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Mast cells originate from pluripotent hematopoietic stem cells, which circulate as
CD34+ precursors until they migrate into tissues where they mature to long living
effector cells.1,2 They are present in all environmentally exposed tissues, e.g., skin,
intestine and the lung, where they can be detected in epithelium and tissue, often
in close proximity to blood and lymph vessels, nerves and hair follicles. In regard
of biochemical, structural and functional features, different types of mast cells
have been described. In humans, mast cell subtypes are named according to their
protease content. MCT mast cells store tryptase in their granula in contrast to MCCT

cells which express both chymase and tryptase.2,3 MCCT are found in the skin,
lymph nodes and submucosa of stomach and intestine. In contrast, MCT appear
predominantly in the lung and the intestinal mucosa in close proximity to other
immune cells such as T cells.4,5 Two types of mast cells can be distinguished in
rodents: Mast cells which reside in mucosal tissue have been named mucosal mast
cells (MMC), whereas serosal mast cells can be found in connective tissue
(CTMC).6 These subtypes vary in their sensitivity of activation and mediator
profile.2,7 

Mast cells interact with their environment by a host of mediators: Some of them
are stored in mast cell granula and some are produced de novo following activa-
tion. Mast cell mediators can be divided into the following classes; a) preformed
substances, b) lipid mediators and c) cytokines and chemokines. Heparin, the
neutral proteases chymase, tryptase and carboxipeptidase A as well as amines like
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histamine are stored in preformed form in the granula and
can be released within minutes following mast cell activa-
tion. Lipid mediators are generated from arachidonic acid
by cyclooxygenases (COX) and prostaglandin endopero-
xide synthase-1 and -2 to prostaglandin 2 (PGD2)8,9 or by 5-
lipoxygenase to leukotriene A4 (LTA4). LTA4 can be fur-
ther metabolized to LTB4, LTC4 or LTD4.10 Finally, mast
cells are a source of a huge spectrum of cytokines and
chemokines. Some cytokines can be stored in granules in
preformed fashion. For example, tumor necrosis factor
(TNF) can be immediately released from granules upon
activation of mast cells and is also newly sensitized.11,12

Depending on the type and strength of stimulation, mast
cells are able to release different mediator patterns within
minutes. Mast cell activation and degranulation following
IgE-mediated crosslinking of the membrane bound IgE
high affinity receptor (FcεRI) is the best characterized path-
way of mast cell activation.13,14 Crosslinking can be mediated
by bi- or multivalent antigens, recognized by membrane-
bound IgE molecules or unspecifically through super anti-
gens. Following activation, granules fuse with the cell
membrane and release their stored mediators within minu-
tes. The metabolism of arachidonic acid and subsequent
release of PGD2 and leukotrienes follows the degranula-
tion, and finally, the de novo synthesis of cytokines and
chemokines is induced.13-15 IgE-dependent mast cell acti-
vation without cross linking of FcεRI is still a controversi-
ally discussed mechanism of mast cell activation.16 During
this process, single receptor-bound IgE molecules induce
cytokine production even without crosslinking of FcεRI
and regulate mast cell homeostasis.17,18 In addition to the
FcεRI receptor, mast cells express Fcγ receptors. IgG me-
diated mast cell activation via these receptors plays an
important role in murine models of autoimmune diseases
such as arthritis and encephalitis.19,20 In mice, mainly IgG1
antibodies have been shown to contribute to Fcγ receptor-
mediated activation and degranulation of mast cells.21 Mast
cell can express a variety of Fcγ receptors, and Fcγ RIIB
among these shows a negative regulatory effect on IgE me-
diated mast cell activation.22,23 Studies in Fcγ RIIB-deficient
mice revealed increased anaphylactic reactions and higher
susceptibility to allergic rhinitis,24,25 supporting the role of
Fcγ RIIB as a negative regulator of mast cell activation.

In addition to immunoglobulins, mast cells can be acti-
vated further by exogenous and endogenous stimuli. Mast
cells express a variety of receptors affiliated to innate but
also adaptive immunity. Receptors of innate immunity are
characterized by their ability to detect specific microbial pat-
terns. Activation via these receptors leads to a fast immuno-
logical response, aiming at the quick clearance of the patho-
gen and induction of a supporting and appropriate adaptive
immune response, if necessary. As mentioned before, mast

cells reside in every tissue having contact to the environ-
ment, and they are one of the first cells which encounter
pathogens. So far, the expression of Toll like receptors
(TLR) -1,-2,-3,-4; -6, -7 and -9 as well as complement
receptors and CD48 have been detected on the surface and
within mast cells.26 Depending on the ligand, activation via
TLR leads to distinct pattern of mediator release.27,28

The investigation of mast cell function in different immu-
nological settings has greatly advanced with the availability
of mast cell-deficient animals as a tool to analyze mast
cell-dependent effects in vivo. Mast cell-deficient animals
have an defective c-kit signalling either on the side of the
receptor or on side of the ligand, stem cell factor (SCF).29,30

The SCF/c-kit signalling represents an important step in
the development of mast cells. The WBB6F1-KitW/Wv (W/Wv)
and the C57BL/6-KitWsh/Wsh mouse (Sash) represent the
common used mouse strains to analyze mast cell specific
effects. Both strains have mutations in the c-kit gene region,
resulting in a defective expression of this receptor.31 The
W/Wv is a combination of 2 mutations; KitW is a point muta-
tion in an exon/intron border, leading to the loss of the re-
ceptor trans-membrane region,32 and KitWv is also a point
mutation, resulting in a defective signalling of the receptor.33

Consequently, W/Wv mice are devoid of mast cells. How-
ever, W/Wv mice show many phenotypic abnormalities
resulting from additional effects of the mutation such as
anaemia, infertility, and lack of interstitial cells of Cajal.
Moreover, in these animals spontaneous dilatations of the
stomach, papillomas of the forestomach, dermatitis and
gastric ulcers have been observed. Because of these features,
the C57BL/6-KitWsh/Wsh mice have become a most popular
choice as mast cell-deficient animals. The KitWsh mutation
is a inversion in regulatory elements upstream of the c-kit
element.34,35 Animals bearing this mutation are white and
mast cell deficient, nevertheless, they are still fertile36 and
not anaemic.37 For a closer analysis of mast cell function, it
is possible to reconstitute mast cell deficient animals with
in vitro generated mast cells.38-40 To investigate the effects of
single mediators/receptors, the cells can be generated from
transgenic or gene-deficient animals. Reconstitution can be
performed by intradermal, intravenous or intraperitoneal
application of the in vitro generated cells. Following a pe-
riod of 4-8 weeks, most tissues are repopulated with mast
cells.39,40 These models have helped to further unravel the
role of mast cells and their mediators in innate as well as
adaptive immune responses and different diseases, includ-
ing allergic asthma. More recently, new approaches have
been used to investigate mast cell models in vivo. Indeed,
mast cell specific Cre recombinase-expressing mice have
been generated by Cre expression under the control of mast
cell protease 5 promoter.41 These approaches will allow to
control mast cell specific gene-expression as well as target-
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ed depletion of mast cells. However, mast cell protease 5 is
expressed in CTMC but not in MMC, thus making this
model unapplicable in allergic airway disease. 

The induction of an adequate adaptive immune response is
essential for a long lasting protection against pathogens.
However, disregulated adaptive immune responses are the
cause of many diseases; e.g., autoimmunity and allergy. In
the last few decades, increasing evidence suggested that
mast cells can induce and modulate adaptive immune res-
ponses and thereby contribute to the development of differ-
ent diseases. Dendritic cells (DC) are the most specialised
antigen-presenting cells of the body and the most important
cells for inducing adaptive immune responses.42,43 Follow-
ing activation, DC mature and migrate to the draining lymph
nodes, where they act as antigen presenting cells by activat-
ing antigen specific T cells. Depending on the cytokine
milieu, Th1, Th2, Th9, Th17 as well as regulatory T cells
(Tregs) can be induced.42,44,45 Importantly, in several models
mast cells and mast cell-produced mediators directly mo-
dulate activation and migration of DC. Indeed, mast cells
induce the migration of Langerhans cells from the skin to
the draining lymph nodes following activation by IgE and
allergen,46 but also following IgE-independent activation.47,48

In models of contact hypersensitivity, mast cells are neces-
sary for effective sensitization,49 and especially, mast cell-
produced TNF is responsible for enhanced migration of
DC from the skin to the draining lymph nodes.50 Also in the
lung, sensitized wild type (WT) animals show an enhanced
migration of antigen-laden DC to the draining lymph node
following local challenge.51

The importance of mast cells for the induction of adaptive
immune responses has further been corroborated by studies
using IgE-independent mast cell activation. Application of
a peptide in combination with a TLR7 ligand resulted in
mast cell-dependent migration of antigen-presenting cells
from the skin to regional lymph nodes and induction of a
cytotoxic T cell response. Especially, cytokines IL1β and
TNF produced by mast cells played a pivotal role in this
setting.48

Mast cell-produced mediators can also activate antigen
presenting cells. Indeed, the mast cell produced mediators
histamine, PDE2 and PGD2 modulate DCs to induce the
development of Th2 responses.52,53 In addition, mast cells
also activate T cells by cell contact-dependent and -inde-
pendent mechanisms. Through the secretion of mediators,
mast cells are able to attract T cells; e.g., to the regional
lymph nodes,54 thereby inducing lymph node hyperplasia.55

Moreover, mast cells are also able to directly activate T

cells. Especially, mast cell-produced TNF leads to the
activation of T cells.56,57 In addition, in vitro studies have
shown that mast cells can process antigens and are able to
present them via MHCI or MHCII complexes. Indeed, the
expression of MHCI is confirmed for all mast cell subtypes
and has been shown to lead to activation of CD8+ T cells in
vitro.58,59 However, the expression of MHCII and upregul-
ated costimulatory molecules remains controversial and
seems to depend largely on the culture conditions.60-63 In-
terestingly, mast cells can release exosomes, bearing costi-
mulatory molecules and antigen, which causes phenotypic
and functional maturation of dendritic cells.64 However,
many of the described phenomena have been observed
only in vitro, and, therefore, it has to be shown that mast
cells play a major role as antigen presenting cells in vivo. 

Asthma is a chronic inflammatory disease of the airways
which shows heterogenous clinical phenotypes. Approxi-
mately 8% of the adults and 14% of children in the west-
ern world are affected by asthma, making it to one of the
most widespread worldwide chronic diseases. Asthma
phenotypes are mainly based on clinical characteristics and
inflammation patterns observed in the airways. In child-
hood, asthma is differentiated into transient infant wheez-
ing, non-atopic wheezing and allergic wheezing,65 however,
the disease may also develop during or after puberty.66

Irrespective of the phenotype, asthma is pathophysiologicaly
characterized by three major hallmarks; airway inflamma-
tion, bronchial hyperreactivity and obstruction. Inflammation
is featured by the influx of inflammatory cells; e.g., T cells,
neutrophils and eosinophils. The inflammatory pattern of
cell types depends on the asthma phenotype, duration and
severity of disease, and treatment. In human airways, mast
cells can be found adjacent to blood vessels in the lamina
propria of airway mucosa. Interestingly, in patients with
asthma mast cells also migrate into other structures like air-
way epithelium,67 the mucous glands68 and airway smooth
muscle.69 This anatomical proximity to key structures in-
volved in asthma and in vitro evidence for direct interac-
tion between mast cells and airway smooth muscle cells
suggest that mast cells play a significant role in the patho-
physiology of this disease.70 Mast cells and smooth muscle
cells interact in a crosstalk as mast cells can induce TGF-
β1 expression in smooth muscle cells via release of β tryp-
tase, resulting in differentiation of the muscle cells into a
more contractile phenotype.71 Moreover, airway smooth
muscle cells can enhance mast cell survival in a cell contact-
dependent manner and can induce mast cell degranulation,
representing a new antigen independent type of mast cell
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activation.72 Nevertheless, mast cells seem not to influence
proliferation and survival of smooth muscle cells.73 

In patients with allergic asthma, inhalation of an aero-
allergen leads to crosslinking of membrane bound IgE via
the allergen, inducing rapid release of mast cell mediators
such as histamine, leukotrienes, proteases and prostagla-
dins, which can be detected in increased concentration in
the broncho-alveloar lavage (BAL) of allergen challenged
patients.74-76 These mediators induce vasodilation, con-
traction of the smooth muscle and mucous secretion. Mo-
reover, these mediators also lead to the late phase response
which is characterized by infiltrating inflammatory cells,
eosinophils, CD4+ T cells, neutrophils, mast cells and baso-
phils which are associated with swelling of the bronchial
wall and increased non-specific airway hyperresponsive-
ness (AHR). The important role of mast cells is underlined
by studies on histamine and leukotriene receptor anta-
gonists or anti-IgE antibodies, which completely amelio-
rate the development of the early phase and also partly the
late phase response.77-79 

Despite these results, the role and function of mast cells
in the initial development of allergic asthma cannot be
investigated in humans for ethical reasons, and therefore,
animal studies are needed to assess molecular and cellular
interactions responsible for the induction and exacerbation
of the disease. Especially, rodent (mouse and rat) models
have been used to analyze the pathomechanisms of allergic
airway disease. These models can mimic many features of
human asthma. However, due to profound differences in
physiology between mice and men, not all the findings with
murine models can uncritically be transferred to human
situation. Yet, murine models helped to reveal many patho-
physiologically important aspects regarding the role of
mast cells in the development of allergic asthma.80,81 

Using murine models, the role of mast cells in the induction
of an allergic airway disease has been intensively investi-
gated. Airway hyperresponsiveness and inflammation are
comparable between wild type mice and mice lacking
either mast cells, B cells, IgE or FcεRI, when animals are
sensitized systemically by injection of allergen in combi-
nation with an adjuvant and subsequently challenged via
the airways.82-85 Yet, some studies showed that mast cells
are necessary for an enhanced influx of eosinophils into the
lung,86,87 for the induction of an increased airway hyperres-
ponsiveness88 or for the induction of subepithelial fibrosis.89

In many immunisation protocols, aluminum hydroxide
(Alum) is used as an adjuvant, which acts via NALP3 infla-

mmasome90 and induces a strong Th2 polarisation in the
system.91 Furthermore, alum has direct effects on mast cells
and macrophages.92 In contrast, however, studies using
sensitization protocols without additional adjuvant showed
that mast cells are necessary for the induction of allergic
airway disease.93 The important function of FcεRI for devel-
opment of AHR and inflammation was further identified.94,95

In addition, using mast cell-deficient animals and engraft-
ment with bone marrow-derived mast cell (BMMCs), the
function of mast cell-derived mediators was assessed. 

Tumor necrosis factor (TNF)
Indeed, mast cell-deficient mice which were reconstituted
with BMMCs from TNF-deficient donors showed less
inflammation and AHR compared to reconstituted animals
which received BMMCs from wild type donors.96,97 These
findings have been supported by a variety of murine and
also human studies. The expression of TNF is upregulated
in the airways of asthmatics in comparison to healthy sub-
jects,98 and intratracheal application of TNF in healthy sub-
jects induces AHR and inflammation.99,100 Murine models
confirmed that TNF is important for the induction of mucus
gene expression101 and necessary for the late phase respon-
se.102 Thus, TNF-deficient animals fail to develop an allergic
airway disease, compared to WT animals.103 

Histamine
Another important mast cell-produced mediator is hista-
mine which acts on different cell types via four distinct
receptors (HR).104 Depending on the expression level of the
receptors and the cell type, histamine can have different
effects with pro- but also anti-inflammatory patterns. In
regard to DC activation, H1R and H3R induce pro-inflam-
matory responses with increased antigen presentation,
cytokine production and Th1 priming activity, whereas acti-
vation of H2R induces IL-10 secretion and a regulatory
DC phenotype.105 In T cells, depending on the receptor
expression pattern histamine can induce the production of
Th1 cytokines such as IFN-γ or Th2-specific cytokines like
IL-4 and IL-13.106 Recently, it has also been demonstrated
that pro-inflammatory effects of mast cell-derived histamine
might be mediated by suppressing CD4+ CD25+ regulatory
T cells.107 In allergic airway disease, Bryce, et al.108 demo-
nstrated an important role of histamine acting via H1 recep-
tor. Indeed, H1-receptor-deficient animals were not able to
allergic airway disease following sensitization and chal-
lenge. Especially, H1 receptor-deficient animals showed a
defect in T cell migration into the lung. Furthermore, H4
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receptor also seems to play an important role in the hista-
mine-dependent induction of allergic airway disease.109

Consequently, novel H4 receptor antagonists have been
developed and have been shown to be effective in supp-
ressing the development of allergic airway disease in mu-
rine models.110

Prostaglandins
Mast cells are also capable to synthesize different lipid me-
diators. Interestingly, animals over-expressing prostaglandin
D2 (PGD2) develop increased airway inflammation and Th2

cytokine production following sensitization and challenge
in comparison to WT animals.111 Furthermore, inhalation of
PGD2 just before airway challenge results in worsening of
allergic airway disease,112 whereas blocking PGD2 synthesis
decreases inflammation.113 The effects induced by PGD2

are dependent on the respective receptor. Two receptors have
been described; PGD2 receptor 1 (DP1) which has pro in-
flammatory effects,114 while the function of PGD2 receptor
2 or chemo-attractant homologous receptor expressed on
Th2 cells (DP2 or CRTH2) is more controversial. In allergic
airway disease models, CRTH2 agonists increased airway
inflammation whereas the receptor antagonists decreased
it.115,116 In mice deficient in CRTH2, however, increased num-
bers of eosinophils and higher amounts of IL-5 were
detected following allergen sensitization and challenge,
compared to wild-type littermates.117 However, human Th2

cells which express CRTH2 show increased production of
Th2 cytokines following exposure to PGD2 in the absence
of costimulation.118 This suggests that blockade of the
CRTH2 receptor might be an attractive approach for the
treatment of allergic asthma, and indeed, CRTH2 anta-
gonists are being tested in clinical trials. 

Leukotrienes
Leukotrienes are also mast cells-produced lipid mediators,
which affect the development of allergic airway disease.119,120

Arachidonic acid represents the source material for it’s
synthesis. A multiprotein complex which includes 5-lipoxy-
genase (5-LO) initiates the transformation of free arachi-
donic acid to reactive leukotriene A4 that can be further
metabolized to different leukotriene subtypes.121 LTC4

synthase represents the key enzyme for the induction of
cys leukotrienes (leukotriene C4; D4 and E4), whereas LTB4

conversion is initiated by LTA4 hydrolase.122-124 Several
studies identified LTs to be important for the recruitment
of T cells125-127 and dendritic cells.128 Moreover, LTC4 and
LTD4, acting via the CysLT2 receptor, seem to be important
for fibrosis and vascular injury.129,130 Inhalatory application
of LTE4, but not LTD4, induces the influx of inflammatory
cells into the lung.131 Taken together, prostaglandins as well
as leukotrienes seem to play crucial roles in modulating

and attracting immunocompetent cells. Thus, these media-
tors could be key players in mast cell-dependent modulation
of adaptive immune responses. 

Thymic stromal lymphopoitein (TSLP) 
Thymic stromal lymphopoitein (TSLP) is a cytokine pro-
duced mainly by keratinocytes, epithelial and stromal cells.
TSLP expression in the lung is upregulated in patients with
asthma,132 and mice deficient for the receptor do not devel-
op allergic airway disease.133,134 TSLP was also shown to
induce DC activation, leading to a Th2 inducing phenotype
in human as well as in mice.133 Therefore, TSLP is an impor-
tant factor in modulating adaptive immune responses to-
wards Th2. Interestingly, mast cells express the TSLP
receptor, and exposure to TSLP leads to expression of Th2

cytokines.135 In addition, mast cells can produce high levels
of TSLP, following IgE-mediated activation,136 and are vital
for the induction of TSLP expression following allergen
exposure.137

Recent evidence suggests that mast cells not only play an
important role in the induction of allergic airway disease in
already sensitized hosts, but also are involved directly in
the induction of specific T cell responses to aeroallergens.
Following exposure to aeroallergens, the usual outcome is
tolerance, because most allergens are immunologically
inert proteins, and inflammation does not develop even
following chronic exposure. Resident pulmonary DCs are
usually in a state specialized to internalize foreign antigens,
but not able to activate naïve T cells. Stimulation of DCs
with additional factors like ligands for TLR eventually
leads to their activation, migration to the regional lympha-
tic tissue and induction of a specific T cell response by anti-
gen presentation and increased expression of co-stimulatory
molecules.138 There is increasing in vitro evidence, that
activation of mast cells can modulate the differentiation of
DCs to a Th2 biased phenotype by histamine and prosta-
glandin secretion.139,140 Also, several studies in vivo suggest
the involvement of mast cells in T cell priming following
inhaled allergen exposure. In addition to the administration
of a protein allergen, low doses of bacterial lipopolysaccha-
ride (LPS) can induce sensitization to the allergen mediat-
ed by TLR-4 and production of TNF.141 Indeed, following
intranasal challenge with allergen in conjunction with low-
dose LPS, mast cell-deficient mice fail to develop sensi-
tization to the allergen, demonstrating that IgE-independent
activation of mast cells is involved in the initiation of a T
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cell response following inhaled allergen exposure.142

Other protein allergens, like house dust mite allergens
(D. pteronyssinus, D. farinae) have the potential to directly
induce rapid IgE-independent release and de novo synthesis
of mast cell mediators.143,144 In vitro assays of D. farinae-
stimulated mast cells show that their supernatants attract
monocytes and T cells, support T cell proliferation and pro-
mote Th2 cell development. Inhaled exposure to house dust
mite can induce Th2 sensitization and an influx of activated
Th2 effector cells into the lung in vivo.145 In further support
of the role of mast cells in this process, administration of
sodium cromoglycate, a mast cell stabilizer, during repeat-
ed house dust mite allergen exposure not only suppresses
the production of acute mast cell mediators but also atte-
nuates airway inflammation following repeated D. farinae
exposure.144

In summary, mast cells play an important role in innate
and adaptive immunity. This is mainly due to their ability
to produce a variety of proinflammatory and immunomo-
dulatory mediators. Upon their activation, they promote
the migration of antigen-exposed antigen-presenting cells

to the regional lymph nodes. Consequently, mast cells, at
least under certain conditions, are able to strongly promote
the development of specific T cell responses and are also
able to shape them. In the context of allergic asthma, mast
cells have been shown to initiate and promote airway in-
flammation and AHR in murine models and human disease,
which also involves secretion of several mast cell-produced
mediators (Fig. 1). Taken together, these findings clearly
demonstrate that mast cells are not only mere effector cells
during allergic reactions, but also have a complex role in
the induction and regulation of adaptive immune responses.
In regard to allergic sensitization, the activation of mast
cells seems to be an important regulatory step for the devel-
opment of specific T cell responses to the allergen. There-
fore, modulation of mast cell activation could be a poten-
tial therapeutic strategy for the prevention and treatment of
allergic disease. 
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Fig. 1. Role of mast cells during sensitization to an aeroallergen and during challenge with allergen. Inhalation of an aeroallergen in combination
with exposure to an alternative/IgE-independent mast cell-activating stimulus leads to the migration of local dendritic cells to the regional lymph
nodes and there to an induction of a Th2 response. In addition, allergen exposure results in allergen IgE-dependent mast cell activation and leads
to an increased chemotaxis of inflammatory cells as well as local T cell activation. TSLP, thymic stromal lymphopoitein; PGD2, prostaglandin D2;
PGE2 , prostaglandin E2; TNF, tumor necrosis factor.
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