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Abstract 

Background:  Boolean models of biological signalling-regulatory networks are increasingly used to formally describe 
and understand complex biological processes. These models may become inconsistent as new data become avail-
able and need to be repaired. In the past, the focus has been shed on the inference of (classes of ) models given an 
interaction network and time-series data sets. However, repair of existing models against new data is still in its infancy, 
where the process is still manually performed and therefore slow and prone to errors.

Results:  In this work, we propose a method with an associated tool to suggest repairs over inconsistent Boolean 
models, based on a set of atomic repair operations. Answer Set Programming is used to encode the minimal repair 
problem as a combinatorial optimization problem. In particular, given an inconsistent model, the tool provides the 
minimal repairs that render the model capable of generating dynamics coherent with a (set of ) time-series data set(s), 
considering either a synchronous or an asynchronous updating scheme.

Conclusions:  The method was validated using known biological models from different species, as well as synthetic 
models obtained from randomly generated networks. We discuss the method’s limitations regarding each of the 
updating schemes and the considered minimization algorithm.

Keywords:  Biological regulatory networks, Boolean functions, Model repair, (A)synchronous dynamics, Answer Set 
Programming
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Background
Computational biology plays a crucial role in the modern 
understanding of biology itself [1]. In particular, mod-
elling helps to build systematic representations of bio-
logical systems, that can be used to simulate and make 
predictions in silico. However, most biological models 
are manually defined requiring a great amount of effort 
by the modeller. Also, many computational models can 
coherently explain the same time-series data set, and 
consequently, different modellers are likely to reach dif-
ferent models given the same data.

Models are continuously updated as we gather new 
information about particular biological processes. This 

leads to a continuous reassessment of the model consist-
ency and its possible revision to accommodate both pre-
vious and newly acquired data. Hence, it is important to 
reduce the difficulty of this task by providing computa-
tional tools that allow the representation of models and 
further to reason over them.

This manuscript focus on signalling-regulatory net-
works, composed by regulatory components represent-
ing the expression level of genes or the activity of their 
corresponding proteins. Many mathematical modelling 
formalisms can be considered to represent the model 
evolution over time, such as Petri nets [2], piecewise-
linear differential equations [3], or a logical formalism 
[4]. In the Boolean logical formalism [5–7], nodes are 
represented through Boolean variables denoting biologi-
cal components and edges denote regulatory interactions 
between components. The set of all possible component 
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valuations defines the state space of the system, and the 
evolution of the level of activity of a given component is 
described by logical functions combining the values of 
the regulators of the component. Additionally, we con-
sider that the model dynamics can be generated con-
sidering either a synchronous or asynchronous update 
scheme.

When modelling biological systems, there are three 
main problems to be considered: (i) inferring the network 
topology based on data [8–10]; (ii) reasoning over the 
properties of a model [11, 12]; and (iii) repairing a model 
based on new data [13]. Here, we address the latter, while 
considering the logical formalism using Answer Set Pro-
gramming (ASP) and focusing on the Boolean case. Note 
that it is possible to represent a multivalued model using 
only Boolean variables [14]. This work proposes the use 
of ASP to check the consistency and repair Boolean mod-
els of signalling-regulatory networks considering mul-
tiple time-series data sets, in the context of either the 
synchronous or asynchronous update scheme. Also, we 
consider that the structure of the original network can-
not be modified during the model repair.

An increasing number of references can be found in 
the literature with the successful application of ASP to 
model and reason over biological networks [12, 15–21]. 
In comparison with other problem solving paradigms, 
the ASP declarative language is easy to model and does 
not require the development of sophisticated algorithms.

This paper is organized as follows. The next section 
introduces the necessary background on logical models 
and the application of ASP for the revision of Boolean 
logical models. Afterward, the implementation of the 
repair method using ASP is described. “Method evalua-
tion” section presents the obtained results, and the last 
section provides some conclusions and future work.

Preliminaries
In this section, we introduce the required definitions 
concerning logical formalism and ASP. We then review 
the literature on the use of ASP for the model repair 
problem.

Biological models are formal representations of com-
plex biological processes. In this work, the formal repre-
sentation uses a logical regulatory graph.

Logical regulatory graphs
A Boolean logical regulatory graph is defined by:

•	 a set of n regulatory components G = {g1, . . . , gn} , 
where each component is associated to a Boolean 
variable representing the level of expression or activ-
ity of the component;

•	 a set of signed directed edges E, where (gi, gj) ∈ E 
with i, j ∈ {1, . . . , n}  denotes a regulatory activation 
(resp. inibition), when the associated sign is positive 
(resp. negative), between components gi and gj , i.e., gi 
is a regulator of (influences) gj;

•	 to each component gi there is an associated logi-
cal regulatory function, Ki : B

n → B where 
B = {false,true} , which defines its value based 
on the value of its regulators;

•	 the value of a component gi at time t is given by: 
gti = Ki(g

t−1
1 , . . . , gt−1

n ) . Components without regu-
lators are denoted as inputs and have constant values 
(either true or false).

An example of a Boolean logical regulatory graph is 
shown in Fig. 1. The network G has four nodes {a, b, c, d} 
and four edges with an associated positive sign.

A logical regulatory function can be defined by a 
combination of two basic Boolean functions (and, or), 
describing the evolution of a given component over time. 
The dynamics of signalling-regulatory networks can be 
represented by a state transition graph (STG) [22]. Each 
node, in the STG, is a state where all regulatory compo-
nents have a specific expression level. The edges repre-
sent changes in the expression of one or more regulatory 
components.

At each time step, the set of components that may 
be updated simultaneously depends on the considered 
updating scheme, influencing the system evolution (see 
[23] for details). In the synchronous updating scheme, 
each state has at most one successor, with all components 
being updated at the same time. In the asynchronous 
case, each state has as many successors as the number of 
components called to update, exactly one component per 
successor [24]. Due to the associated non-determinism, it 
is computationally hard to generate the full asynchronous 
dynamics. Alternatively, a stochastic exploration can be 
performed by choosing randomly one successor at each 
time step [25]. If no component is called to be updated at 
a given state, then the state is denoted a stable state.

A time-series data set consists of a set of values, rep-
resenting the expression level, for the elements of G in 

ab

c

d

Fig. 1  An example of a logical regulatory graphs. A logical regulatory 
graph with four nodes and four edges with positive sign associated
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different time steps. Note that not all elements of G need 
to have a value in all time steps. A biological model is said 
to be consistent with the time-series data if and only if the 
value of gi at time t is given by gti .

A repair operation is a modification to the biological 
model, in order to produce a new consistent model.

Boolean functions
The specification of the logical functions is typically man-
ually performed by a modeller using any combination of 
the logical operators: and, or and not. To avoid obtain-
ing different repairs for distinct, but equivalent, logical 
functions, a standard format to describe each function is 
required. In this work, we assume these functions to be 
encoded in Disjunctive Normal Form  (DNF), i.e., a dis-
junction (or) of conjunctions (and) of regulators, where 
each regulator can be negated (not). Here, we adopt 
the model specification format used by boolSim (https​
://www.vital​-it.ch/resea​rch/softw​are/boolS​im) [24]. The 
Logical Qualitative Models of biological networks library 
(bioLQM—https​://githu​b.com/colom​oto/bioLQ​M) can 
be used to import/export models specified in different 
formats, including SBML-qual [26].

In general, the number of possible Boolean functions 
that can be used to repair a function increases exponen-
tially with the number of regulators of the target compo-
nent, following the expression 22n where n is the number 
of arguments of the function [27]. We reduce this search 
space by considering only monotone non-degenerated 
Boolean functions. This means that each regulator always 
appears with the same sign (inhibition/activation) in the 
clauses of the function, i.e., a regulator cannot have a dual 
role, and that all regulators in a function play a role in 
changing the value of that function in at least one state 
of the STG.

Answer Set Programming
In this section, a short overview of Answer Set Pro-
gramming (ASP) syntax and semantics is given (for 
an in-depth description see [28–30]). ASP is a form of 
declarative programming using logical semantics [29] 
which has been successfully applied to model biological 
networks [11–13, 15, 16, 20, 21]. An ASP program is a 
finite set of rules and looks very similar to a Prolog pro-
gram. A rule r has a head and a body; it is written in the 
following form:

where ai ( 0 ≤ i ≤ m ≤ n ) is a ground atom. A literal is an 
atom or its (default) negation ∼ ai . The left side of ← is 
the head of the rule and so the head of r is:

The right side is the body, i.e. the body of the rule r is:

a0 ← a1, ..., am,∼ am+1, ...,∼ an

head(r) = a0.

The body of the rule can be decomposed as follows
body(r) = body(r)+ ∪ { a|a ∈ body(r)−} where 

body(r)+ = {a1, ..., am} and body(r)− = {am+1, ..., an}.
If the head of the rule is empty then r is called a con-

straint. The constraints act as filter to possible solutions. 
r is called a fact if body(r) = ∅ . A ground (i.e., variable-
free) instantiation of a program P is obtained by sub-
stituting all the variables by elements in the Herbrand 
universe.1 A (Herbrand) model is a set of (true) ground 
literals such that all the logical rules are satisfied (rules 
and default negation are considered as implications and 
classical negation, respectively). The solutions for a given 
problem, encoded using ASP, are called answer sets. 
A model A is an answer set iff A is the subset-minimal 
model of the reduct:

In ASP there are different types of rules that simplify the 
writing of a program. Examples include: cardinality con-
straints, choice rules, weighted rules, aggregation rules, 
optimization statements and conditional literals [28]. The 
choice rules are written as follows:

where 0 ≤ m ≤ n ≤ o . If the body is satisfied, then 
any subset of the atoms a0 to am can be included in the 
answer sets.

The choice rule can be bounded with at-least (lower 
bound) and at-most (upper bound) constraints which will 
be applied in the proposed implementation.

When modelling a problem into ASP, it is possible to 
separate the logic model from the data. The data corre-
sponds to facts, specific to each instance of the problem. 
The logic model corresponds to the rest of the encod-
ing which is composed of rules (called program). In this 
case, the so-called program encodes the properties and 
constraints of a consistent Boolean network and the facts 
represent the network per se (nodes, edges, functions, 
observed values).

In order to reason over evolving data some ASP solvers, 
such as clingo [32], provide iterative capabilities merg-
ing both grounding and solving parts of the solver. The 
ASP program is separated into three sections by the key-
words: # base, # step(t) and # check(t). # base is used to 
specify static rules which do not depend on the iteration 
step t (for example the observed values can be defined in 
this section). # step(t) is used to specify rules which are 

body(r) = {a1, ..., am,∼ am+1, ...,∼ an}.

{head(r) ← body(r)+ | r ∈ P, body(r)− ∩ A = ∅}.

{a0; . . . ; am} ← am+1, . . . , an,∼ an+1, . . . ,∼ ao

1  The Herbrand universe H of program P is the set of all ground terms, which 
can be constructed by the constants and function symbols from this program. 
For more details see [31].

https://www.vital-it.ch/research/software/boolSim
https://www.vital-it.ch/research/software/boolSim
https://github.com/colomoto/bioLQM
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inferred differently depending on t. Finally, the rules in 
the section # check(t) are used as the stopping criterion. 
The iterative nature reduces the grounding problem [33], 
since it only grounds based on the rules/head literals of 
the previous iterations and not of the whole program. 
Therefore, the grounded program is only part of the full 
STG.

Repairing inconsistent models using ASP
In this work, we developed a tool to repair inconsistent 
models implemented in C++. The tool encapsulates an 
ASP solver (clingo [32] solver version 5.1.0) providing the 
user with an easy way to generate the ASP facts. Figure 2 
gives an overview of the tool main components. The tool 
receives a model in the DNF format and one or more 
time-series as matrices. Not all values have to be present 
in the time-series matrices. If not present, the missing 
values will be computed according to the chosen dynam-
ics. As the tool repairs models with different updating 
schemes, it is required to specify the preferred updating 
scheme (steady state, asynchronous or synchronous). 
The user can also choose which type of repairs is desir-
able by combining the atomic repair operations, making 
sure the result meets the user requirements. Finally, the 
modeller can also provide a list of repairable nodes where 
the problem may reside, reducing the search space and 
potentially the execution time. The output of the tool is 
all the cardinality minimal repaired models. These mod-
els are exported in DNF more precisely in the boolSim 
format. Note that, if the process is interrupted before 
finding the optimal solution, then the current best solu-
tion will be returned. The tool does not guarantee to 
return models with minimized functions since the mini-
mization algorithm is not executed after repairing the 
model.

Atomic repair operations
In this section, we describe the proposed method to cor-
rect inconsistent functions from a set of time-series data 
sets. We start by defining the following set of atomic 
repair operations: 

n:	� Regulator negation—where a regulator can be 
changed from an inhibitor to an activator, and 
vice-versa;

s:	� Operator substitution—changing a Boolean opera-
tor, from and to an or, and vice-versa;

r:	� Regulator removal—all occurrences of a given 
regulator are removed from the function. To pre-
vent the creation of components with no regula-
tors (i.e. inputs), the removal of the last regulator is 
forbidden.

To illustrate the use of proposed atomic repair opera-
tions, let us consider a simple model and the correspond-
ing time-series data set at a steady state, represented in 
Fig.  3a. This model is inconsistent with the time-series 
data set since the function Kd cannot explain the value 
of component d. The model can be corrected by differ-
ent sets of repair operations. The examples are shown 
in Fig.  3 correspond to different cardinality minimal 
solutions.

Figure 3b–d show the network and the corrected func-
tions after applying the r, n and s repair operations, 
respectively.

Coverage and minimization of Boolean functions
The proposed atomic repair operations cover only a few 
of all possible Boolean functions. Combining repairs will 
allow obtaining more complex repair operations. Never-
theless, the whole space of Boolean functions is still not 

Quine-McCluskey

model.net

observations

repaired
models.net

facts.lp

Grounder

Solver

clingo

Fig. 2  Overview of the tool. The different components of the proposed tool
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completely covered since these repairs depend on the 
structure of the function. In particular, when combin-
ing repairs of the types r, n and s for a two-argument 
function, a total of twelve functions are covered (all basic 
Boolean functions, plus one of the derived Boolean func-
tions, the implication). Only the functions xor (exclusive 
or), nxor (the equivalence function), true and false 
are not achievable by these repairs. This is somehow 
expected since both xor and nxor are non-monotone 
functions. Table  1 shows the different combinations 
of repairs needed to convert the particular function 
f = A ∧ B into a different one (whenever possible).

Since it is possible to have different structures repre-
senting equivalent Boolean functions, we use the Quine–
McCluskey algorithm [34] to obtain the prime implicants 
of a function.2 This ensures that all functions are mini-
mized and presented in the same Disjunctive Normal 
Form (DNF), regardless of the initial form in which the 
function was expressed in. In particular, equivalent func-
tions will share the same prime implicants and therefore 
share the same repairs.

Since the repair operations depend on the structure of 
the function, the resulting function may depend on the 
initial structure of the function. Additionally, the same 

Boolean function can be expressed in different ways, 
which justifies the importance of normalizing the input.

Choosing the best repair operation
When the modeller defines a function for a given com-
ponent, she has a particular network structure in mind, 
even if the modeller is not sure about the exact function. 
Here, the method searches for the cardinality minimal 
operation, i.e. the best repair is considered to be the one 
that requires fewer repair operations.

The cardinality minimal repair is not necessarily the 
repair that has less impact on the truth table. The con-
sideration of the impact on the truth table would add too 
much overhead since it would require to enumerate the 
complete truth tables of all possible functions. For exam-
ple, the transformation from the model in Fig.  3a into 
the model in Fig. 3b (removing a from the function Kd ) 
causes a compaction of the truth table. Considering the 
original truth table (shown in Table  2) for the function, 
the output has changed in 3 lines out of 8 possible lines 
(the italic numbers in Table 2). Furthermore, the function 
can now be minimized, causing compaction of the truth 
table in 4 lines. This is easy to check if one knows all the 
values of the table. In this work, the truth tables of each 
function are not computed since their size grows expo-
nentially with the number of arguments of the function. 
Additionally, the repair may lose the intended network 

a Original Model b Repair r

Kd(X) = (¬a ∧ b) Kd(X) = b ∨ ¬c
∨ (¬a ∧ ¬c)
Ka(X) = a Ka(X) = a
Kb(X) = b Kb(X) = b
Kc(X) = c Kc(X) = c

c Repair n d Repair s

Kd(X) = (a ∧ b) Kd(X) = (¬a ∨ b)
∨ (a ∧ ¬c) ∨ (¬a ∧ ¬c)
Ka(X) = a Ka(X) = a

Kb(X) = b Kb(X) = b

Kc(X) = c Kc(X) = c

Fig. 3  Cardinality minimal solutions for steady state. Model of a signalling-regulatory network at steady state before and after repair operations. The 
repair operations shown are some of the cardinality minimal solutions. Green (red) nodes represent the assignment of a node to the value true 
(false)

2  Used minimization algorithm from https​://githu​b.com/pfpac​ket/Quine​
-McClu​skey.

https://github.com/pfpacket/Quine-McCluskey
https://github.com/pfpacket/Quine-McCluskey
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structure, as shown in our toy example (from Fig. 3a to 
Fig. 3b).

Model consistency check
The ASP implementation presented in this paper uses the 
incremental solving capabilities of clingo to perform an 
asynchronous search. Therefore, some predicates need 
to have an argument t, representing the iteration where 
they are inferred. The encoding described in this section 

repairs a Boolean network with an asynchronous updat-
ing scheme (a simpler version could be applied to steady 
state and synchronous updating schemes).

Network definition
In this section, the encoding of the Boolean logical reg-
ulatory graph is explained. Note that, the predicates 
explained in this section are defined in the #base sec-
tion of the program. Therefore, they do not depend on t.

Consider Fig. 1 to illustrate the use of ASP. Each node 
of G is encoded with predicate node/1. For example, 
the literal node(a) represents the specific node "a", 
while literal node(N) is a generic representation of any 
node (N is a variable). A node without regulators is called 

an input node and it is represented by the predicate 
input/1.

The Boolean function Ki associated with the node 
gi is represented through the combination the three 
basic Boolean functions. These functions can be 
encoded—or, and and identity—through the predi-
cate function/2, which associates the output node 
of the function with the type. The type is represented 

by the values 0 (or), 1 (and) and 2 (identity) (e.g. 
function(b,1)). The output node is unique and 
therefore it is used to identify the arbitrary number of 
arguments of the function. The predicate regula-
tor/3 associates the function with a regulator. A regu-
lator has a sign associated (inhibition/activation) (e.g. 
regulator(d,b,1)).

The encoding for regulatory graph displayed in Fig. 1 is 
presented in Listing 1. 

Listing 1 ASP encoding of the Boolean logical regulatory graph in Fig.1

0 #base.

1 node(a). node(b). node(c). node(d).

2 function(a,2). regulator(a,b,1). % Ka = b

3 function(b,1). regulator(b,c,1). regulator(b,d,1). % Kb = c ∧ d

4 function(c,2). regulator(c,a,1). % Kc = a

The example shown in Fig. 1 does not require the com-
bination of functions. Nevertheless, our encoding allows it. 
The combination of functions is done though the definition 
of facts for both function and regulators (function/2, 
regulator/3) for all nested functions. When defining a 
nested function, the output may not be a node (node/1).

One may need to encode nested functions as it is 
shown in Fig. 3a. Function Kd requires the definition of 
two auxiliary functions. One can encode this network 
using the same predicates as before. Listing  2 shows a 
possible encoding of function Kd . abd and acd represent 
the first two arguments of function Kd . These two sym-
bols are not nodes and therefore they cannot be visited or 
repaired. However, they still need to be validated. 

Listing 2 ASP encoding of the Boolean function Kd from the Boolean logical graph

in Fig. 3a

0 #base.

1 node(a). node(b). node(c).

2 function(d,2). regulator(d,abd,1). regulator(d,acd,1). % Kd = abd ∨ acd

3 function(abd,1). regulator(abd,a,0). regulator(abd,b,1). % Kabd = ¬a ∧ b

4 function(acd,1). regulator(acd,a,0). regulator(acd,c,0). % Kacd = ¬a ∧ ¬c

Time‑series data
To encode each time-series data set the predicate exp/1 
is used (e.g. exp(tS1)). Predicate obs_vlabel/4 asso-
ciates to each node, time step and time-series data set the 
corresponding observed value (e.g. obs_vlabel(tS1
,c,0,1) where 0 is the value and 1 is the time step). The 
predicate timeStep/1 represents the different columns 
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of the time-series. This predicate is inferred based on 
obs_vlabel/4 (see Listing 4, Line 7). 

Asynchronous dynamics
Since the synchronous updating scheme finds lit-
tle biological support, in this section we consider an 
asynchronous updating scheme during the repair 
operation procedure. We define a method to verify 
the consistency of the model against a time-series data 
set, by visiting all nodes on each time-step. As men-
tioned above, this method uses the iterative capa-
bilities of clingo. The asynchronous updating scheme 
allows only one node to be visited at a time. Therefore, 
in each iteration one node is going to be visited. The 
search ends when all the nodes have been visited in 
each time step and all time steps available in the time 
series have been iterated (i.e. after n iterations, where 
n = number of lines× number of columns in the time-series ). 
Table 3 presents a toy time-series data set for the graph 
shown in Fig. 1, where the order of node visits is repre-
sented with different colours. The example is going to be 
executed 12 times (3 for each node). In order to visit the 
nodes the following rules are used: 

in each time step present in the time-series; (Line 3) the 
regulators must be visited before the node they regu-
late; (Line 4) a node is only visited in the time step ts if 
and only if the same node has been visited in the previ-
ous time step in one of the previous iterations and (Line 
5) a node can only be visited once in each time step. The 
constraint in Line 4 ensures the correct validation of the 
value on the time series given as input.

In terms of consistency checks, it is important to men-
tion that an exception is made for the first visited node 
since no information about its regulators is known (it is 
assumed to be consistent). The search is non-determinis-
tic and the program will choose the path that reduces the 
number of repairs needed (discussed further on).

This implementation allows the dynamics to be 
unrolled only when needed. This procedure avoids hav-
ing the full state transition graph in memory.

Let us consider again the example shown in Table  3. 
The constraint in (Line 4) forces us to visit a node from 
time step 1. However, the constraint in Line 3 forces us 

Listing 3 ASP encoding of the Time-Series in Table 3

0 #base.

1 exp(tS1).

2 obs_vlabel(tS1,a,0,1). obs_vlabel(tS1,a,1,2). obs_vlabel(tS1,a,1,3).

3 obs_vlabel(tS1,b,0,1). obs_vlabel(tS1,b,1,2). obs_vlabel(tS1,b,1,3).

4 obs_vlabel(tS1,c,0,1). obs_vlabel(tS1,c,0,2). obs_vlabel(tS1,c,1,3).

5 obs_vlabel(tS1,d,1,1). obs_vlabel(tS1,d,1,2). obs_vlabel(tS1,d,1,3).

Listing 4 ASP encoding to perform the asynchronous dynamics

0 #step(t).

1 1{visit(P,N,TS,t): node(N),timeStep(TS),exp(P)}1.
2 :-not visit(P,N,TS,_),node(N),timeStep(TS),exp(P).

3 :-visit(P,N1,_,t),regulator(N1,N2,_),not visit(P,N2,_,_), t>1.

4 :-visit(P,N,TS,t), not visit(P,N,TS -1,_),timeStep(TS),timeStep(TS -1).

5 :-visit(P,N,TS,t),visit(P,N,TS,T),T!=t.

6 %Auxiliary definitions

7 timeStep(TS):-obs_vlabel(_,_,_,TS).

The first rule of Listing 4 (Line 1) ensures that exactly 
one node is visited in each iteration. The four next con-
straints ensure that: (Line 2) all nodes must be visited 
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to visit b before a, a before c, and c and d before b. This 
reduces the nodes that can be visited in the first iteration 
since only the first visited node is consistent by default 
(even without visiting its regulators). In this case, it is 
indifferent to visit first any of the nodes without colour. 
Thereupon, the rest of the nodes with time step 0 can be 
visited (represented in blue).

Afterward, nodes d and c have the same value in dif-
ferent sequential time steps, the possible next steps are 
shown in light yellow and green. Choosing between vis-
iting first d or c is irrelevant. However, after visiting d 
in the time step 2 one can visit the node d in the time 
step 3. In this example, we show the path requiring the 
fewest repair operations (see next section), and node b 
has to be visited next (yellow). Visiting b requires the 
application of repair s (changing the Boolean function). 
Since the value of b is the same as before, b will be vis-
ited again. Now, it is possible to visit node a (orange) 
without applying any repair operations (visiting a 
before b would require the application of repair opera-
tion repair n to the function of Ka ). Finally, c (red) will 
be visited and the visiting sequence ends. For a specific 
visitation sequence, for the toy example, see Additional 
file 1: Figure S1.

Consistency
The first line of Listing 5 is used to infer or not cur-
rent_vlabel/3 in the first iteration of the search. 
current_vlabel(P,N,t) expresses that the value 
of N in the iteration t for P is 1. The Lines 3–6 are used 
to define the value of the visited node in this iteration. 
The Lines 3, 4 and 5 represent the correct propagation 
of the values for the functions and, or, and identity, 
respectively. Line 6 ensures the correct propagation of 
the values for an input node. Line 7 updates the cur-
rent values of previously visited nodes. Lines 9–10 
are used to ensure that the value is coherent with 
the observed value from time-series. The concept of 
repair/2 will be discussed further on.

Let us consider again the example shown in 
Table  3. The first iteration causes the inference of 
visit(tS1, b, 1, 1). This in turn could cause the inference 
of current_vlabel(tS1, b, 1) (Line 2). However, this would 
cause the constraint shown in Line 9 to be violated. 
Therefore, current_vlabel(tS1, b, 1) is not going to be 
inferred.

Lines 12–15 are used to propagating the values 
through nested functions. The only difference to the 
previous lines (Lines 2–7) is the fact that they are not 
visited. Therefore, the propagation must happen in the 
same iteration and not based on the value of the previ-
ous iteration.

The value of a node must be consistent with the 
Boolean function associated with it. The consistency 
check of the network, with or without repairs, is made 
with the help of auxiliary predicates. The predicate one-
Sign/4 (Lines 19–22) indicates that a node, influenced 
by its associated function and based on the profile, has 
at least one regulator with the value true/false. The 
rules in the Lines 17–18 ensure that the predicates non-
eNegative/3 and nonePositive/3 are inferred 
when all the regulators of the node have the value true 
and false, respectively.

Above, we consider that the algorithm has already vis-
ited the node b in the first iteration. In the second itera-
tion the algorithm visits node a. As the value of b is 0, it 
is possible to infer: oneSign(tS1, a, 0, 2) (Line 21). This in 
turn, could cause the inference of nonePositive(tS1, a, 2) 
(Line 18).

In order to represent changes in the network the fol-
lowing auxiliary predicates are defined. has_func-
tion/3 represents the presence of a function for a 
given node. Finally, has_influence/4 represents the 
presence of a positive or negative influence on a node. 
These predicates simplify the handling of the repara-
tions caused by the possible repair operations dis-
cussed below. 
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Repair operations
The predicate canRepair/1 indicates the nodes where 
the program can apply repair operations. canRepair/1 
can be inferred by the predicate repairable/1, by 
user input, or, in its absence, the program considers all 
nodes as repairable (Lines 1–2). Note that these rules are 

Listing 5 ASP encoding to check the consistency

0 #step (t).

1 %Current value for nodes

2 {current_vlabel(P,N,1)}:- visit(P,N,_,t),t=1.

3 current_vlabel(P,N,t):- visit(P,N,_,t),t>1,has_function(N,1,t),
noneNegative(P,N,t-1),not repair(function(N,1),_).

4 current_vlabel(P,N,t):- visit(P,N,_,t), t>1 ,has_function(N,0,t),
not nonePositive(P,N,t-1),not repair(function(N,0),_).

5 current_vlabel(P,N,t):- visit(P,N,_,t),t>1,has_function(N,2,t),
oneSign(P,N,1,t-1).

6 current_vlabel(P,N,t):- visit(P,N,_,t),t>1,input(N),
current_vlabel(P,N,t-1).

7 current_vlabel(P,N,t):- not visit(P,N,_,t), t>1,
current_vlabel(P,N,t-1).

8 %Validation of consistency

9 :-visit(P,N,TS,t),current_vlabel(P,N,t),obs_vlabel(P,N,0,TS).

10 :-visit(P,N,TS,t),not current_vlabel(P,N,t),obs_vlabel(P,N,1,TS).

11 %Current propagation of values for nested function

12 current_vlabel(P,N,t):- not node(N),has_function(N,1),
noneNegative(P,N,t),not repair(function(N,1),_),t>1.

13 current_vlabel(P,N,t):- not node(N),has_function(N,0),
not nonPositive(P,N,t), exp(P),
not repair(function(N,0),_),t>1.

14 current_vlabel(P,N,t):- not node(N),has_function(N,2),
oneSign(P,N,1,t),t>1.

15 {current_vlabel(P,N,1)}:- not node(N),exp(P),has_function(N,_,t),t=1.

16 %Auxiliary definitions for validation

17 noneNegative(P,N,t) :- not oneSign(P,N,0,t), oneSign(P,N,1,t).

18 nonePositive(P,N,t) :- oneSign(P,N,0,t), not oneSign(P,N,1,t).

19 oneSign(P,N1,1,t):- function(N1,_),has_influence(N1,N2,1,_),

current_vlabel(P,N2,t).

20 oneSign(P,N1,1,t):- exp(P),function(N1,_),has_influence(N1,N2,0,_), not

current_vlabel(P,N2,t).

21 oneSign(P,N1,0,t):- exp(P),function(N1,_),has_influence(N1,N2,1,_), not

current_vlabel(P,N2,t).

22 oneSign(P,N1,0,t):- function(N1,_),has_influence(N1,N2,0,_),

current_vlabel(P,N2,t).

23 %Auxiliary definitions for network changes

24 has_function(N,S,t) :- function(N,S).

25 has_function(N,1-S,t) :- repair(function(N,S),_),S<2.

26 has_influence(N,M,1-X,t) :- regulator(N,M,X), regulator(N,M,_),
not repair(removeRegulator(N,M),_),
repair(negRegulator(N,M),_).

27 has_influence(N,M,X,t) :- regulator(N,M,X), regulator(N,M,_),
not repair(removeRegulator(N,M),_),

not repair(negRegulator(N,M),_).

only inferred at the beginning of the execution and so no 
information about the iteration is required.

Let us consider again the example in Table  3. In 
this case, it is possible to find a solution if one defines 
repairable(b). However, as we do not know that 
beforehand, all nodes have to be considered.
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For each type of repair the predicate pos/2 is inferred 
if it is possible to apply the repair. Line 3 shows when 
it is possible to switch an or to an and function (and 
vice-versa). The literal repair_s represents the activation 
of repair s. Lines 4 and 5 show the rules to negate and 
remove a regulator, respectively. repair_n and repair_r 
represent the activation of the respective repair opera-
tions. Note that it is impossible to remove all regulators 
(Line 5).

The generation rule in Line 6 allows generating 0 or 
more repairs from the possible repairs found. The ASP 
solver is going to minimise the number of repair opera-
tions applied to the network, through the statement 
shown in Line 7.

Let us consider once again the example in Table 3. In 
this case, it is possible to find all types of repair opera-
tions. It is possible to remove regulator c or regulator d 
(but not both) from function b. Still relating to function 
b, it is possible to switch from an and to an or. Further-
more, it is possible to negate all four regulators. Recall 
that it was necessary to perform a repair operation to 
visit node b in the second time step ( visit(tS1, b, 2, 8) ). 
The program infers repair(function(b, 1), 8) from the list 
of possible repairs. 

Listing 6 ASP encoding of the repair operations

0 #step (t).

1 canRepair(N):-node(N),not repairable(_).

2 canRepair(N):-repairable(N).

3 pos(function(N,S),t) :- repair_s, can_repair(N), function(N,S), S<2.

4 pos(negRegulator(N,M),t) :- repair_n, can_repair(N), regulator(N,M,_).

5 pos(removeRegulator(N,M),t) :- repair_r, can_repair(N),
regulator(N,M,_),regulator(N,L,_), M != L.

6 { repair(R,I) : pos(R,I) }.
7 #minimize { 1, R,I:repair(R,I) }.

Related work
Ostrowski et  al. [9] successfully used ASP to infer net-
works based on time-series data. The objective is to find 
all networks that satisfy the time-series data sets. To 
achieve this goal, all combinations of edges and Boolean 
functions are tested. The considered dynamic allows any 
number of components to be updated at the same time. 
Another approach is to use genetic algorithms [35] to 
optimize Boolean networks from time-series data. These 
authors consider an asynchronous updating scheme to 
generate the dynamics. The training set is a set of time-
series data which the model has to reproduce. Con-
sidering that the original models are large, it becomes 
difficult to reason over these models. With this in mind, 

the objective is to find the smallest possible sub-network 
to describe all the experimental values. However, not all 
nodes can be removed. These nodes are defined by the 
user and can represent key experimental readouts. More-
over, the optimization process tries to maintain the larg-
est possible number of edges, removing only the edges 
that are inconsistent with the time-series data.

Abdallah et  al. [12] implemented an ASP-based tool 
following the discrete formalism called the Process Hit-
ting. The objective was to use an abstraction to model 
large synchronous networks in order to study their prop-
erties. This abstraction is useful when dealing with very 
large networks. The properties inferred with this abstrac-
tion are properties of the original network, avoiding hav-
ing to test them in the original network. However, if a 
behaviour is impossible in the abstraction, nothing can 
be inferred about the real network.

Rocca et al. [21] proposed two possible routes to vali-
date biological networks using different methods. The 
first method discussed uses the Boolean method to val-
idate the consistency of the networks. The method was 
implemented using ASP with an explicit definition of the 
asynchronous dynamics. The ASP encoding proposed 

by Rocca et  al. [21] to encode Boolean functions does 
not scale correctly. The encoding requires the definition 
of specific rules for each function with different arity. 
Therefore, every time a function with a different arity is 
required, new rules need to be added. As the solution 
proposed by Rocca et  al. [21] uses an STG [22], it con-
sumes an unnecessary amount of memory given that 
the complete dynamics is always defined. When con-
sidering this method, the authors do not propose any 
type of repair operations. Only when considering the 
Thomas method [36], the authors proposed repair opera-
tions. The latter add threshold parameters to explain 
the dynamics of the network. The repair operations are 
based on changing the predicted properties to guarantee 
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consistency with all time-series data. The work consider-
ing the Thomas method was later extended with an ASP-
based automatic tool to detect and repair inconsistencies 
in a biological model [19].

Recently, Merhej et  al. [17, 18] successfully modelled 
biological networks in ASP using a synchronous updating 
scheme. In this work, the authors also proposed to repair 
a model resorting to the addition and removal of regula-
tors, based on a set of pre-defined rules of thumb.

Method evaluation
In this section, we evaluate and compare our method 
with the one recently proposed by Merhej et al. [18], the 
synchronous updating scheme.

The authors consider five models and their respective 
time-series data sets: Arabidopsis [6], Budding Yeast [37], 
C. elegans [38], Fission Yeast [39], and Mammalian [40] 
containing 10, 11, 8, 9 and 10 nodes, respectively. The 
numbers of time steps vary from 10 to 13. We chose a 
default function for these models where a node is active 
whenever there is at least one activator and no inhibi-
tors present. This approach is similar to the activation 
rule proposed by Merhej et  al. [18], except that, in our 
case, the updating constraints are more precise, since 
they are expressed by a Boolean function. The differ-
ence lies in the case where, at a given time step, a gene is 
active and there are no activators and no inhibitors. The 
Boolean function states that on the following time step, 
the gene will become inactive, and Merhej et  al. activa-
tion rule states that the gene stays active, since there are 
no inhibitors.

The tests were executed using the runsolver tool [41] 
with a time out of 600 s and a limit of 3 Gb of memory. 
The implementation was run on a computer running 
Ubuntu 14, with 24 CPUs at 2.6 GHz and 64 Gb of RAM.

Since our method considers precise Boolean func-
tions, we would expect it to be slower due to the number 
of possible functions considered for each model compo-
nent. However, Table 4 shows that our approach is faster 
by at least two orders of magnitude than the approach 
proposed by Merhej et  al. [18], with thumb rules. The 
solutions found by our method also have fewer repairs 
with respect to the original model. The method proposed 
by Merhej et al. considers additional constraints like the 
network diameter that may play a role in the running 
time and minimality of the solutions.

Next, to test the system capable of dealing with miss-
ing entries in the time-series data set, for each spe-
cies (Arabidopsis, Mammalian, Fission, C. elegans, and 
Budding) we generated 10 files. From each file, values 
were randomly removed, following an uniform distri-
bution. These incomplete data sets were tested using 
our approach with the stopping criteria of reaching an 

optimal solution. However, it is possible that the first 
optimal solution found is not the closest solution to the 
original data sets. With this in mind, Table 5 shows the 
percentage of incorrect values found when deleting 10%, 
20% and 30% of the data present on the time-series. A 
value for a node is incorrect if it is not the same as the 
value in the original time series. As expected, as we 
increase the number of deleted values, it gets harder to 
correctly recover the original values. For example, in the 
Arabidopsis data set, the difference between the num-
ber of incorrect values when removing 10% and 20% is 
smaller than when removing 20% and 30%. Note that the 
percentages shown on Table 5 are based on the number 
of deleted values and not on the complete data set.

Since removing values may change the number of 
repairs needed, which may influence the prediction 
results, Table 6 shows the number of files for which there 
was a better solution in terms of repair operations.

When considering the C. elegans data sets with 30% of 
missing values, almost all instances found a better solu-
tion (8 out of 10). The C. elegans data set with a higher 
number of incorrect values is also the data set for which 
the algorithm improves better the solution, in terms of 
cardinality.

Also, due to the existence of different solutions given 
by the tool, we studied what all of them had in com-
mon. So, for each of the species, the tool was run until 
the first optimal solution was found, keeping also all the 
non-optimal solutions found previously. For each species, 
we compared these solutions, in order to find the most 
common repairs, which would represent the most essen-
tial operations to be made to the model. Keeping in mind 
that the results may be influenced by the search made by 
the ASP solver since we do not enumerate all answers, 
Table  7 shows the top 10 most common repairs in the 

Fig. 4  The average execution time to find the first optimal solution. 
Average execution time to find the first optimal solution to the 
networks with 10 nodes and with the number of arguments 
following the poison distribution with lambda 1 (and 3 time steps)
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solutions obtained. The knowledge of the most com-
mon repairs may act as an additional criterion, providing 
some clues to the modeller to choose between different 
repaired models.

Finally, the tool described in this document allows 
the user to define a list of nodes whose functions can be 
repaired. In order to test this feature, lists of different 
sizes were randomly generated. The lists contained 20%, 
30%, 50%, 70% and 90% of the nodes from the model. For 
each of these list sizes 50 different sets of nodes were gen-
erated. Note that for lists containing 90% of the nodes the 
number of different combinations can be lower than the 
number of generated files. Since the considered updating 
scheme is synchronous and their time-series matrices are 
complete (no missing values), no propagation of values 
happens. For this reason, the repairs found are always the 
same (i.e. affect the same node). With these conditions, 
when it is possible to repair the network, the solution is 
the same as for the complete network. For all tests, the 
execution time was below 1 s. The percentage of satisfi-
able instances varies with the size of the list as one can 
see in Table 8. As expected, the percentage of satisfiable 
instances found increases when the size of the list grows. 
This table also shows the minimum number of inconsist-
ent nodes which need to be in the list in order to repair 
the network. For example, for the Budding Yeast network 
the node lists with less than 7 nodes will never be able to 
repair the network since this network has 7 inconsistent 
nodes. This functionality allows the modeller to repair a 
network, focusing the repair only on a small part of the 
network.

Table 1  Possible repairs for  the  function A ∧ B and  which 
repairs are used to achieve them

Function Repairs used

¬A ∧ ¬B n

¬A ∧ B n

A ∧ ¬B n

A ∨ B s

¬A ∨ B s,n

A ∨ ¬B s,n

¬A ∨ ¬B s,n

A r

B r

¬A r,n

¬B r,n

(A ∨ B) ∧ (¬A ∨ ¬B) –

(A ∧ B) ∨ (¬A ∧ ¬B) –

true –

false –

Table 2  The truth table for Kd before  and  after removing 
regulator a (repair r)

Italic values represent the changes in the truth table

A B C Kd(X) = (¬a ∧ b) ∨ (¬a ∧ ¬c) Kd(X) = b ∨ ¬c

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 0 0

1 1 0 0 1

1 1 1 0 1

Table 3  A possible order of visits by the method on a toy time-series data

1 2 3 function repaired function order of visits

a 0 1 1 Ka = b

b 0 1 1 Kb = c ∧ d Kb = c ∨ d

c 0 0 1 Kc = a

d 1 1 1 input

On the right are thefunctions that needed to be repaired

Table 4  Execution time, in seconds, for different models with the number of required repairs in brackets

The solution Merhej et al. uses additional rules of thumb to validate the network

Arabidopsis C. elegans Budding Fission Mammalian

Our solution (rsn) 0.056 (1) 0.083 (4) 0.232 (8) 0.089 (3) 0.097 (6)

Merhej et al. [18] 155.224 (5) 3.369 (4) 600 (11) 20.068 (4) 600 (11)



Page 13 of 16Lemos et al. Algorithms Mol Biol            (2019) 14:9 

Asynchronous dynamics
After checking that the program was able to repair mod-
els using the synchronous updating scheme, we randomly 
generated instances of time-series data to evaluate the 
program when considering an asynchronous updating 
scheme. The motivation to consider an asynchronous 
dynamics is the fact that multiple components in the 
time-series data may not be acquired at the same time 
points. This relaxes the synchronism between compo-
nents, therefore increasing the search space considerably.

Characterization of the data sets
The randomly generated instances were separated into 
different categories in order to evaluate the scalability of 
the proposed solution. First, the model and the respec-
tive functions were generated through a script that cre-
ates random GINsim models (available at https​://githu​
b.com/ptgm/BoolN​etR2G​INsim​). With this script it was 
possible to generate different models with different num-
bers of components (10, 20, 25, 50 nodes) and the arity 
of each function would follow Poisson distribution (with 
lambda parameter3 1, 2 and 4). The type of the function 
(and, or) was randomly generated following an uniform 
distribution. The data sets were produced by running the 
implemented ASP program. Since these data sets (with 
different number of time steps 2, 3, 5, 10 and 15) are by 
default consistent with the model, we introduced some 
random changes in the data, considering 5% of changed 

values (randomly generated based on the uniform 
distribution).

Results
Tests with 100 or more nodes, even with only two-time 
steps and a lambda value of 1, are difficult to run within 
the imposed time out, since just the propagation of val-
ues for the network takes on average 500 s.

All executions that did not time out found an opti-
mal solution without needing any repair operations, 
i.e. only by choosing an order of visit. As one can see in 
Fig. 4, repairs r and s are faster since they do not need to 
change the structure of the network. Negating a regulator 
(repair n) is slower than applying repair r since the pro-
gram internally adds new edges and nodes when applying 
this repair, which increases the search space.

Table 9 shows the CPU time required to find an opti-
mal solution using repair s. One can see that with a 10 
component model, it is relatively fast to obtain a solu-
tion even for a large number of time steps. Expectedly, 
the growth in the number of components is accompanied 
by an increase in the execution time. For example, it is 
impossible to repair the network within the time limit 
when considering 50 components and 5 time steps. With 
more than 50 components, the search space makes it 
even harder to repair a model within the time limit.

The overhead introduced by the Quine–McCluskey 
minimization algorithm is mostly constant throughout 
the different tests. However, when one looks at it from the 
point of view of the percentage of time spent by the tool 
it can be seen that it depends on the size of the network. 
For the tests with two-time steps and with 10 nodes, 
this percentage is around 15%, while with the tests of 50 
nodes (still with two-time steps) the percentage is around 
1%. Moreover, the weight of the minimization algorithm 
decreases when the number of time steps increases, since 
the program spends more time solving the network with 
functions having the same level of complexity. So, the 
minimization algorithm adds little overhead for normal 
size networks, which is a good price to pay for having a 
normalized input with minimal functions.

Conclusions and future work
In this work, we proposed an ASP-based tool capable of 
repairing the logical functions of a Boolean logical model, 
in order to make it consistent with a (set of ) time-series 
data sets. The extension to multivalued logical models 
would be straightforward by applying a Boolean mapping 
[14].

The proposed tool considers a specific input and output 
(boolSim format), which can be obtained from SBML-
qual [26] or other formats through the bioLQM library 
(https​://githu​b.com/colom​oto/bioLQ​M).

Table 5  Prediction rate when deleting 10%, 20% and 30% 
of the time-series

Percentage of errors over deleted values

Arabidopsis C. elegans Budding Fission Mammalian

10% 1 22 10 10 14

20% 0.5 12 9 17 18

30% 27 14 26 5 20

Table 6  The number of  new optimal solutions found 
when  the  time-series has  10%, 20% and  30% of  missing 
values

Number of new optimal solutions

Arabidopsis C. elegans Budding Fission Mammalian

10% 1 3 0 0 2

20% 1 4 1 0 5

30% 2 8 1 0 5

3  The lambda parameter represents the average number of events in one 
interval.

https://github.com/ptgm/BoolNetR2GINsim
https://github.com/ptgm/BoolNetR2GINsim
https://github.com/colomoto/bioLQM
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The tool was able to find an optimal solution for all 
considered models, showing a significant increase in per-
formance when compared to the ASP encoding proposed 
by Merhej et al. [18].

We also created data sets for all time-series with 
increasing percentages of missing values. We show that 
the method is robust, being capable of verifying the 
model consistency and retrieving a repaired model even 

with 30% of missing values. We could also retrieve the 
most common repair operations, thus providing the 
modeller with additional information to choose among 
the retrieved solutions.

Regarding the extension for an asynchronous search, 
we show that the running time is still acceptable consid-
ering the current model sizes. However, one could limit 
the asynchrony between components by adding a sliding 

Table 7  Most common repair operation for the five networks

rEdge stands for removing an edge, reg changing the sign of regulator, funcAND/funcOR changing the function

Arabidopsis C. elegans Budding Fission Mammalian

Repair % Repair % Repair % Repair % Repair %

reg(g7,g1) 100.00 rEdge(g2,g2) 100.00 rEdge(g11,g11) 100.00 rEdge(g1,g3) 93.33 rEdge(g4,g3) 100.00

reg(g9,g9) 61.90 reg(g6,g5) 68.75 rEdge(g4,g4) 100.00 rEdge(g6,g3) 86.67 rEdge(g4,g4) 100.00

reg(g4,g3) 57.14 rEdge(g4,g5) 62.50 rEdge(g7,g10) 100.00 rEdge(g7,g3) 86.67 rEdge(g9,g8) 100.00

reg(g10,g7) 57.14 reg(g3,g7) 62.50 rEdge(g7,g3) 100.00 rEdge(g9,g3) 83.33 rEdge(g2,g6) 98.08

reg(g7,g7) 52.38 rEdge(g5,g5) 56.25 rEdge(g7,g7) 100.00 rEdge(g9,g2) 73.33 rEdge(g2,g4) 96.15

rEdge(g2,g9) 47.62 reg(g7,g6) 56.25 rEdge(g8,g8) 100.00 rEdge(g4,g3) 70.00 rEdge(g1,g10) 94.23

reg(g6,g4) 47.62 rEdge(g5,g7) 50.00 rEdge(g1,g2) 97.30 rEdge(g6,g2) 70.00 rEdge(g5,g7) 94.23

reg(g7,g9) 47.62 funcAND(g2) 43.75 rEdge(g1,g5) 97.30 rEdge(g9,g7) 92.31

funcAND(g5) 43.75 rEdge(g7,g9) 97.30

Table 8  Percentage of satisfiable instances and number of repairs needed to return consistency, for the five synchronous 
networks, considering different sizes of the repairable nodes list

The first column represents the percentage of repairable nodes in relation to the network size. For each list size, there are 50 randomly generated lists. The number of 
inconsistent nodes in each network is also present

Arabidopsis C. elegans Budding Fission Mammalian

20%

 %Satisfiable instances 10 0 0 0 0

 #Repair 1

 Repairable node list size 2 1 2 1 2

30%

 %Satisfiable instances 36 0 0 0 0

 #Repair 1

 Repairable node list size 3 2 3 2 3

50%

 %Satisfiable instances 58 2 0 4 6

 #Repair 1 4 3 6

 Repairable node list size 5 4 5 4 5

70%

 %Satisfiable instances 72 6 2 4 24

 #Repair 1 4 8 3 6

 Repairable node list size 7 5 7 6 7

90%

 %Satisfiable instances 92 10 4 10 74

 #Repair 1 4 8 3 6

 Repairable node list size 9 7 9 8 9

Network size 10 8 11 9 10

#Inconsistent nodes 1 4 7 3 5
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window of size k, where the latest visits of all components 
must be inside the window. Here, a component would 
be allowed to be updated asynchronously as long as its 
visiting time of any two nodes does not differ by more 
than k. The introduction of such a window would limit 
the search space and decrease the running times for the 
asynchronous search.

The tool also uses the well-known algorithm of Quine–
McCluskey to minimize the Boolean functions, thus 
reducing the search space of possible repair operations. 
We also show that the minimization algorithm does not 
have a significant impact on the CPU time of asynchro-
nous runs, especially with a larger number of time steps 
and nodes.

As future work, we propose to reduce the search space 
by removing symmetries when considering an asyn-
chronous updating scheme. In other words, by choosing 
which nodes to visit, one can avoid testing concurrent 
paths reaching the same state. This could help improve 
the execution time for larger networks when more itera-
tions are required.

Additional file

Additional file 1: Figure S1. Visiting Sequence. One of many possible vis-
iting sequence performed by the methodwhen considering an asynchro-
nous updating scheme. The green (red) colour represent theassignment 
of a node to the value true (false). This Figure complements the content of 
Table3, choosing a specific visiting order.
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