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A B S T R A C T   

Developmental neuroplasticity allows young brains to adapt via experiences early in life and also to compensate 
after injury. Why certain individuals are more adaptable remains underexplored. Perinatal stroke is an ideal 
human model of neuroplasticity with focal lesions acquired near birth in a healthy brain. Machine learning can 
identify complex patterns in multi-dimensional datasets. We used machine learning to identify structural and 
functional connectivity biomarkers most predictive of motor function. Forty-nine children with perinatal stroke 
and 27 controls were studied. Functional connectivity was quantified by fluctuations in blood oxygen-level 
dependent (BOLD) signal between regions. White matter tractography of corticospinal tracts quantified struc
tural connectivity. Motor function was assessed using validated bimanual and unimanual tests. RELIEFF feature 
selection and random forest regression models identified predictors of each motor outcome using neuroimaging 
and demographic features. Unilateral motor outcomes were predicted with highest accuracy (8/54 features r =
0.58, 11/54 features, r = 0.34) but bimanual function required more features (51/54 features, r = 0.38). Con
nectivity of both hemispheres had important roles as did cortical and subcortical regions. Lesion size, age at scan, 
and type of stroke were predictive but not highly ranked. Machine learning regression models may represent a 
powerful tool in identifying neuroimaging biomarkers associated with clinical motor function in perinatal stroke 
and may inform personalized targets for neuromodulation.   

1. Introduction 

Developmental neuroplasticity refers to the brain’s ability to adapt 
based on experiences in early life. Young brains appear to have the 
remarkable ability of compensating for lost function after early injury 
(the Kennard Principle; Kennard, 1936). The specific neuroplastic 
mechanisms by which certain individuals are more adaptable than 
others remain poorly understood but has major implications for devel
oping therapeutic interventions to improve outcomes. Perinatal stroke is 
an ideal human model for investigating such neuroplasticity with focal 
lesions acquired in an otherwise healthy brain around the time of birth 
(Kirton, 2013). Perinatal stroke affects millions, resulting in unilateral 
cerebral palsy and lifelong disabilities with no prevention strategies 

(Dunbar and Kirton, 2018). 
Two main forms of perinatal stroke prevail (Dunbar and Kirton, 

2018), arterial ischemic stroke (AIS) and periventricular venous 
infarction (PVI). AIS is brain infarction within an arterial territory, most 
commonly the middle cerebral artery, and encompasses both neonatal 
arterial ischemic stroke (NAIS) and arterial presumed perinatal ischemic 
stroke (APPIS)(Kirton et al., 2008). These differ only in timing of clinical 
presentation with NAIS diagnosed shortly after birth when seizures 
occur, while APPIS is typically diagnosed later in infancy when early 
motor asymmetry (i.e., handedness) leads to imaging that confirms 
remote arterial stroke. Both types of AIS often result in large cortical and 
subcortical lesions (often affecting the basal ganglia) with recent precise 
3D mapping studies in the neonate demonstrating the arterial territories 
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affected (Stephan-Otto et al., 2017; Núñez et al., 2020). Conversely, PVI 
occurs in utero before 34 weeks gestation as a result of a germinal matrix 
hemorrhage with secondary medullary venous infarction. Damage from 
PVI is typically constrained to periventricular subcortical white matter, 
often including the corticospinal tract. With all types commonly injuring 
major components of the developing motor system, perinatal stroke 
accounts for most cases of hemiparetic or unilateral cerebral palsy. 
While most suffer such motor disability, additional lifelong morbidities 
include disorders of learning, intelligence, language, behaviour and 
epilepsy (Kirton, 2013; Dunbar and Kirton, 2018). 

We and others have previously shown that various modalities of 
magnetic resonance imaging (MRI) can be used to explore how brain 
structure and function change as children with AIS and PVI (Hodge 
et al., 2017; Kuczynski et al., 2018; Saunders et al., 2019) or just PVI 
(Woodward et al., 2019) grow and adapt after their injury. The power of 
neuroimaging within this context lies in its ability to identify different 
but complementary biomarkers associated with clinical function. How
ever, that each can only explore single or small numbers of metrics at 
one time remains a major limitation. Traditional analysis of neuro
imaging datasets relies heavily on group-level statistics, which limits a 
translation of these findings for individual outcome predictions. Thus, a 
multimodal approach may prove fruitful for identifying more complex 
relationships between imaging biomarkers and function. The same 
conundrum exists for the study of interventional neuroplasticity where 
emerging neuromodulation trials in perinatal stroke are showing clinical 
promise (Kirton et al., 2016a; 2017) and advanced imaging can shed 
light on possible mechanisms (Carlson et al., 2018). The neural targets 
for these trials are similarly informed by neuroimaging metrics (Hil
derley et al., 2019) but struggle to understand which combination of 
measures best reflect individual level neurophysiology or personalized 
markers of responsiveness to treatment. There is therefore a need for 
robust, patient-specific methods of characterizing developmental and 
interventional plasticity. 

Machine learning is gaining popularity in neuroimaging given its 
ability to identify complex patterns in multi-dimensional and multi- 
modal data which can then be used to make data-driven classifications 
and predictions for individual patients. The aim of the current work was 
to use machine learning to identify which multi-modal neuroimaging 
biomarkers of structural (SC) and functional connectivity (FC) are most 
predictive of clinical motor function in children with perinatal stroke. 
We hypothesized that type of stroke and the connectivity of the thal
amus and basal ganglia structures (Lanciego et al., 2012) would play 
important roles in predicting motor function in addition to cortical 
primary motor areas given their central placement within motor circuits. 

2. Materials and methods 

2.1. Participants 

Children with perinatal stroke were sampled from a large, 
population-based cohort of perinatal stroke cases occurring in southern 
Alberta and seen at the Alberta Children’s Hospital Pediatric Neurology 
Clinic (The Alberta Perinatal Stroke Project; Cole et al., 2017). Inclusion 
criteria were: 1) MRI confirmed unilateral perinatal stroke (AIS or PVI) 
according to established criteria (Kirton et al., 2008), 2) current age 
between 6 and 19 years and term birth, and 3) symptomatic hemiparetic 
cerebral palsy (HCP) [Pediatric Stroke Outcome Measure (PSOM) score 
> 0.5 (Kitchen et al., 2003) and perceived functional limitations by child 
and parent]. Exclusion criteria included MRI contraindications, clinical 
or imaging evidence of bilateral or additional brain injury, or unstable 
epilepsy. 

For comparison, a group of typically developing control (TDC) par
ticipants similar in age (±1 year) and sex to the stroke group were 
recruited from a healthy controls recruitment database. These children 
were right-handed by self (or parent) report, had no MRI contraindica
tions, neurodevelopmental or psychiatric conditions. Given that all 

control participants were right-handed, for group comparisons the 
dominant hemisphere (left) was compared to the non-lesioned hemi
sphere in the perinatal stroke participants and conversely, the non- 
dominant hemisphere (right) in controls was compared to the lesioned 
hemisphere in participants with stroke. 

Informed parental consent and participant assent were obtained for 
all participants in accordance with the Declaration of Helsinki. This 
study was approved by the Research Ethics Board at the University of 
Calgary. 

2.2. Imaging 

MRIs were performed using a 3 Tesla General Electric (GE) MR750w 
scanner (GE Healthcare, Waukesha, WI) with a 32-channel head coil at 
the Alberta Children’ Hospital Research Imaging Suite. High-resolution 
T1-weighted fast spoiled gradient echo brain volume (FSPGR BRAVO) 
anatomical images were obtained in the axial plane [voxels = 1 mm 
isotropic, no skip, 166–225 slices, repetition time (TR)/echo time (TE)/ 
inversion time (TI) = 8.5/3.2/600 ms, flip angle = 11◦, duration ~ 
5:00]. Diffusion-weighted images were also obtained axially for 32 non- 
collinear directions (voxels = 2.5 mm isotropic, 60 slices, b-value = 750 
s/mm2, 3 b = 0 volumes, TR/TE = 11.5 s/69 ms, duration ~ 6:00). 
Resting-state functional MRI images were obtained while participants 
fixated on a centrally presented black cross and were told to think of 
“nothing in particular” (voxels = 3.6 mm isotropic, 36 axial slices, 150 
volumes, TR/TE = 2000/30 ms, flip angle = 90◦, duration ~ 5:00). 

2.3. Structural connectivity 

Each T1-weighted volume was segmented into grey matter (GM), 
white matter (WM), cortical spinal fluid (CSF), skull and skin using the 
automatic segmentation tool implemented in SPM12 (Statistical Para
metric Mapping version 12, Wellcome Trust; https://www.fil.ion.ucl.ac. 
uk/spm/) using standard tissue probability maps. Stroke lesions were 
classified as CSF. FMRIB Software Library (FSL) FIRST algorithm 
(Patenaude et al., 2011) was used to segment subcortical structures. For 
each participant, tissue maps were then combined using the 5ttgen 
command in MRtrix3 (Tournier et al., 2012) to create a 5-tissue-type 
image used to generate a GM-WM interface image for anatomically- 
constrained tractography (Smith et al., 2012). All T1 maps were then 
linearly co-registered to the diffusion scans using FSL’s FLIRT (Jenkin
son et al., 2002). All steps were manually quality checked slice-by-slice 
to ensure accuracy. 

FSL’s eddy_correct function was used to correct the diffusion datasets 
for eddy current distortions and for head motion realignment. In 
MRtrix3, constrained spherical deconvolution (CSD) was used to 
generate fibre orientation distribution (FOD) maps that code direction
ality of fibre populations and are robust to areas of crossing fibres 
(Tournier et al., 2012). The diffusion tensor was also used to generate 
whole brain maps of fractional anisotropy (FA), as well as mean (MD), 
radial (RD), and axial (AD) diffusivity. To isolate the bilateral cortical 
spinal tracts (CSTs), two regions of interest (ROIs) per hemisphere were 
manually drawn on an axial slice of the colour-coded FA map (Fig. 1A) to 
encompass the cerebral peduncle (cyan/yellow) and the posterior limb 
of the internal capsule (PLIC; red/pink) (Hodge et al., 2017; Kuczynski 
et al., 2018). Two exclusion ROIs were manually drawn on coronal slices 
to exclude streamlines from projecting anteriorly past the pre-central 
gyrus or posteriorly into the superior parietal lobule. Probabilistic 
tractography using the tckgen function reconstructed CSTs for lesioned 
and non-lesioned hemispheres (tracking algorithm: iFOD2, step size = 1 
mm, angle threshold = 45◦, FOD amplitude threshold = 0.05, 3000 
streamlines, Fig. 1B). Exclusion ROIs were drawn to trim spurious fibres, 
which were most commonly corpus callosum and cerebellar projection 
fibres. Measures of WM microstructure (mean FA, MD, RD, and AD) for 
each lesioned and non-lesioned CST were extracted by overlaying a bi
nary tract mask on microstructure maps of interest resulting in eight 
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features representing WM structural connectivity (Table 1). 

2.4. Functional connectivity 

Resting-state functional MRI datasets were processed using the 
Connectivity Toolbox [CONN (Whitfield-Gabrieli and Nieto-Castanon, 
2012) version 18.a] in MatLab (iMac version 2018a; Mathworks, 
Natick MA). Preprocessing utilized the validated CONN pipeline 
including slice timing correction, realignment, co-registration, calcula
tion of head motion parameters, smoothing (using a 6 mm full-width 
half-maximum Gaussian kernel), and de-noising. Functional and struc
tural images were normalized into standard Montreal Neurological 
Institute (MNI) space using the non-linear unified segmentation and 
normalization procedure in SPM12. Resulting normalized images were 
inspected slice-by-slice to ensure that the lesioned areas were appro
priately segmented as CSF and normalized accurately. The Artifact 
Repair Toolbox (Mazaika et al., 2007) was used to identify head motion 
and other outliers using thresholds for global mean signal (z > 5) and/or 
translational movement (>0.9 mm). Identified volumes were de- 
weighted in the first-level general linear model (GLM) as were time 
courses of CSF and WM signal. 

Functional connectivity among sensorimotor network ROIs was 
calculated via temporal cross correlations of signal fluctuations over 
time represented as Fisher-transformed bivariate Pearson correlation 
coefficients. ROI-ROI pairs used as FC features in the predictive model 
were selected based on established models of direct and indirect motor 
circuit anatomy that form cortico-basal ganglia-thalamo-cortical loops 
facilitating voluntary movements (Lanciego et al., 2012; Simonyan, 
2019). ROIs were defined using the validated Harvard-Oxford atlas 

provided in CONN. Cortical ROIs included bilateral primary motor (M1), 
sensory (S1), and supplementary motor (SMA) areas. Subcortical ROIs 
included bilateral thalamus and basal ganglia (putamen, caudate, and 
pallidum). Forty-one functional connections of interest were identified 
and are listed in Table 1, a subset of which are illustrated in Fig. 1C-E. 

2.5. Lesion volumes 

To estimate lesion volumes, whole brain volumes of GM, WM, and 
CSF [in cubic centimetres (cc)] were extracted from the SPM12 seg
mentation masks generated during the functional connectivity process
ing pipeline (described above). Estimated total intracranial volume 
(eTIV) was calculated as the sum of the GM, WM, and CSF mask vol
umes. Estimated lesion volumes (ELV in cc), corrected for intracranial 
volume, were therefore calculated as described below for each patient 
(where larger numbers represent larger relative lesions): 

ELV = 1 −
[
(GM + WM)

eTIV

]

In AIS patients, lesions reflecting tissue loss are typically filled with 
CSF and thus larger volumes of CSF present after AIS would be captured 
in a higher ELV. In PVI patients, dilatation of the ventricle in the 
lesioned hemisphere is reflective of the size of the periventricular WM 
lesion and these larger volumes of ventricle CSF would be quantified by 
ELV calculations. Brain images for our PVI sample were reviewed slice- 
by-slice and no cystic lesions were identified beyond the ventricular 
border, removing the need for any additional segmentation to capture 
total lesion volume. 

Fig. 1. Neuroimaging features used to predict clinical motor function. Structural connectivity was measured via white matter tractography of the bilateral cortical 
spinal tract (CST). Regions-of-interest (ROIs) included the posterior limb of the internal capsule (red/pink ROIs) and the cerebral peduncles (yellow/cyan ROIs) (A). 
Underlying diffusion characteristics (mean FA, MD, RD, and AD) were extracted from CST masks overlaid on the diffusion maps (B). Functional connectivity was 
measured between cortical motor areas (C), cortico-subcortical areas (D), and within subcortical areas (E). For a complete list of features, see Table 1. FA – Fractional 
anisotropy; MD, RD, AD - Mean, radial, and axial diffusivity; M1 - Primary motor cortex, S1 - Primary sensory cortex, SMA - Supplementary motor area, Pu - Putamen, 
Ca - Caudate, Th - Thalamus, Pa - Pallidum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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2.6. Clinical motor function 

Clinical motor function was assessed using validated bimanual 
[Assisting Hand Assessment (AHA) (Krumlinde-sundholm and Eliasson, 
2003)] and unimanual [Box and Blocks Test (BBT) (Mathiowetz et al., 
1985)] tests. The AHA is a 22-item assessment tool that measures 
spontaneous bimanual hand function in children with unilateral motor 
impairments. It has the advantage of using real-world activities to 
measure spontaneous bimanual motor function rather than testing the 
affected hand in isolation. Motor outcomes range from 0 (hand is not 
used at all) to 100 (normal motor function)(Krumlinde-sundholm and 
Eliasson, 2003). The BBT is a performance-based measure of upper limb 
dexterity in which participants move a series of blocks from one 
container into another as quickly as possible. Two BBT scores were 
collected, one for the stroke-affected hand (BBTA) and one for the un
affected hand (BBTU) by counting the number of blocks successfully 
transferred in 60 s (Mathiowetz et al., 1985). For all three measures, 
higher scores indicate better performance. 

2.7. Feature selection & regression model 

It is common knowledge that the performance of a predictive ma
chine learning model can be improved by selecting a subset of input 
features that not only explain most of the variance in the outcome score 
but also contain no redundant information. This feature selection step is 
performed before the regression models are built in order to reduce the 
multicollinearity among features being tested thus reducing the re
dundancies in the data. In this work, the Relief feature selection algo
rithm for regression models (RRELIEFF) was employed to rank the 54 
features available (49 imaging features and five demographic features: 

age, sex, ELV, side, and type of stroke; Table 1) with respect to their 
relevance for each of the three outcome scores (AHA, BBTA, and BBTU) 
and three patient groups (AIS, PVI, AIS + PVI combined) independently. 
Briefly, the RRELIEFF algorithm determines weights for each feature 
based on the values of the attributes amongst the nearest neighbors of a 
randomly selected patient sample (Kononenko et al., 1997). The input 
features were normalized (min–max) prior to estimating the feature 
ranks. 

After feature ranking, the random forest machine learning algorithm 
was used to model the regression problem for each outcome score 
separately. More precisely, a random decision tree forest with 100 de
cision trees was trained on a random subset of data such that nodes in 
the higher branches of each decision tree maximally differentiate the 
selected training samples. For a given test sample, the predictions from 
all decision trees in the random forest are averaged to determine the 
final prediction of the outcome scores. The random decision tree forest 
model was used in this work due to its ability to combine various input 
feature types for solving regression problems and reduced risk of over
fitting compared to other machine learning models (Polikar, 2006; Sagi 
and Rokach, 2018; Vercio et al., 2020). Additionally, random forests are 
known to deal well with high-dimensional data while also being robust 
to outliers and non-linear data. Finally, the random forest decision tree 
model does not require many hyperparameters to tune, further 
decreasing the risk of overfitting. Additionally, RRELIEFF feature 
ranking was used as it provides a ranking of features based on their 
relative importance in predicting outcome scores. This ranking allows us 
to determine which demographic and/or connectivity patterns were 
most highly predictive of motor function, thus informing rehabilitation 
strategies and identifying targets for non-invasive brain stimulation. 

In order to prevent double dipping, the feature selection and random 
forest regression model were implemented within a nested leave-one- 
out-patient cross validation scheme so that no information from the 
patient to be tested in each iteration was used for feature ranking or 
training of the random forest regression model. Owing to the small 
sample size, leave-one-out cross validation was employed to reduce the 
likelihood of overfitting the regression models (Kuhn and Johnson, 
2013). 

The selection of the optimal set of features for each outcome score 
was done iteratively by removing the least informative feature from the 
ranked features until only one feature was left for training of the 
regression model ensuring that redundant and non-informative features, 
which can downgrade the accuracy of the regression model, are elimi
nated. The optimal feature subset for each outcome score was identified 
by determining the model resulting in the lowest root mean squared 
error (RMSE) comparing the true outcome scores with the predicted 
outcome scores from the leave-one-out cross validations. The accuracy 
of these optimal regression models were further quantified using coef
ficient of determination (R2) values that capture the amount of variance 
in the dependent variable that can be accounted for by the independent 
variables (features) in the regression model as well as the corresponding 
correlation values. 

A total of nine regression models investigated predictive features for 
three motor tasks (AHA, BBTA, BBTU) in three patient groupings (AIS, 
PVI, AIS + PVI combined). Each of the two stroke types were investi
gated separately so as to determine disease-specific features predictive 
of function. The AIS + PVI combined group was used to investigate 
features predictive of function after early injury to motor circuits 
(regardless of mechanism) while maximizing sample size. 

2.8. Statistical analysis 

Distribution normality was tested using Shapiro-Wilk. Differences 
between patient groups (AIS, PVI) were subsequently examined using 
two-tailed independent sample t-tests for ELV and motor outcomes 
(AHA, BBTU, BBTA). Kruskal-Wallis tested for differences in age be
tween the three groups. Pearson’s Chi-Square test examined differences 

Table 1 
List of demographic (5) and neuroimaging features (49) included in the initial 
feature selection.  

Features 

Demographic (5) Cortico-subcortical FC (24) 
Age at scan (years) Non-Les M1 – Non-Les Thalamus 
Sex (male or female) Non-Les M1 – Non-Les Caudate 
Estimated lesion volume (ELV) (cc) Non-Les M1 – Non-Les Pallidum 
Side of stroke (right or left) Non-Les M1 – Non-Les Putamen 
Type of stroke (AIS or PVI) Les M1 – Les Thalamus 

White matter SC (8) Les M1 – Les Caudate 
Les CST FA, MD, AD, RD Les M1 – Les Pallidum 
Non-Les CST FA, MD, AD, RD Les M1 – Les Putamen 

Cortical FC (7) Non-Les S1 – Non-Les Thalamus 
Les M1 – Non-Les M1 Non-Les S1 – Non-Les Caudate 
Les S1 – Non-Les S1 Non-Les S1 – Non Les Pallidum 
Non-Les M1 – Non-Les S1 Non-Les S1 – Non Les Putamen 
Les M1 – Les S1 Les S1 – Les Thalamus 
Non-Les M1 – Non-Les SMA Les S1 – Les Caudate 
Les M1 – Les SMA Les S1 – Les Pallidum 
Non-Les SMA – Les SMA Les S1 – Les Putamen 

Thalamus/basal ganglia FC (10) Non-Les SMA – Non-Les Thalamus 
Les Thalamus – Non-Les Thalamus Non-Les SMA – Non-Les Caudate 
Les Caudate – Non-Les Caudate Non-Les SMA – Non Les Pallidum 
Les Pallidum – Non-Les Pallidum Non-Les SMA – Non Les Putamen 
Les Putamen – Non-Les Putamen Les SMA – Les Thalamus 
Non-Les Caudate – Non-Les Pallidum Les SMA – Les Caudate 
Non-Les Pallidum – Non-Les Thalamus Les SMA – Les Pallidum 
Non-Les Putamen – Non-Les Pallidum Les SMA – Les Putamen 
Les Caudate – Les Pallidum  
Les Pallidum – Les Thalamus  
Les Putamen – Les Pallidum  

Table Note: AIS – Arterial ischemic stroke, PVI – Periventricular venous 
infarction, cc – Cubic centimeters, Les – lesioned, SC – Structural connectivity, 
FC – Functional connectivity, CST – Cortical spinal tract, FA – Fractional 
anisotropy, MD, AD, RD – Mean, axial, and radial diffusivity, M1 – Primary 
motor cortex, S1 – Primary sensory cortex, SMA – Supplementary motor area. In 
TDC participants, non-lesioned refers to the dominant hemisphere (left) and 
lesioned refers to the non-dominant (right) hemisphere. 
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in sex and side of stroke between groups. For neuroimaging variables, 
relationships with age were measured using Pearson’s r or Spearman’s 
rho correlations as appropriate. Differences in neuroimaging variables 
between groups (AIS, PVI, TDC) were tested using either one-way 
Analysis of Variance (ANOVA) followed by Bonferroni-corrected post- 
hoc tests (if normally distributed) or Kruskal-Wallis followed by 
Bonferroni-corrected pairwise comparisons (if not normally distrib
uted). A threshold of α = 0.05 was used to determine statistical signif
icance. Cohen’s d quantified effect sizes. Statistics were performed using 
SPSS version 26 (IBM, Armonk, USA). 

2.9. Data availability 

Data will be provided upon reasonable request. 

3. Results 

3.1. Participants 

Fifty-five children with perinatal stroke and 27 controls were 
initially recruited. Of the children with stroke, six were subsequently 
excluded for the following reasons: no measurable CST in the lesioned 
hemisphere (N = 3), large amplitude head motion during MRI (N = 2), 
or a very large lesion that precluded accurate tissue segmentation (N =
1) leading to a final sample of 49 participants with stroke. Group com
parisons for neuroimaging features were performed using 27 controls, 
22 AIS and 27 PVI (Table 2). For the regression analyses, TDC children 
were excluded since the AHA is specialized for quantifying unilateral 
motor impairments in patients and the remaining tasks (BBTA and 
BBTU) were not available for the control sample. A further patient was 
excluded from the BBTA analyses due to a missing score. Thus, the 
samples studied using regression models were 48 patients for the BBTA 
analysis and 49 patients for the BBTU and AHA analyses. 

Demographics were comparable between groups for all de
mographics (Table 2). Specifically, age at scan [H(2) = 4.7, p = 0.095], 
sex [χ2

(2) = 1.46, p = 0.48] and side of stroke [χ2
(1) = 0.42, p = 0.52] did 

not differ among the groups. The AIS group showed significantly higher 
ELV compared to PVI (t(48) = 5.53, p < 0.0001, d = 1.0). Motor function 
was also comparable between the two patient groups; AIS scores were 
largely lower than PVI reflecting more motor impairment but these 
differences were not statistically significant (AHA: t(47) = -1.87, p =
0.07, d = 0.61; BBTA: t(46) = -1.64, p = 0.11, d = 0.47; BBTU: t(47) =

-0.18, p = 0.86, d = 0.03). Age was not related to neuroimaging vari
ables and was thus not factored out in the participant group comparisons 
though was subsequently included in the regression models as a proxy 
for “time since stroke”. 

3.2. Group differences in neuroimaging variables 

Resting state functional connectivity was largely similar between the 
TDC and PVI groups, however the AIS group showed lower functional 
connectivity compared to both TDC and PVI for cortical features 
(Table 3). Specifically, functional connectivity between lesioned and 
non-lesioned M1, S1 and SMA was much lower for the AIS group 
compared to PVI and TDC. Inter-hemispheric connectivity between 
basal ganglia structures (caudate, pallidum, putamen) as well as the 
thalamus showed a similar pattern among groups (Fig. 2), however 
intra-hemispheric connectivity within these regions was not different 
between groups. Connectivity between cortical and subcortical struc
tures showed few differences between AIS, PVI and TDC with the 
exception of the lesioned-side putamen which showed lower connec
tivity with M1, S1 and SMA for AIS compared to both PVI and TDC. 

Examinations of white matter microstructural features of the 
lesioned CST showed significantly lower FA and higher MD, AD and RD 
for both the AIS and PVI groups compared to TDC (Fig. 2). By contrast, 
white matter features for the non-lesioned CST were not different be
tween the three groups. 

3.3. Regression models 

3.3.1. AIS models 
For the AIS group, individual predicted patient scores correlated 

highly with actual obtained scores (Fig. 3) for the three motor tasks 
(BBTA r = 0.719, p < 0.001; BBTU r = 0.610, p = 0.003; AHA r = 0.632, 
p = 0.002). Root mean squared error was lowest for the BBTU (RMSE 
BBTU = 7.35) and highest for AHA (RMSE BBTA = 10.42; RMSE AHA =
14.15). 

Regression models for the AIS group required relatively few features 
(Table 4) for optimal prediction of function. The optimum prediction 
model for BBTA contained 6/54 features, accounted for 51.7% of the 
variance (as measured by R2) and consisted of both functional and 
structural connectivity measures as well as ELV. For BBTU, 5/54 fea
tures were required to account for 37.2% of variance. These features 
were solely measures of cortical inter-hemispheric and cortico- 
subcortical functional connectivity. The AHA model required only 2/ 
54 cortico-subcortical (basal ganglia) functional connectivity features to 
explain 40% of variance. 

3.3.2. PVI models 
For the PVI group, correlations between actual and predicted motor 

scores were lower than for the AIS group (BBTA r = 0.284, p = 0.15; 
BBTU r = 0.559, p = 0.002; AHA r = 0.184, p = 0.36; Fig. 3). Error terms 
showed a similar pattern across motor tasks (RMSE BBTA = 9.53; RMSE 
BBTU = 10.86; RMSE AHA = 12.40) as in AIS. 

Optimal prediction models for BBTA and AHA required more fea
tures compared to the AIS group (44/54 and 28/54 respectively), 
accounted for<10% of variance (Table 5) and was composed of both 
structural and functional connectivity features. By contrast, BBTU 
required only 3/54 features (explaining 31.2% of variance), two of 
which involved subcortical structures (putamen and thalamus). 

3.3.3. AIS + PVI combined models 
For the AIS + PVI combined group, the correlation between actual 

and predicted scores for the BBTA (r = 0.582, p < 0.001) was higher 
than that for the BBTU (r = 0.343, p = 0.02) and the AHA (r = 0.376, p 
= 0.008; Fig. 3). The root mean squared error terms (RMSE) were 
comparable for the BBTA model (RMSE = 10.27) and the BBTU (RMSE 
= 10.98) but lower than the AHA model (RMSE = 14.92). 

Table 2 
Demographic characteristics and motor function of patient groups.  

Category TDC (N ¼ 27) AIS (N ¼ 22) PVI (N¼27) Total Stroke 
(N¼49) 

Age 12.9 (3.4) 
[6.5–18] y 

13.0 (3.8) 
[6.6-19] y 

11.3 (3.3) 
[6.7–19.7] y 

12.1 (3.5) 
[6.6–19.7] y 

Sex Male N = 14 
Female N =
13 

Male N = 15 
Female N = 7 

Male N = 17 
Female N = 10 

Male N = 32 
Female N = 17 

Side – Left N = 15 
Right N = 7 

Left N = 16 
Right N = 11 

Left N = 31 
Right N = 18 

ELV – 0.44 (0.1) 
[0.3–0.6] cc 

0.34 (0.1) 
[0.2–0.5] cc 

0.38 (0.1) 
[0.2–0.6] cc 

BBTA – 24.5 (15.1) 
[3–58] 

30.5 (10.1) 
[14–50] 

27.9 (12.8) 
[3–58] 

BBTU – 52.3 (9.4) 
[38–71] 

52.6 (13.5) 
[19–84] 

52.63 (11.7) 
[19–84] 

AHA – 58.9 (17.7) 
[29–100] 

65.8 (12.8) 
[47–100] 

62.0 (16.0) 
[27–100] 

Table note: BBT - Box and Blocks Test (BBTA – Affected; BBTU - Unaffected 
hand), AHA – Assisting Hand Assessment, SD – Standard deviation, TDC – 
Typically Developing Controls, PVI – Periventricular venous infarction, Side – 
MRI confirmed diagnosis of stroke and side, ELV – Estimated lesion volume in 
cubic centimetres (cc). Values are expressed as mean (SD) [range] unless 
otherwise specified. 
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The optimal BBTA prediction model required 8/54 features 
(Table 6), which accounted for 33.8% of variance. Microstructure 
(radial diffusivity) of the lesioned CST was ranked highest in the BBTA 
model. Cortical-subcortical functional connectivity between S1 and 
pallidum in the lesioned hemisphere was the second-most highly ranked 
feature. Inter-hemispheric FC between non-lesioned M1 and supple
mentary motor area (SMA) as well as inter-hemispheric FC between 
bilateral SMA were also ranked as highly predictive of BBTA motor 
outcomes within the model. Other highly ranked features (2 out of 8 
features) included FC between subcortical structures (putamen) and FC 
from non-lesioned M1 to non-lesioned thalamus. Age at scan (ranked 5/ 

8) and ELV (ranked 6/8) were also included as predictive features for 
BBTA scores. 

The optimal BBTU prediction model required 11/54 features, which 
accounted for 11.8% of variance (Table 6). Featuring highly in this 
model (top 3) was inter-hemispheric functional connectivity within 
basal ganglia structures (putamen, pallidum) and between lesioned and 
non-lesioned thalamus. Of the total 11 features, seven involved FC with 
thalamic and basal ganglia structures. Structural connectivity features 
accounted for two of eleven features, revealing that microstructure of 
both lesioned and non-lesioned CST contributed significantly to the 
BBTU model. Age at scan was also ranked highly (4/11), while none of 

Table 3 
Neuroimaging feature values by group with statistical contrasts between groups.  

Neuroimaging Feature Participant Group Contrasts 
Mean (SD) [range] TDC AIS PVI AIS vs TDC PVI vs TDC AIS vs PVI 

White matter SC features       
Les CST FA 0.42 (0.02) [0.38-0.45] 0.36 (0.04) [0.29-0.45] 0.40 (0.03) [0.32-0.45] p < 0.0001 p = 0.024 p = 0.001 
Les CST MD 8.36 (0.32) [7.54-8.91] 9.54 (0.63) [8.43-10.7] 9.01 (1.1) [8.1-14.4] p < 0.0001 p = 0.003 p = 0.007 
Les CST AD 12.3 (0.38) [11.3-13.0] 13.3 (0.65) [12.1-15.0] 12.7 (0.45) [11.7-13.5] p < 0.0001 p = 0.02 p < 0.0001 
Les CST RD 6.37 (0.33) [5.65-7.04] 7.64 (0.70) [6.33-9.04] 6.93 (0.56) [6.15-8.53] p < 0.0001 p = 0.002 p = 0.008 
Non-Les CST FA 0.42 (0.03) [0.34-0.47] 0.43 (0.03) [0.36-0.48] 0.42 (0.02) [0.38-0.47] ns ns ns 
Non-Les CST MD 8.23 (0.33) [7.81-9.45] 8.16 (0.32) [7.64-9.07] 8.30 (0.29) [7.67-8.95] ns ns ns 
Non-Les CST AD 12.2 (0.30) [11.8-12.9] 12.0 (0.90) [8.18-13.1] 12.3 (0.30) [11.6-12.9] ns ns ns 
Non-Les CST RD 6.21 (0.39) [5.57-7.74] 6.16 (0.39) [5.52-7.06] 6.33 (0.34) [5.64-6.99] ns ns ns  

Cortical FC Features       
Les M1 – Non-Les M1 0.88 (0.35) [− 0.11-1.48] 0.37 (0.33) [− 0.42-0.99] 0.96 (0.31) [0.04-1.42] p < 0.0001 ns p < 0.0001 
Les S1 – Non-Les S1 1.05 (0.35) [0.31-1.59] 0.42 (0.30) [− 0.25-0.87] 0.96 (0.33) [0.20-1.73] p < 0.0001 ns p < 0.0001 
Non-Les M1 – Non-Les S1 0.76 (0.33) [0.00-1.20] 0.90 (0.27) [0.44-1.51] 0.85 (0.26) [0.32-1.37] ns ns ns 
Les M1 – Les S1 0.77 (0.38) [0.20-1.52] 0.73 (0.29) [0.26-1.23] 0.91 (0.29) [0.38-1.58] ns ns ns 
Non-Les M1 – Non-Les SMA 0.76 (0.15) [0.47-1.04] 0.48 (0.32) [− 0.05-1.22] 0.85 (0.26) [0.23-1.29] p = 0.001 ns p < 0.0001 
Les M1 – Les SMA 0.78 (0.26) [0.18-1.25] 0.40 (0.26) [− 0.04-0.99] 0.75 (0.24) [0.39-1.20] p < 0.0001 ns p < 0.0001 
Non-Les SMA – Les SMA 1.29 (0.29) [0.56-1.90] 0.99 (0.35) [0.36-1.52] 1.28 (0.28) [0.63-1.76] p = 0.003 ns p = 0.004  

Thalamus/basal ganglia FC features       
Les Thalamus – Non-Les Thalamus 1.18 (0.26) [0.74-1.75] 0.68 (0.33) [0.07-1.38] 0.83 (0.30) [0.18-1.49] p < 0.0001 p < 0.0001 ns 
Les Caudate – Non-Les Caudate 0.83 (0.22) [0.33-1.25] 0.23 (0.28) [− 0.42-0.78] 0.54 (0.33) [− 0.1-1.14] p < 0.0001 p = 0.001 p = 0.001 
Les Pallidum – Non-Les Pallidum 1.01 (0.20) [0.62-1.43] 0.27 (0.35) [− 0.35-0.97] 0.78 (0.31) [0.13-1.35] p < 0.0001 p = 0.011 p < 0.0001 
Les Putamen – Non-Les Putamen 1.06 (0.27) [0.41-1.55] 0.34 (0.32) [-0.33-0.95] 0.86 (0.31) [0.28-1.45] p < 0.0001 ns p < 0.0001 
Non-Les Caudate – Non-Les Pallidum 0.15 (0.20) [− 0.25-0.50] 0.14 (0.19) [− 0.47-0.36] 0.23 (0.22) [-0.13-0.77] ns ns ns 
Non-Les Pallidum – Non-Les Thalamus 0.36 (0.26) [− 0.13-0.78] 0.29 (0.24) [− 0.10-0.85] 0.38 (0.23) [− 0.09-0.82] ns ns ns 
Non-Les Putamen – Non-Les Pallidum 1.06 (0.22) [0.63-1.51] 0.91 (0.31) [0.31-1.50] 1.02 (0.23) [0.53-1.48] ns ns ns 
Les Caudate – Les Pallidum 0.11 (0.17) [− 0.25-0.56] 0.04 (0.23) [− 0.56-0.65] 0.02 (0.22) [− 0.32-0.58] ns ns ns 
Les Pallidum – Les Thalamus 0.35 (0.28) [− 0.10-0.91] 0.33 (0.35) [− 0.30-0.72] 0.29 (0.27) [− 0.13-0.84] ns ns ns 
Les Putamen – Les Pallidum 0.95 (0.21) [0.55-1.62] 0.79 (0.26) [0.32-1.35] 0.91 (0.26) [0.32-1.47] ns ns ns  

Cortico-subcortical FC features       
Non-Les M1 – Non-Les Thalamus 0.04 (0.19) [− 0.29-0.38] 0.08 (0.24) [− 0.37-0.48] 0.10 (0.21) [− 0.25-0.42] ns ns ns 
Non-Les M1 – Non-Les Caudate -0.06 (0.20) [− 0.41-0.55] -0.02 (0.24) [− 0.50-0.35] 0.00 (0.20) [− 0.34-0.41] ns ns ns 
Non-Les M1 – Non-Les Pallidum 0.18 (0.21) [− 0.26-0.54] 0.20 (0.21) [− 0.12-0.74] 0.20 (0.26) [− 0.35-0.72] ns ns ns 
Non-Les M1 – Non-Les Putamen 0.18 (0.16) [− 0.18-0.52] 0.24 (0.27) [− 0.13-0.68] 0.26 (0.22) [− 0.21-0.66] ns ns ns 
Les M1 – Les Thalamus 0.00 (0.21) [− 0.43-0.42] -0.12 (0.22) [-0.47-0.31] 0.01 (0.18) [− 0.37-0.39] ns ns ns 
Les M1 – Les Caudate -0.14 (0.16) [− 0.39-0.19] -0.12 (0.21) [− 0.46-0.30] -0.04 (0.16) [− 0.38-0.38] ns ns ns 
Les M1 – Les Pallidum 0.08 (0.19) [− 0.21-0.51] -0.04 (0.21) [− 0.49-0.31] 0.10 (0.24) [− 0.35-0.50] ns ns ns 
Les M1 – Les Putamen 0.16 (0.21) [− 0.32-0.56] -0.03 (0.17) [− 0.33-0.28] 0.19 (0.24) [− 0.28-0.53] p = 0.007 ns p = 0.002 
Non-Les S1 – Non-Les Thalamus 0.04 (0.19) [− 0.38-0.47] 0.10 (0.21) [− 0.19-0.56] 0.07 (0.20) [− 0.36-0.50] ns ns ns 
Non-Les S1 – Non-Les Caudate -0.11 (0.18) [− 0.42-0.22] -0.05 (0.19) [− 0.33-0.36] -0.08 (0.19) [− 0.49-0.25] ns ns ns 
Non-Les S1 – Non Les Pallidum 0.01 (0.16) [− 0.26-0.28] 0.10 (0.19) [− 0.18-0.56] 0.10 (0.26) [− 0.46-0.73] ns ns ns 
Non-Les S1 – Non Les Putamen 0.10 (0.15) [− 0.32-0.34] 0.17 (0.21) [− 0.17-0.62] 0.19 (0.22) [− 0.22-0.66] ns ns ns 
Les S1 – Les Thalamus 0.02 (0.23) [− 0.47-0.44] -0.10 (0.23) [− 0.44-0.28] 0.01 (0.18) [− 0.39-0.27] ns ns ns 
Les S1 – Les Caudate -0.10 (0.18) [− 0.39-0.29] -0.17 (0.23) [− 0.58-0.47] -0.03 (0.20) [− 0.44-0.31] ns ns ns 
Les S1 – Les Pallidum 0.00 (0.16) [− 0.36-0.33] -0.06 (0.24) [− 0.46-0.43] 0.01 (0.19) [− 0.54-0.41] ns ns ns 
Les S1 – Les Putamen 0.12 (0.17) [− 0.13-0.60] -0.10 (0.19) [− 0.40-0.36] 0.10 (0.23) [− 0.41-0.56] p < 0.0001 ns p = 0.002 
Non-Les SMA – Non-Les Thalamus 0.10 (0.22) [− 0.39-0.45] -0.09 (0.21) [− 0.47-0.24] 0.11 (0.23) [− 0.35-0.60] p = 0.015 ns p = 0.007 
Non-Les SMA – Non-Les Caudate 0.03 (0.19) [− 0.40-0.64] 0.01 (0.22) [− 0.77-0.35] 0.06 (0.26) [− 0.32-0.81] ns ns ns 
Non-Les SMA – Non Les Pallidum 0.15 (0.21) [− 0.40-0.57] 0.03 (0.17) [− 0.29-0.41] 0.21 (0.26) [− 0.30-0.68] ns ns p = 0.016 
Non-Les SMA – Non Les Putamen 0.21 (0.18) [− 0.26-0.49] 0.08 (0.24) [− 0.50-0.60] 0.28 (0.24) [− 0.20-0.73] ns ns p = 0.005 
Les SMA – Les Thalamus 0.11 (0.22) [− 0.37-0.47] -0.09 (0.22) [− 0.46-0.25] -0.02 (0.21) [− 0.39-0.58] p = 0.009 ns ns 
Les SMA – Les Caudate -0.04 (0.17) [− 0.38-0.25] -0.04 (0.19) [− 0.39-0.30] -0.05 (0.19) [− 0.36-0.56] ns ns ns 
Les SMA – Les Pallidum 0.14 (0.20) [− 0.31-0.45] -0.03 (0.17) [− 0.32-0.35] 0.12 (0.26) [− 0.54-0.63] p = 0.036 ns ns 
Les SMA – Les Putamen 0.25 (0.23) [− 0.39-0.67] -0.02 (0.21) [− 0.41-0.35] 0.22 (0.31) [− 0.41-0.97] p = 0.002 ns p = 0.006 

Table Note: AIS – Arterial ischemic stroke, PVI – Periventricular venous infarction, TDC – Typically Developing Controls, Les – lesioned, SC – Structural connectivity, 
FC – Functional connectivity, CST – Cortical spinal tract, FA – Fractional anisotropy, MD, AD, RD – Mean, axial, and radial diffusivity (x10-4), M1 – Primary motor 
cortex, S1 – Primary sensory cortex, SMA – Supplementary motor area. In TDC participants, non-lesioned refers to the dominant hemisphere (left) and lesioned refers to 
the non-dominant (right) hemisphere. ns – non-significant. Reported p-values are Bonferroni corrected. 
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the other demographic variables (including ELV) were retained in this 
model. 

The optimal AHA prediction model required a much higher number 
of features with 51/54 used, accounting for 14.2% of variance. This was 
possibly related to the more complex nature of bimanual tasks. FC be
tween cortical (M1, S1) and subcortical (putamen, caudate, pallidum, 
thalamus) motor areas ranked highly and composed a large portion of 
the model (19 of the top 30 features). White matter microstructure (AD) 
of both the lesioned and non-lesioned CST were also highly ranked (2 of 
the top 11 features) for predicting AHA performance. Age at scan 
(ranked 9th of 51), ELV (ranked 13th of 51), and type of stroke (ranked 
20th of 51) were retained in the model. 

Side of stroke was excluded as not predictive of motor outcomes in all 
of the BBTA, BBTU, and AHA prediction models and sex was only 
included in one model. Results from other regression models have been 

included in supplementary materials. 

4. Discussion 

We have demonstrated that a combination of structural and func
tional connectivity metrics between cortical and subcortical motor areas 
predicts clinical motor outcomes after perinatal stroke. Both the 
lesioned and non-lesioned hemispheres (and the interplay between 
them) appear to have important roles as do both cortical and subcortical 
areas. Lesion size, age at scan, sex, and type of stroke were also retained 
in some of the final models though these often cited clinical features 
were not highly ranked while side of stroke was not included in any 
models. Whether unimanual or bimanual motor function was being 
measured also had strong effects on model structure. Collectively, our 
results suggest that multimodal imaging models generated with machine 

Fig. 2. Functional and structural connectivity values 
by participant group. Inter-hemispheric functional 
connectivity (FC) for stroke groups was significantly 
lower compared to TDC between the non-lesioned 
and lesioned (A) thalamus, (B) caudate, (C) puta
men and (D) primary sensory cortex (S1). Fractional 
Anisotropy was lower for both AIS and PVI groups 
compared to TDC for the (E) lesioned but not the (F) 
non-lesioned corticospinal tract (CST). Black symbols 
represent the mean and vertical lines represent 
standard deviation. ** p ≤ 0.001, * p < 0.05. AIS – 
Arterial ischemic stroke, PVI – periventricular 
venous infarction, TDC – typically developing 
controls.   
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learning are likely more capable than single modality approaches of 
explaining clinical behavior in children with perinatal stroke. 

Compared to typically developing peers, children with AIS showed 

lower functional and structural connectivity for many neuroimaging 
features, notably the lesioned CST, functional connectivity between 
cortical regions such as M1, S1 and SMA, as well as inter-hemispheric 

Fig. 3. Regression models represented as scatterplots illustrating relationships between predicted and actual scores for motor outcomes on the BBTA, BBTU and AHA 
for (A-C) AIS, (D-F) PVI and (G-I) AIS + PVI groups combined. Shaded areas represent 95% confidence intervals of the regression line. AIS – Arterial ischemic stroke, 
PVI – periventricular infarction, TDC – Typically developing controls, BBT – Box and Blocks Test (BBTA - Affected hand, BBTU – Unaffected hand), AHA – Assisting 
Hand Assessment. 

Table 4 
Most highly predictive features for BBTA, BBTU and AHA for the AIS group.  

AIS group   
BBTA (R2 = 0.517 for 6 features) BBTU (R2 = 0.372 for 5 features) AHA (R2 = 0.400 for 2 features) 
Rank Feature Mod Rank Feature Mod Rank Feature Mod 

1 Les S1 – Les Pallidum FC 1 Non-Les SMA – Les SMA FC 1 Les S1 – Les Pallidum FC 
2 Non-Les SMA – Les SMA FC 2 Non-Les S1 – Non-Les Putamen FC 2 Les SMA – Les Thalamus FC 
3 Les Putamen – Non-Les Putamen FC 3 Les Putamen – Non-Les Putamen FC    
4 Les CST RD SC 4 Non-Les M1 – Non-Les Pallidum FC    
5 Non-Les M1 – Non-Les SMA FC 5 Les S1 – Non-Les S1 FC    
6 ELV DE       

Table note: AIS – Arterial ischemic stroke, BBT – Box and Blocks Test (BBTA - Affected hand, BBTU – Unaffected hand), AHA – Assisting Hand Assessment, Mod – 
Modality, FC – Functional connectivity, SC – Structural connectivity, DE - Demographic, Les – Lesioned, CST – Cortical spinal tract, FA – Fractional anisotropy, MD - 
Mean diffusivity, M1 – Primary motor cortex, S1 – Primary sensory cortex, SMA – Supplementary motor area. 
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connectivity within basal ganglia structures. Children with PVI were 
largely similar to TDC but also showed differences in the lesioned CST 
and inter-hemispheric connectivity in basal ganglia structures. These 
different patterns may be due to the relatively larger lesion size in AIS 
encompassing both subcortical and cortical areas compared to PVI in 
which injury is more constrained to the periventricular white matter. It 
is interesting to note that while basal ganglia structures are typically 
remote from PVI damage, there were still detectible differences in 
connectivity between these areas compared to peers perhaps mediating 
motor dysfunction via diaschisis, a process previously investigated in 
perinatal stroke patients (Finger et al., 2004; Kirton et al., 2016b; Craig 
et al., 2019a; 2019b;; Srivastava et al., 2019). Also of note is the finding 
that values for some features found to be predictive of motor function in 

the regression analyses were not different from peers. For example, the 
non-lesioned CST and multiple cortico-subcortical features (lesioned S1/ 
M1 – lesioned pallidum/caudate/thalamus) were not different between 
groups but yet were retained by the feature selection algorithm and 
ranked fairly highly within the regression analyses. This finding suggests 
that exploring only group differences in neuroimaging markers may not 
reflect the full richness of compensatory plasticity after very early 
injury. 

The thalamus and basal ganglia structures played a central role in all 
predictive models. The caudate nucleus, putamen, and pallidum are 
known to play pivotal roles in the direct and indirect pathways of the 
motor system, acting as input (caudate and putamen) or output nuclei 
(pallidum), lesions to which may result in movement disorders in the 

Table 5 
Most highly predictive features for BBTA, BBTU and AHA for the PVI group.  

PVI group   
BBTA (R2 = 0.081 for 44 features, top 20 shown) BBTU (R2 = 0.312 for 3 features) AHA (R2 = 0.034 for 28 features, top 20 shown) 
Rank Feature Mod Rank Feature Mod Rank Feature Mod 

1 Les S1 – Non-Les S1 FC 1 Les Putamen – Non-Les Putamen FC 1 Les S1 – Non-Les S1 FC 
2 Les CST AD SC 2 Age at scan DE 2 Non-Les M1 – Non-Les Thalamus FC 
3 Non-Les CST FA SC 3 Les M1 – Les Thalamus FC 3 Les S1 – Les Putamen FC 
4 Non-Les M1 – Non-Les SMA FC    4 Les CST AD SC 
5 Age at scan DE    5 Les Putamen – Non-Les Putamen FC 
6 Non-Les S1 – Non-Les Putamen FC    6 Les M1 – Les Putamen FC 
7 Non-Les S1 – Non-Les Thalamus FC    7 Les Pallidum – Les Thalamus FC 
8 Les M1 – Les S1 FC    8 Les M1 – Les Caudate FC 
9 Les M1 – Les Caudate FC    9 Age at scan DE 
10 Non-Les CST AD SC    10 Sex DE 
11 Les S1 – Les Putamen FC    11 Les S1 – Les Pallidum FC 
12 Non-Les M1 – Non-Les Thalamus FC    12 Non-Les M1 – Non-Les Caudate FC 
13 Non-Les CST RD SC    13 Non-Les CST AD SC 
14 Les SMA – Les Thalamus FC    14 Non-Les S1 – Non-Les Putamen FC 
15 Les M1 – Les Putamen FC    15 Les Pallidum – Non-Les Pallidum FC 
16 Les Putamen – Non-Les Putamen FC    16 Les Thalamus – Non-Les Thalamus FC 
17 Les CST FA SC    17 Non-Les M1 – Non-Les SMA FC 
18 Les Putamen – Les Pallidum FC    18 Les S1 – Les Thalamus FC 
19 Les S1 – Les Pallidum FC    19 Non-Les S1 – Non-Les Thalamus FC 
20 Les Thalamus – Non-Les Thalamus FC    20 Non-Les M1 – Non-Les Pallidum FC 

Table note: PVI – Periventricular venous infarction. BBT – Box and Blocks Test (BBTA - Affected hand, BBTU – Unaffected hand), AHA – Assisting Hand Assessment, 
Mod – MRI modality, FC – Functional connectivity, SC – Structural connectivity, DE - Demographic, Les – Lesioned, CST – Cortical spinal tract, FA – Fractional 
anisotropy, MD - Mean diffusivity, AD – Axial diffusivity, RD – Radial diffusivity, M1 – Primary motor cortex, S1 – Primary sensory cortex, SMA – Supplementary motor 
area. 

Table 6 
Most highly predictive features for BBTA, BBTU and AHA for the AIS + PVI combined group.  

BBTA (R2 = 0.338 for 8 features) BBTU (R2 = 0.118 for 11 features) AHA (R2 = 0.142 for 51 features, top 20 shown) 
Rank Feature Mod Rank Feature Mod Rank Feature Mod 

1 Les CST RD SC 1 Les Putamen – Non-Les Putamen FC 1 Les S1 – Les Pallidum FC 
2 Les S1 – Les Pallidum FC 2 Les Pallidum – Non-Les Pallidum FC 2 Les M1 – Les Putamen FC 
3 Non-Les M1 – Non-Les SMA FC 3 Les Thalamus – Non-Les Thalamus FC 3 Les CST AD SC 
4 Non-Les SMA – Les SMA FC 4 Age at scan DE 4 Les M1 – Les Caudate FC 
5 Age at scan DE 5 Les S1 – Non-Les S1 FC 5 Non-Les M1 – Non-Les SMA FC 
6 ELV DE 6 Les CST RD SC 6 Les SMA – Les Thalamus FC 
7 Les Putamen – Non-Les Putamen FC 7 Les M1 – Les Thalamus FC 7 Non-Les M1 – Non-Les Thalamus FC 
8 Non-Les M1 – Non-Les Thalamus FC 8 Non-Les S1 – Non-Les Putamen FC 8 Les Pallidum – Non-Les Pallidum FC    

9 Les M1 – Les Caudate FC 9 Age at scan DE    
10 Non-Les M1 – Non-Les Pallidum FC 10 Non-Les SMA – Les SMA FC    
11 Non-Les CST FA SC 11 Non-Les CST AD SC       

12 Non-Les M1 – Non-Les Putamen FC       
13 ELV DE       
14 Les S1 – Non-Les S1 FC       
15 Les M1 – Les Pallidum FC       
16 Non-Les SMA – Non-Les Thalamus FC       
17 Les CST RD SC       
18 Les Thalamus – Non-Les Thalamus FC       
19 Les S1 – Les Putamen FC       
20 Stroke DE 

Table note: BBT – Box and Blocks Test (BBTA - Affected hand, BBTU – Unaffected hand), AHA – Assisting Hand Assessment, Mod – Modality, FC – Functional con
nectivity, SC – Structural connectivity, DE - Demographic, Les – Lesioned, CST – Cortical spinal tract, FA – Fractional anisotropy, MD - Mean diffusivity, AD – Axial 
diffusivity, RD – Radial diffusivity, M1 – Primary motor cortex, S1 – Primary sensory cortex, SMA – Supplementary motor area. 
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adult brain (Lanciego et al., 2012). However, although not as well 
studied, the pattern of motor dysfunction appears to be different when 
such injuries occur in the perinatal timeframe. Motor outcomes after 
perinatal stroke have been associated with basal ganglia involvement 
but only in the extent of hemiparesis severity and spasticity (Boardman 
et al., 2005; Kirton et al., 2008). The thalamus is also a central hub for 
integrating sensory inputs shunting information to specialized cortical 
areas for further processing via significant projections to the basal 
ganglia and cortex via cortico-basal ganglia-thalamo-cortical loops 
(Lanciego et al., 2012). We have recently demonstrated that thalamic 
diaschisis is common in perinatal stroke (Srivastava et al., 2019) and 
that altered thalamic volumes, particularly in the non-lesioned hemi
sphere, are associated with motor function (Craig et al., 2019a). Our 
findings here appear consistent with this previous evidence supporting 
an important role for the basal ganglia and thalamus in the develop
mental plasticity that determines motor function after perinatal stroke. 

Another highly ranked feature in the predictive models was the inter- 
hemispheric functional connectivity between the lesioned and non- 
lesioned supplementary motor areas (SMA). We also found a highly 
ranked contribution for FC between non-lesioned M1 and non-lesioned 
SMA in multiple models. It has previously been suggested that the 
SMA may play a role in compensation and motor reorganization after 
stroke. Motor task fMRI studies in well-recovered adults post-stroke 
have found more extensive SMA activations (Nair et al., 2007) 
compared to controls that correlated with function (Rehme et al., 2012). 
We have also shown evidence of topographical re-organization of task- 
related SMA activations in children after perinatal AIS but did not find 
associated differences in activation strength, extent, or correlation with 
motor function (Baker et al., 2020). In children with PVI, we have also 
demonstrated correlations between inter-hemispheric SMA FC at rest 
and performance on specialized sensory tasks using a proprioceptive 
robot (Woodward et al., 2019). Given that the SMA areas lie relatively 
anterior and on the medial surface of the brain, they are often spared 
after middle cerebral artery infarction, and SMA recruitment may be an 
ideal compensatory mechanism after stroke. After PVI, damage is often 
limited to periventricular white matter and the SMA is typically pre
served. Further, in intact brains, SMA is purported to make up ~ 10% of 
the connections in the CST, directly synapsing with motor neurons 
(Nachev et al., 2008), suggesting the enhanced retention of such upper 
motor connections that are prominent at the time of perinatal stroke. 
Our findings that the FC of SMA is a highly ranked feature in multiple 
motor outcome models is consistent with evidence of SMA’s central role 
in re-organized motor systems after stroke and could be explored as a 
possible accessible target for neuromodulation. 

We also found that connectivity of both the lesioned and non- 
lesioned hemispheres was highly ranked for most motor function pre
dictions. Even though the BBTA is a unimanual task quantifying function 
of the weaker, stroke-affected hand, the regression models included 
features from the lesioned and non-lesioned hemisphere as well as fea
tures integrating both hemispheres via inter-hemispheric connectivity. 
Similarly, for the bimanual AHA model, many highly ranked features 
involved the lesioned and non-lesioned hemispheres, as well as features 
involving bilateral inter-hemispheric connectivity. These findings are 
consistent with the well-established, essential role that the non-lesioned 
hemisphere plays in determining motor function in many children with 
perinatal stroke (Eyre, 2007; Staudt, 2007; Hilderley et al., 2019). Evi
dence from multiple modalities including task fMRI and transcranial 
magnetic stimulation (TMS) studies demonstrates that the majority of 
children with perinatal stroke have both ipsilesional and contralesional 
corticospinal projections to the affected hand (Thickbroom et al., 2001; 
Staudt et al., 2002; Vandermeeren et al., 2003; Guzzetta et al., 2007; 
Dinomais et al., 2013; Van de Winckel et al., 2013; Arichi et al., 2014; 
van der Hoorn et al., 2014; Zewdie et al., 2017; Weinstein et al., 2018). 
Maintaining functional control in ipsilesional areas has been associated 
with better clinical motor function as compared to prominent recruit
ment of contralesional areas although considerable variability exists 

(Chu et al., 2000; Staudt et al., 2002; Weinstein et al., 2014; Zewdie 
et al., 2017). Combining this substantial evidence base with our findings 
in the current study suggests that future models capable of incorporating 
diverse metrics beyond just neuroimaging that also consider the roles of 
both hemispheres may be even better at revealing the determinants of 
clinical function. 

Interestingly, bilateral sensorimotor connectivity, one of the most 
previously studied networks in this population, was not consistently 
retained in some models though interhemispheric sensory (S1-S1) con
nectivity was highly ranked for the PVI BBTA and AHA models. 
Involvement of intra-cortical motor (M1) and sensory (S1) areas was not 
as highly ranked as we had expected for AIS. Inter-hemispheric FC be
tween bilateral M1 areas was also not retained in any model. Connec
tivity between S1 and M1 were either ranked as quite low or not 
included. This could be because the AHA and BBTA tasks have both 
sensory and motor components, making it difficult to tease out the 
relative contributions of each component unless utilizing specialized, 
purely sensory tasks such as those performed previously using robotics 
(Kuczynski et al., 2016; 2017;; Woodward et al., 2019). Another possi
bility is that contributions of motor and sensory areas were highly 
correlated (i.e., redundant) with each other or other variables that were 
therefore reduced in some models. It is plausible that fluctuations in 
BOLD response (i.e., FC) between M1 and S1 areas were highly corre
lated with each other (Saunders et al., 2019) or that the tractography 
algorithms isolating corticospinal tracts also included the sensory 
(dorsal column medial lemniscus) tracts (Kuczynski et al., 2017), and 
therefore were excluded by the RELIEFF feature ranking and selection 
algorithm. Although important, cortical motor and sensory FC may not 
have contributed unique information to the model over and above other 
features and were therefore discarded in favor of more predictive 
cortical-subcortical connectivity metrics. As the first study of its kind to 
incorporate all such networks simultaneously in this population, it is 
possible we have been over-estimating the importance of the cortical 
sensorimotor structures we had greater ability to interrogate at the 
expense of the deeper network components, the importance of which 
may be substantial. 

In perinatal stroke, age at scan can also be considered a proxy for 
time since stroke reflecting not just placement on the developmental 
trajectory, but also the duration of possible neuroplastic re-organization. 
Age at scan was considered to be a predictive feature in some models but 
not the AIS prediction models. This finding could reflect that older 
children have had more time to engage compensatory mechanisms and 
recruit additional brain areas to preserve motor function even though all 
children were in the chronic stage post-stroke. This could also reflect 
differences between AIS and PVI in when the injury occurs in the peri
natal period. 

Interestingly, lesion size (i.e., ELV) was not as highly ranked as ex
pected. We have informally observed in the past that the size of the 
lesion may be less important as compared to location in predicting motor 
outcomes from perinatal stroke. This is consistent with previous studies 
where lesion volumes have often been included but associations with 
outcomes have been modest (Mackay et al., 2020). Certainly, some 
children with very large strokes do quite well and others with relatively 
small lesions can have profound motor impairments. Our current find
ings provide quantitative evidence that size of lesion is not highly pre
dictive of motor function though it does play a moderate role. 
Conversely, side of stroke was not associated with motor outcomes and 
sex did not figure prominently in prediction models. Left-side arterial 
ischemic strokes are more common than right-side strokes though the 
reason for this is poorly understood (Dunbar and Kirton, 2018). This 
incidence was mirrored in our sample having more children with left 
strokes (~60%) than right (~40%). Furthermore, the finding that sex 
did not significantly contribute to motor outcomes models is consistent 
with male and female children having similar outcomes despite peri
natal stroke being more common in males (Dunbar and Kirton, 2018). 

That the BBTA, BBTU and AHA models required different numbers of 
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features for optimal prediction likely relates to the more complex and 
naturalistic nature of the bimanual tasks reflected in the AHA. For the 
AIS group alone, only two features were required to optimally predict 
AHA performance compared to 28/54 features for the PVI group. 
Additional neuroimaging features that could be added to improve model 
accuracy include morphometric measurements of additional cortical 
and subcortical structures [including volumetrics, cortical thickness, 
gyrification and sulcal geometry (Dubois et al., 2008; Pagnozzi et al., 
2016; Al Harrach et al., 2019)], more specific quantifications of white 
matter myelination (Glasser and Van Essen, 2011; Ganzetti et al., 2014), 
neurometabolite features from MR spectroscopy studies (Carlson et al., 
2017), and blood perfusion metrics from arterial spin labelling studies 
(Wintermark and Warfield, 2012; De Vis et al., 2013; Watson et al., 
2016). In addition, cognitive variables could also be considered here 
since the three tasks we used could be affected by a child’s overall 
processing speed, comprehension of instructions, attention, compliance, 
and other complex factors (Fuentes et al., 2016). A major advantage of 
many machine learning regression models is no assumptions regarding 
normality of statistical distributions or non-collinearity among variables 
are required. Thus, these methods will be powerful techniques with 
which to move forward the field of neuroimaging and patient-centered 
precision medicine. 

This study may provide additional evidence informing theoretical 
models of neuroplasticity after early injury. Both cortical and subcortical 
inter-hemispheric functional connectivity was rated consistently highly 
in the regression models suggesting that both lesioned and non-lesioned 
hemispheres likely interact after stroke to compensate for injury where 
possible. This is consistent with evidence from task-fMRI (Chu et al., 
2000; Staudt et al., 2002; Weinstein et al., 2014) and TMS (Staudt, 2010; 
Zewdie et al., 2017) literatures that maintaining function in perilesional 
areas results in better function and that restoring inter-hemispheric 
excitatory and inhibitory balance (Ferbert et al., 1992) via non- 
invasive brain stimulation may be an effective intervention (Kirton 
et al., 2016a; 2017;; Eng et al., 2018; Hilderley et al., 2019). Whether 
inter- or intra-hemispheric connectivity is more important for models of 
neuroplasticity is nonetheless still unclear. Our results suggest that 
features measuring both inter- and intra-hemispheric connectivity are 
predictive of motor function and that restoring balance to the motor 
network may underlie functional recovery. No doubt a considerable 
amount of among-patient variability also exists. Future developments of 
neuroplasticity models should also more explicitly include subcortical 
thalamic and basal ganglia structures given their relatively large role in 
these predictive regression models for both unimanual and bimanual 
function. 

We acknowledge several limitations. First, our patient sample 
included only those children who were older (>6 years) and relatively 
less impaired on average given the need to complete a complex MRI 
study. This bias is common in imaging studies, however may limit the 
generalizability of these results to very young or more profoundly 
disabled perinatal stroke populations. Normalization procedures often 
under-perform when used in the presence of lesions (Andersen et al., 
2010; Ripollés et al., 2012). While we ensured the accuracy of the seg
mentation and normalization processes by examining each scan slice-by- 
slice, and excluded one patient who had a large lesion that could not be 
accurately segmented, we concede that standard normalization pro
cedures are not ideal for use in stroke brains. More specialized proced
ures such as DARTEL (Ashburner, 2007) or Symmetrical Normalization 
(SyN) (Avants et al., 2008) may be better suited to solve this challenge 
(Klein et al., 2009). Cost-function masking, although time-consuming, 
has also been shown to be effective in the presence of stroke lesions 
(François et al., 2016, 2019) as has the use of pediatric templates for 
normalization (Fonov et al., 2011; Richards et al., 2016). Our use of the 
ELV metric had the advantage of quantifying lesion size in a manner that 
was directly comparable in patients with different lesion etiologies (AIS 
vs PVI), however may have been relatively insensitive to very small le
sions or to those with periventricular cysts accompanied by small 

dilatations in ventricle size. We also included a larger number of func
tional connectivity (41/54) compared to structural connectivity (8/54) 
features. Of the structural features included, all were unilateral (i.e., 
lesioned and non-lesioned CST) and did not include inter-hemispheric 
structural connectivity (i.e., motor fibres of the corpus callosum). Our 
clinical outcome measures (BBTA, BBTU, AHA) were primarily motor in 
nature, however a direct investigation of connectivity using a purely 
sensory task or other behavioural measures may further inform more 
diverse disabilities after perinatal stroke. Further, the amount of reha
bilitation and physiotherapy given throughout early childhood is likely 
an additional predictor of motor function that was not available for in
clusion here. The use of an index reflecting prior therapy dosing may 
have made the predictive power of the regression models better since 
children likely vary widely on this metric and we would encourage 
future studies to include this information. 

5. Conclusions 

We have demonstrated in a group of children with perinatal stroke 
that neuroimaging features capturing structural and functional con
nectivity can be used for individual, data-driven prediction of motor 
function. Cortical and sub-cortical connectivity across both hemispheres 
are important predictors of clinical motor function, the degree of which 
depends on which motor function (unimanual versus bimanual) is being 
measured. Machine learning regression models are a powerful new tool 
to advance our understanding of developmental neuroplasticity in 
children with early brain injury and may inform personalized targets for 
neuromodulation. 
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