. Authors suggested that the Middle Eastern
clone might be more widely spread than estimated and
might have diffused in the Mediterranean populations as a
community-acquired MRSA [75, 76], as suggested by our
analysis. TSST-1 is responsible for an increased pyrogenic,
emetic, and superantigen activity, together with SEs
(10627489; 11544350). SEs (mean #n=34.9+28.1 s.d.)
were associated with all “virulent” STs, such as ST5 (n =
15, p value <0.04 for sed, seg, sei, sej, sem, sen, seo, sep,
present on average in 79.2% of ST5 and 32.3% of
non-ST5), ST45 (n=38; p value <0.02 for sec, seg, sei, sel,
sem, seo, present on average in 98.2% of ST45 and 38.9%
of non-ST45), ST121 (n=12; p value <0.02 for seb, seg,
sei, sem, sen, seo, present on average in 86.1% of ST121
and 41.7% of non-ST121), and—to a lower extent—ST30
(n=7; p value <0.02 for sei, sem, sen, present on average
in 100% of ST30 and 50% of non-ST30).

The hypervirulent ST121 MSSA isolates obtained
from lesion swabs (#=12) were instead associated
with the genes encoding for the exfoliative toxins Eta
and Etb (m=3 from ST121 swabs, and n=0 for
non-ST121, p value = 0.0006 for both genes), respon-
sible for the skin manifestations of bullous impetigo
and Staphylococcal scalded skin syndrome [77-79],
the gene bbp (n=12 from ST121, n=7 from
non-ST121; p value = 1.35e-08) that interacts with the
extracellular matrix bone sialoprotein and contributes
to staphylococcal arthritis and osteomyelitis [80], and
the immune evasion gene ech (n =12 from ST121, n=
36 from non-ST121; p value = 1.51e06), which is re-
quired for the persistence of S. aureus in host tissues
and the formation of abscesses [81]. The latter was
also present in all and only the isolates belonging to
ST1, ST7, ST10, ST15, ST30, ST34, and ST398, sug-
gesting a strong dependence on ST (Fig. 4 and Add-
itional file 3: Table S2).

Isolates retrieved from sputum samples of CF patients
(m=38) showed a positive association with the
adhesin-encoding genes sdrD (n = 34 from CF, n = 69 from
non-CF; p value = 0.03) and sdrE (n =27 from CF, n=48
from non-CF; p value = 0.03), and a negative association
with bbp (n=1 from CF, n =18 from non-CF; p value =
0.01), contrary to samples from the infectious disease unit
(n =15, four positive for bbp gene). This finding is consist-
ent with the increased need for adhesins in chronic lung
infections [82, 83, 116], including in CF [84].
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Conservation of genes encoding vaccine candidates
Unlike other bacterial infections, prior exposure to S.
aureus does not seem to provide protective immunity
[147]; therefore, vaccines are an attractive yet challen-
ging option to prevent disease. Researchers have long
attempted to produce an effective vaccine against S. aur-
eus, but even though few have proved promising in ani-
mal models, the two vaccines so far tested in efficacy
clinical trials have failed [147-153]. Since the main issue
is the polymorphic expression of S. aureus surface
antigens and the redundancy of its virulence proteins
[147, 154, 155], we tested the prevalence and conserva-
tion of a number of genes encoding vaccine candidates
described in the literature (Table 2).

Among antigens that have been proposed as targets
for vaccine development, the alpha haemolysin toxin
gene hla [147, 156, 157] and the genes coding for capsu-
lar biosynthesis cap5 and cap8 [150, 151] are highly
prevalent in our cohort (91.9% and 97.8% of the isolates
respectively). Nevertheless, these genes showed a larger
degree of variability compared to the others we consid-
ered, which may explain the poor results obtained in
clinical trials [147, 150, 151, 156, 157]. Other genes that
code for proteins used alone or in combination in vac-
cine formulations, such as the virulence determinant
SpA [158] and the fibronectin-binding protein CIfA
[159-161], are present in most of our strain collection.
In some of these genes, indels are prevalent (>90%,
Table 2), but they are frequently found in repeated re-
gions that may not critically impact the protein struc-
ture, as in the case of the spa gene.

Vaccines have also been proposed for S. aureus strains
with specific characteristics. For instance, targeting the
toxicity determinant TSST-1 (5.9% prevalence of tstl)
[162, 163] or the PVL proteins LukF-LukS (27.4% preva-
lence of [ukF-lukS) [164, 165] aims at selectively prevent-
ing the most virulent or lethal infections. In our cohort,
despite their low prevalence, both zst1 and the PVL genes
were conserved at 99%, except for a few isolates that had
indels in the latter (Table 2). The gamma-haemolysins
HlgAB and HIgCB genes [164, 165] were instead highly
prevalent (97.8—-100%) and quite conserved (69.6—94.8%).
The opposite approach is targeting genes with a lower
virulence profile, which may be more prevalent and con-
served than those coding for highly toxic factors. Among
them, the genes encoding for the manganese uptake re-
ceptor (mntC) [159-161] and for the iron acquisition fac-
tor (isdB) [152, 166], which are indeed present in all or all
but one the isolates of our cohort. Non-synonymous mu-
tations are rare in mntC (20.7% of the isolates, with only
one non-synonymous SNV), and, whenever not affected
by indels that may or may not affect the protein structure,
also the isdB gene is highly conserved (>99% identity,
Table 2).
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Table 2 Sequence variability of genes of interest for vaccine development. Number (and relative abundance) of isolates positive for
the gene, followed by the percentage of positive isolates carrying 0 or less than 1%, 2%, 5%, or more/equal to 5% of non-
synonymous SNVs or insertions-deletions (indels) with respect to reference gene. Both clinical trial IDs (ClinicalTrials.gov database
identifiers, http://clinicaltrials.gov) and reference studies refer to the latest available trials

Gene # positive Distribution of non-syn SNVs w.rt. reference seq. Latest trials  ClinicalTrials identifier Ref.

isolates (%) <1% <%  <S%  25%  indels
clfA 95 (70.4%) 0% 9.5% 0% 0% 0% 90.5% Phases |-l NCT01643941; NCT01364571 [159, 160, 171]
csala 70 (51.9%) 414% 43% 0% 0% 0% 54.3% Preclinical [168, 172]
csalb 36 (26.7%) 19.4% 47.2% 0% 2.8% 0% 30.6%
esxA 134 (993%)  85.1% 14.9% 0% 0% 0% 0% Preclinical [168,172]
esxB 89 (65.9%) 0% 98.9% 1.1% 0% 0% 0% Preclinical [168, 172]
esxC 89 (65.9%) 25.8% 40.4% 33.7% 0% 0% 0%
esxD 89 (65.9%) 584% 41.6% 0% 0% 0% 0%
fhuD2 135 (100%)  31.1% 68.9% 0% 0% 0% 0% Preclinical [168,172]
hla 124 (91.9%)  6.5% 0% 9.7% 78.2% 24% 3.2% Phase Il NCT02296320 [168,172,173]
higA 135 (100%)  65.2% 29.6% 22% 0% 0% 3%
higB 132 (978%) 114% 65.2% 22.7% 0% 0% 0.8% Preclinical [174]
higC 135 (100%) 61.5% 8.1% 28.1% 2.2% 0% 0%
isdB 134 (99.3%) 11.9% 21.6% 0% 0% 0% 66.4% Phase Ill NCT00518687 [152, 166]
lukF 37 (27.4%) 0% 97.3% 0% 0% 0% 2.7%
lukS 37 (27.4%) 56.8% 40.5% 0% 0% 0% 2.7% Phases |-l NCT01011335 [175]
mntC 135 (100%) 79.3% 20.7% 0% 0% 0% 0% Phases |-l NCT01643941; NCT01364571 [159, 160, 171]
tst 8 (5.9%) 0% 100% 0% 0% 0% 0% Phase | NCT02340338 [176]

Finally, we also analysed the conservation of csalA,
csalB, fhuD2, and esxA, genes recently described as be-
ing promising vaccine candidates in preclinical studies
[167, 168]. The two genes encoding for the conserved
antigen Csa (csalA and csalB) are present in 51.9% and
26.7% of the isolates respectively and are conserved in
only a fraction of the cases (Table 2). By contrast, the
iron uptake gene fhuD?2 is present in all isolates, with a
maximum of 1% non-synonymous variation in sequence
(Table 2). Also the genes encoding for the ESAT-6-like
secretion system (esxA, esxB, esxC, esxD) are well repre-
sented in the cohort, but only esxA is present in all but
one isolate and has no non-synonymous mutations in
85.1% of the isolates (Table 2). Therefore, on the basis of
their conservation, both FhuD2 and EsxA appear to be
promising targets for vaccine formulations.

Phylogenetics of specific STs highlights the aggressive
spread of a novel independently acquired ST1 clone

We investigated the hypothesis that some of the preva-
lent STs could be hospital-associated clones. We
estimated the ST phylogenies using a whole-genome
maximum likelihood approach (see Materials and
methods). In most cases, we observed that isolates in
our cohort, despite sharing the same ST, SCCmec, and
spa types, were not monophyletic subtrees when consid-
ering external reference genomes for the same STs. This

is the case, for example, of the ST228 and ST5 clones
(Fig. 2). This suggests independent acquisition of the
clones and no evidence of transmission among the se-
lected hospitalised patients, while person-to-person
transmission from healthy carriers or non-selected pa-
tients cannot be ruled out [21, 22]. Only two ST121
MSSA isolates were found to be almost identical and
both were retrieved in the same time window from pa-
tients 096 and 098 (8 SNVs). For ST1, instead, all but
two isolates belonged to the same sub-lineage, typed as
SCCmeclV t127 PVL-.

We further estimated divergence times for all the 16 iso-
lates belonging to the ST1 SCCmeclV t127 PVL- clone,
including those obtained from earlier or later time points
of the same patients. We used a Bayesian approach [85]
(see Materials and methods) integrating all the reference
genomes publicly available for ST1 and the two ST1
SCCmecV isolates from our cohort (Additional file 4:
Table S3). These analyses were performed to test the hy-
pothesis that all ST1 SCCmeclV t127 belong to a clone
specific of Meyer’s hospital. The relaxed exponential clock
model with constant coalescent prior and GTR substitu-
tion model resulted to the most appropriate model
(Additional file 6: Table S5). This model estimated that
Meyer’s clone has emerged approximately 6 to 28 years
ago as a specific branch of the ST1 tree, which has been
estimated to be 26-160 years old (Fig. 5). However, age
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of Meyer’s clone does not match with the time of
emergence of the clone in the hospital. Moreover, an
isolate obtained in a recent study investigating the
spread of a ST1 SCCmeclV t127 clone in Irish hospi-
tals [169] and carrying a virulence and resistance pro-
file very close to the one of our cohort (differences in
gene presence: 2/79 and 0/18 respectively) is phylo-
genetically rooted inside Meyer’s cluster (161 SNVs
intra-cluster; 412 SNVs inter-cluster). These two find-
ings suggest that ST1 SCCmeclV t127 is not specific
of the Meyer Children’s hospital but might represent
a newly arising community clone that is now spread-
ing in the nosocomial environment of different coun-
tries [169, 170].

Conclusions

In this study, we investigated the epidemiology of S. aureus
in different operative units of Anne Meyer’s Children’s Uni-
versity Hospital (Florence, Italy) over a timespan of 3 years
by whole genome isolate sequencing. Our analyses
highlighted a high diversity of STs, SCCmec, and spa-types,
resulting into a wide number of clones. Some of these
clones had been previously described in the literature as
livestock-associated, and we described them in
non-exposed children thus supporting the spreading of
such clones in the non-at-risk community. We moreover
described the presence of hypervirulent and geographically
unusual clones, and of five STs for which no sequenced
genome was available in public databases. Our refined
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analysis of the SCCmec cassettes highlighted the presence
of further resistances and diversity within the same cassette
type. On the contrary, when considering single infection
types or specific STs or clones as it is usual in S. aureus epi-
demiological studies, the genomic diversity was limited,
with an increased pattern of resistance genes in chronic pa-
tients and a larger number of virulence factors in acute in-
fections. Altogether, these observations shed more light on
the complexity of S. aureus epidemiology and on the need
for a more unbiased survey of the commensal and patho-
genic S. aureus community, to avoid the misrepresentation
of specific genomic traits.

Whole-genome-based routine surveillance of S. aureus
and other hospital-related pathogens would further allow to
get a more unbiased idea of the rising clones and better
informing clinical practices, which usually focused on the
most dangerous or well-known strains. Performing such
epidemiological studies as soon as a new putative nosoco-
mial clone arises could allow us to conclude whether the
new clone has arisen in that very hospital or it is a recent
sub-clone spreading also in the non-hospitalised population
and therefore more frequently isolated also in the clinics.
These wider-focus studies would not only allow the assess-
ment of the epidemiology of specific pathogens and clones
in the hospital setting, but also the survey of the prevalence
and conservation of their virulence and resistance traits.
This could lead to the identification of antigens of interest
for vaccine development and of specific sub-clones repre-
senting the main burden of infection, and therefore reasses-
sing the efforts for the discovery of new treatments.

Whole genome sequencing studies are crucial to survey
the global epidemiology of infectious agents, including S.
aureus, as genome-based data are reproducible and can be
easily meta-analysed without the confounding of batch ef-
fects. The meta-analysis of pathogenic, commensal, and
environmental S. aureus isolates could lead to a deeper
knowledge of the epidemiology of this bacterium and may
help in understanding how to prevent and treat infections
without boosting antibiotic resistance.
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