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With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses
of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster
genomic fragment sequences according to phylotype solely dependent on oligonucleotide composition and applied to genome
and metagenomic studies. BLSOM is suitable for high-performance parallel-computing and can analyze big data simultaneously,
but a large-scale BLSOM needs a large computational resource. We have developed Self-Compressing BLSOM (SC-BLSOM) for
reduction of computation time, which allows us to carry out comprehensive analysis of big sequence data without the use of high-
performance supercomputers. The strategy of SC-BLSOM is to hierarchically construct BLSOMs according to data class, such as
phylotype.The first-layer BLSOMwas constructed with each of the divided input data pieces that represents the data subclass, such
as phylotype division, resulting in compression of the number of data pieces. The second BLSOM was constructed with a total of
weight vectors obtained in the first-layer BLSOMs.We compared SC-BLSOMwith the conventional BLSOM by analyzing bacterial
genome sequences. SC-BLSOM could be constructed faster than BLSOM and cluster the sequences according to phylotype with
high accuracy, showing the method’s suitability for efficient knowledge discovery from big sequence data.

1. Introduction

As genome sequencing technologies represented by next-
generation sequencers provide higher throughput perfor-
mance, genome analyses of a very wide range of organ-
isms can be conducted, and genomic sequence data have
increased exponentially, resulting in a huge amount of data
compiled in international nucleotide sequence databases
(DDBJ/ENA/GenBank), which may soon reach the petas-
cale. To enable efficient knowledge discovery from such big
sequence data, it is important to examine the data com-
prehensively for clarifying the whole picture of all genome
data available. This is especially important for phylogenetic
classification of huge quantity of metagenomic data, which
should contain a wide variety of novel prokaryotic and
eukaryotic genomes poorly characterized previously.

We have focused on oligonucleotide composition in
genomic sequences and developed a “Batch-Learning
Self-Organizing Map (BLSOM),” which allows us to

panoramically grasp the sequence characteristics unique
to organism species by analyzing an ultralarge amount
of genomic sequences. We have so far applied it to gene,
genome, and metagenome analyses [1–3]. The method
provides a strong clustering ability, with its result easily
visible, under which sequences of genome fragments for each
species are separated (“self-organized”) with high accuracy,
based only on similarities in oligonucleotide composition,
with absolutely no information given on the species in the
course of computation. Furthermore, the algorithm can be
optimized for parallel computations, enabling ultra-large-
scale analyses performed by supercomputers, such as the
“Earth Simulator” [4]. As BLSOM takes computation time
proportional to approximately the cube of the quantity of
input data, a large-scale BLSOM requires huge amounts of
computational time and resources. With the appearance of
next-generation sequencers, which has prompted genomic
sequence data to grow at an exponential rate, enhancing
computer performance alone (e.g., use of the new Earth
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Simulator) will not suffice and a higher-speed, larger-scale
analysis strategy is now called for.

In this study, we have developed the “Self-Compressing
BLSOM (SC-BLSOM),” which provides higher-speed com-
putation and better clustering performance than the con-
ventional BLSOM for species-known genomic sequences.
The SC-BLSOM achieves higher speed by dividing input
data into phylogenetic subclasses and structuring BLSOMs
in a hierarchical manner. As mentioned before, the con-
ventional BLSOM can cluster genomic sequences according
to phylotypes, based only on similarities in oligonucleotide
composition. Therefore, this unsupervised learning method
can phylogenetically classify genomic sequences even derived
from a novel gene, for which an orthologous sequence set
required for constructing a reliable phylogenetic tree cover-
ing a wide range of phylotypes is not available. This shows
the usefulness of BLSOM for phylogenetic classification of
metagenomic sequences containing a large amount of novel
genes and genetic fragments. In more detail, the conven-
tional method of phylogenetic classification of metagenomic
sequences in our previous studies [3–6] was the mapping of
metagenomic sequences on a large-scale BLSOM, in which
genomic fragments from almost all species-known genomes
were classified (self-organized) according to phylotype in
advance. When constructing this large-scale BLSOM with
species-known sequences, addition of phylotype information
of the sequences done in SC-BLSOM should most likely
increase but should not decrease the phylogenetic clustering
power for these sequences. Hence, SC-BLSOM is thought to
be a kind of hybrid method of supervised and unsupervised
learning because phylotype information is added in dividing
the species-known genomic sequences into subclasses. We
have tested the effectiveness of the SC-BLSOM by means of
comparative studies of its computation time and clustering
performance, by analyzing almost all prokaryotic genome
sequences currently available.

2. Material and Method

2.1. Genome Sequence. Nucleotide sequences were obtained
from http://www.ncbi.nlm.nih.gov/Genbank/. When the
number of undetermined nucleotides (Ns) in a sequence
exceeded 10% of the window size, the sequence was omitted
from the analysis. When the number of Ns was less than
10%, the oligonucleotide frequencies were normalized to the
length without Ns and included in the analysis.

2.2. Batch-Learning Self-Organizing Map (BLSOM). Multi-
variate analyses such as factor corresponding analysis and
principal component analysis (PCA) have been used success-
fully to investigate variations in gene sequences [7]. However,
the clustering powers of conventional multivariate analyses
are inadequate when massive quantities of sequence data
from a wide variety of genomes are analyzed collectively.
SOM implements nonlinear projection of multidimensional
data onto a two-dimensional array of weight vectors, and this
effectively preserves the topology of the high-dimensional
data space [8–10]. We modified the conventional SOM

for genome informatics on the basis of Batch-Learning
SOM (BLSOM) to make the learning process and result-
ing map independent of the order of data input [1, 2].
The initial weight vectors were defined by PCA instead of
random values on the basis of the finding that PCA can
classify gene sequences into groups of known biological
categories. Weight vectors (w

𝑖𝑗
) were arranged in the two-

dimensional lattice denoted by 𝑖 (= 0, 1, . . . , 𝐼 − 1) and 𝑗
(= 0, 1, . . . , 𝐽 − 1). Weight vectors (w

𝑖𝑗
) were set and updated

as described previously. A BLSOM program suitable for
PC cluster systems and a PC program for mapping of new
sequences on a large-scale BLSOM constructed with high-
performance supercomputers can be obtained from our web
site (http://bioinfo.ie.niigata-u.ac.jp/?BLSOM).

2.3. Self-Compressing BLSOM (SC-BLSOM). A conventional
BLSOM performs clustering by means of reflecting the
characteristics of input data onto the weight vectors, which
are arranged on a two-dimensional lattice in the same format
as the input data; that is, characteristics of the input data are
summarized and compressed into weight vectors. The SC-
BLSOM is an analytical method that fully takes advantage
of the BLSOM, and Figure 1 shows the algorithm of the SC-
BLSOM.

In Step 1, input data are divided according to data
classification criteria “phylotype,” addition of phylogenetic
information. As we use the genome sequence data of known
prokaryotes for input data in this study, phylogenetic affil-
iation of the known prokaryote was used as the first-layer
classification: Divisions 1–5 in Figure 1. In Step 2, BLSOM
analysis is conducted on each group of the divided input
data: the first-layer BLSOM. The number of BLSOM nodes
(lattice points) created in this step was determined to be
half the number of the divided data pieces. Weight vectors
obtained in the first-layer BLSOMs of the divided input
data are merged, according to the second-layer classification
criterion representing a higher-order phylogenetic affiliation.
Weight vectors in BLSOM1-1, BLSOM1-2, and BLSOM1-3 are
merged and used for constructing BLSOM2-1 in Step 3, and
those in BLSOM1-4 and BLSOM1-5 are merged and used for
BLSOM2-2 in Step 3. In Step 4, the BLSOM analyses are
performed using the merged weight vectors in the second-
layer BLSOMs (BLSOM2-1 and BLSOM2-2). Steps 2 and 3 are
repeated for additional layers, where the original input data
are subdivided into more divisions.

In the SC-BLSOM, more BLSOMs are constructed than
in the conventional BLSOM, but they need much shorter
computation time than the BLSOM for all data input at
once, because the division of data in the first-layer BLSOM
has significantly reduced the number of input data pieces
for each divided BLSOM. As mentioned before, BLSOM
takes computation time proportional to approximately the
cube of the quantity of input data. Smaller number of
vectorial data pieces in the second-layer BLSOM than the
original amount of data also cut computation time. Hence,
shorter computation time can be expected for the SC-BLSOM
compared with the conventional BLSOM.
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Figure 1: Overview of SC-BLSOM algorithm.

Table 1: Computational time and occurrence level of pure lattice points in SC-BLSOM and BLSOM.

BLSOM SC-BLSOM SC-BLSOM (mapped original data set)
Computational time (min) 831 138 —
Occurrence level (%) (∗1) 93.5 96.0 94.5
∗1: occurrence level is the percentage of the lattice points on which only a single phylum was classified on the obtained map. Calculated using the formula: 100
× (number of lattice points on which there is only a single phylum)/(number of total lattice points).

3. Result and Discussion

3.1. Performance Comparison between SC-BLSOM and
BLSOM. To test the basic performance of SC-BLSOM,
its computation time and clustering performance were
measured and compared with those for the conventional
BLSOM. This test used genomic sequence data obtained by
randomly picking out genomic sequences of 10 Kb from 817
different complete genomes of prokaryotes and merging
them until the sequence length was one-tenth of the original
data; BLSOM and SC-BLSOM were constructed with a
degenerated tetranucleotide composition in a window
size of 5 Kb; the frequencies of pairs of complementary
tetranucleotides (e.g., AAAC and GTTT) in each fragment
were summed up and abbreviated as DegeTetra [3]. The
numbers of lattice points for the conventional BLSOM and

for the SC-BLSOM in two layers were each set to be 50% of
the quantity of input data. Input data for the first layer of
SC-BLSOM were divided into 20 divisions using the number
of phyla for the analyzed organisms as the classification
criterion. The number of input data pieces amounted to
90,998 sequence fragments; Supplementary Table S1 shows
the numbers of genomes and sequence fragments for each
phylum (see Supplementary Material available online at
http://dx.doi.org/10.1155/2015/506052).

The analyses were conducted in a computer environ-
ment comprising Intel(R) Xeon(R) CPU E5-2680@2.70GHz,
256 gigabytes of memory, and CentOS 5.11. Figure 2 shows
the classification results in the second layer of the SC-
BLSOM and the conventional BLSOM; Supplementary Fig-
ure S1 shows the BLSOM maps created for each phylum
in the first layer. Table 1 shows the computation time and
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Figure 2: SC-BLSOM and BLSOM with DegeTetra in 5 Kb sequences from 817 microbial genomes. (a) SC-BLSOM. (b) BLSOM. (c) The
original input data were mapped on SC-BLSOM. Lattice points that include sequences from more than one species are indicated in black,
those that contain no genomic sequences are indicated in white, and those containing sequences from a single species are indicated in colors.

clustering performance of SC-BLSOM and the conventional
BLSOM. Here, the clustering performance is presented as
the percentage of the lattice points, on which only a single
phylum was classified on the map.

The SC-BLSOM accomplished a reduced computation
time approximately one-sixth of the time required for a
conventional BLSOM, and as for the clustering performance
the SC-BLSOM showed an improvement of about 3% over
the conventional BLSOM. Additionally, in order to check
whether the SC-BLSOM sufficiently reflected the character-
istics of the original input data, the clustering performance
was measured by plotting the original input data onto the
second- layer SC-BLSOM (Figure 2(c)). As the SC-BLSOM

reduces the map size in proportion to the decrease of input
data, plotting the original input data produces approximately
four data pieces per one node, resulting in a density twice that
of the conventional BLSOM. Interestingly, the clustering per-
formancewas found to be better than that of the conventional
BLSOMby 1%ormore.This higher performance is thought to
be benefitting from the addition of phylogenetic information
for division conducted in Step 1. Accordingly, the SC-BLSOM
can be described as a method, which is fast, capable of high
clustering performance, and effective for constructing a large-
scale BLSOM for species-known genomes; that is, the SC-
BLSOM can be used as a reference map for phylogenetic
assignment of a massive amount of metagenome sequences
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Table 2: Computational time and occurrence level of pure lattice
points in different compression rate of SC-BLSOM.

SC-BLSOM SC-BLSOM
SC-BLSOM
defined lower

limit
Compression rate (∗1) 2 4 2
Computational time (min) 138 21 176
Occurrence level (%) (∗2) 96.0 94.1 96.6
∗1: compression rate was defined by the number of input data pieces mapped
on a weight vector.
∗2: occurrence level is the percentage of the lattice points on which only
a single phylum was classified on the obtained map. Calculated using the
formula: 100 × (number of lattice points on which there is only a single
phylum)/(number of total lattice points).

and thus be useful for phylogenetic characterization of an
environmental ecosystem.

3.2. Test of Different First-Layer BLSOM Conditions. Com-
putation time and clustering performance of the SC-BLSOM
should be affected to a large degree by changing the number
of weight vectors in the first-layer BLSOM. For this reason,
we examined, in more detail, what the effects were from
the quantity of weight vectors in the first-layer BLSOM. The
number of weight vectors for the first SC-BLSOM was set
to 25% of the quantity of input data, instead of 50% of the
number of input data pieces used in Figure 2(a).

Table 2 shows that computation time is approximately
two and a half hours for the SC-BLSOM, in which the
number of weight vectors was set to 50% of the amount of
input data and that the computation time is only twenty-
one minutes for the SC-BLSOM, in which the number of
weight vectors was set to 25%. While this SC-BLSOM had
an evidently reduced computation time (approximately one-
fortieth part of the conventional BLSOM), this condition
exhibited lower clustering performance. Considering that
the learning conditions for the second-layer BLSOM are
the same as those for the SC-BLSOM shown in Figure 2(a),
the performance degradation may be caused by the larger
amount of information loss resulting from the decreased first-
layer BLSOM map size (i.e., the decrease of the number of
weight vectors relative to the quantity of input data). As a trial
to overcome the reduction of clustering performance, we set a
lower limit for the number of weight vectors in the first-layer
BLSOM for maintaining adequate influence of the input data
from small-size categories.This will bypass imbalances in the
number of analyzed genomes in certain phyla used as the
division category in Step 1; Supplementary Table S1 shows that
many phyla have a limited number of sequence data pieces.
When the lower limit was set at 30% of the amount of data
assuming they are evenly divided, the total number of weight
vectors of the first-layer BLSOMs increased, resulting in an
increase in computation time of approximately one and a half
times, and clustering performance improved. This shows the
improvement effect on the data sets with small sample sizes.

Change in the condition for the first-layer BLSOM
affects speed and clustering performance, showing a trade-
off relationship between them. For example, if the aim is to

quickly understand the whole picture of target species in a
comparative genome analysis using all available genomes, a
higher compression rate may be applied, as it suffices to grasp
main features of each species. However, in estimating the
biological phyla of metagenome sequences in detail, which
should include sequences from a wide variety of uncul-
turable species, BLSOMs with high clustering performance
are required, and the aforementioned lower limit should be
applied in order to get accurate clustering even for small-
size data sets, which should be poorly represented in the
current DNA databank. The level of clustering performance
and computation speed should be set after taking into
consideration the nature of the target data and the purpose
of analysis.

3.3. Application of the SC-BLSOM for All Known Prokaryotes
to Comparative Genome Analyses. To verify the actual per-
formance of the SC-BLSOM for large quantities of genome
sequence data, SC-BLSOM and BLSOM for all species-
known prokaryote genomes currently available were con-
structed with DegeTetra composition; this covers a total of
3,500,000 5 kb sequences from 3,157 species, for which at least
10 kb of sequence was available from DDBJ/ENA/GenBank.
By comparing the two BLSOMs, applicability of the SC-
BLSOM to large-scale, comparative genome analyses was
tested. In more detail, SC-BLSOM was arranged in three
layers, with the data dividing criterion of family (divided
into 301 divisions) for the first layer and phylum (divided
into 38 divisions) for the second layer. The weight vectors
were arranged so that they represent 50% of the quantity
of input data. For computation of the SC-BLSOM, an Intel
Xeon Phi 5110P (1.053GHz, 60 cores) mounted-PC server
was used. On the other hand, the conventional BLSOM
was constructed using the Earth Simulator ES2, one of the
leading supercomputer systems in Japan, to performaparallel
computation with 144 CPUs.

Figure 3 shows the classification results from the phylum-
based third-layer BLSOM in the SC-BLSOM (a), as well as
that from the conventional BLSOM (b). The computation
time was approximately one month for the conventional
BLSOM, whereas it was approximately two weeks for the SC-
BLSOM. While SC-BLSOM was performed using a normal
PC server, a clustering performance was approximately 5%
higher than that of the conventional BLSOM. We will briefly
explain difference in clustering patterns between SC-BLSOM
and BLSOM, by taking Gammaproteobacteria, for instance,
which makes a large territory in the central part in the
map. The number of white lattice points, which are devoid
of genomic sequences in the final map, increases for SC-
BLSOM, because the number of input sequences per lattice
point for the third- layer map (a) was lower than that for
the conversional BLSOM (b). Furthermore, continuous lines
composed of white lattice points are observed. These while
lines primarily correspond to borders between territories of
different phylogenetic groups in Gammaproteobacteria and
are formed because the detailed phylogenetic information has
been included in the phylogenetic division for the first- and
second-layer BLSOM: 155 and 35 divisions in Gammapro-
teobacteria, respectively.
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Figure 3: SC-BLSOM and BLSOMwith DegeTetra in 5 Kb sequences from species-known prokaryotes. (a) SC-BLSOM. (b) BLSOM. Lattice
points that include sequences from more than one species are indicated in black, those that contain no genomic sequences are indicated in
white, and those containing sequences from a single species are indicated in colors.

Comparative genome analyses using the conventional
BLSOM for oligonucleotide composition can reveal which
oligonucleotides contribute to the formation of species-
and phylotype-specific clusters, providing profound informa-
tion about molecular evolutionary mechanisms establishing
the species-specific oligonucleotide composition “genome
signature” and possible biological functions of individual
oligonucleotides [2, 11–16]. To examine whether the SC-
BLSOM can be used to perform the same analysis as the
conventional BLSOM, the distribution of oligonucleotide
composition on SC-BLSOM was examined (Figure 4(a)).
The level of each tetranucleotide for each reference weight
vector was calculated and normalized with the level expected
from the mononucleotide composition for the reference
vector. Degenerated tetranucleotides diagnostic for phylum
separations in the SC-BLSOM and conventional BLSOM
are presented in Figure 4. ATAA + TTAT (a pair of
ATAA and TTAT) is characteristically overrepresented in
the Gammaproteobacteria territory. CAAG + CTTG is
underrepresented in the Gammaproteobacteria territory. In
Cyanobacteria territory, CCCC + GGGG is overrepresented,
but CATG is overrepresented. These findings obtained in
Figure 4 should not depend on the set of genomes included
in the analysis because the level of each tetranucleotide for
each lattice point was normalized with the level expected
from the mononucleotide composition for the lattice point;
the observed/expected ratio is represented with the level

of red (overrepresented) or blue (underrepresented) color.
SC-BLSOM and the conventional BLSOM give similar pat-
terns, showing that the SC-BLSOM can also unveil species-
specific (and phylotype-specific) characteristics of oligonu-
cleotide composition, by visualizing a major combination of
oligonucleotide frequencies contributing to sequence clus-
tering (self-organization). Collectively, SC-BLSOM can be
used for searching for hidden genome signatures and for
large-scale comparative genome analyses, which will provide
profound knowledge of individual genomes on evolutionary
and functional aspects.

4. Conclusion

We have developed a Self-Compressing BLSOM (SC-
BLSOM), which provides higher-speed and better clustering
performance than the conventional BLSOM.This high-speed
is achieved by dividing input data according to phylogenetic
group and structuring the layered BLSOMs. Actual applica-
tion to the comparative genome analyses of more than 3,000
prokaryotic genomes currently available demonstrated the
method’s effectiveness. The SC-BLSOM performs analyses in
a layeredmanner, and, therefore, it performs faster as the data
are divided further; the smaller number of data pieces in the
first-layer BLSOM reduces the map size, resulting in shorter
computation time. Furthermore, the SC-BLSOM can be eas-
ily performed in parallel using multiple computers without
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Figure 4: Level of each DegeTetra in SC-BLSOM (a) or BLSOM (b). Diagnostic examples of species-specific separations are presented. Level
of each DegeTetra in each lattice point in SC-BLSOM or BLSOM in Figure 3 was calculated and normalized with the level expected from the
mononucleotide composition of the lattice point. The observed/expected ratio is indicated in colors shown at the bottom of the figure.

requiring special techniques, because the first-layer BLSOM
processes are completely independent of one another.

The SC-BLSOM can be applied to both comparative
genome analyses and phylogenetic estimation of metage-
nomic sequence [3, 17–22]. With conventional BLSOM, we
published also a prediction of chronological, directional
change in the influenza viral genome sequences during a
pandemic [23]. In addition, the BLSOM for oligopeptide [24],
as well as the oligopeptide SC-BLSOM, can be used for func-
tion prediction of poorly characterized proteins. Therefore,
SC-BLSOM can analyze not only the genome sequence data
whichwill undoubtedly grow to anultralarge volume, but also
a wide variety of multidimensional data pieces, for example,
oligopeptide composition in proteins. Because of its powerful
visualization ability and high-speed, SC-BLSOMwill become
a versatile tool for effective knowledge discovery from big
data; that is, thismethodwill become useful for a wide variety
of classification purposes against big vectorial data pieces, not
only in genomics but also in other fields.
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