
Lemos et al. Algorithms Mol Biol (2019) 14:9
https://doi.org/10.1186/s13015-019-0145-8

RESEARCH

Repairing Boolean logical models
from time‑series data using Answer Set
Programming
Alexandre Lemos*  , Inês Lynce and Pedro T. Monteiro

Abstract 

Background:  Boolean models of biological signalling-regulatory networks are increasingly used to formally describe
and understand complex biological processes. These models may become inconsistent as new data become avail-
able and need to be repaired. In the past, the focus has been shed on the inference of (classes of) models given an
interaction network and time-series data sets. However, repair of existing models against new data is still in its infancy,
where the process is still manually performed and therefore slow and prone to errors.

Results:  In this work, we propose a method with an associated tool to suggest repairs over inconsistent Boolean
models, based on a set of atomic repair operations. Answer Set Programming is used to encode the minimal repair
problem as a combinatorial optimization problem. In particular, given an inconsistent model, the tool provides the
minimal repairs that render the model capable of generating dynamics coherent with a (set of) time-series data set(s),
considering either a synchronous or an asynchronous updating scheme.

Conclusions:  The method was validated using known biological models from different species, as well as synthetic
models obtained from randomly generated networks. We discuss the method’s limitations regarding each of the
updating schemes and the considered minimization algorithm.

Keywords:  Biological regulatory networks, Boolean functions, Model repair, (A)synchronous dynamics, Answer Set
Programming

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Computational biology plays a crucial role in the modern
understanding of biology itself [1]. In particular, mod-
elling helps to build systematic representations of bio-
logical systems, that can be used to simulate and make
predictions in silico. However, most biological models
are manually defined requiring a great amount of effort
by the modeller. Also, many computational models can
coherently explain the same time-series data set, and
consequently, different modellers are likely to reach dif-
ferent models given the same data.

Models are continuously updated as we gather new
information about particular biological processes. This

leads to a continuous reassessment of the model consist-
ency and its possible revision to accommodate both pre-
vious and newly acquired data. Hence, it is important to
reduce the difficulty of this task by providing computa-
tional tools that allow the representation of models and
further to reason over them.

This manuscript focus on signalling-regulatory net-
works, composed by regulatory components represent-
ing the expression level of genes or the activity of their
corresponding proteins. Many mathematical modelling
formalisms can be considered to represent the model
evolution over time, such as Petri nets [2], piecewise-
linear differential equations [3], or a logical formalism
[4]. In the Boolean logical formalism [5–7], nodes are
represented through Boolean variables denoting biologi-
cal components and edges denote regulatory interactions
between components. The set of all possible component

Open Access

Algorithms for
Molecular Biology

*Correspondence: alexandre.lemos@tecnico.ulisboa.pt
INESC‑ID/Instituto Superior Técnico, Universidade de Lisboa, Rua Alves
Redol 9, 1000‑029 Lisbon, Portugal

http://orcid.org/0000-0002-3876-1011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0145-8&domain=pdf

Page 2 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

valuations defines the state space of the system, and the
evolution of the level of activity of a given component is
described by logical functions combining the values of
the regulators of the component. Additionally, we con-
sider that the model dynamics can be generated con-
sidering either a synchronous or asynchronous update
scheme.

When modelling biological systems, there are three
main problems to be considered: (i) inferring the network
topology based on data [8–10]; (ii) reasoning over the
properties of a model [11, 12]; and (iii) repairing a model
based on new data [13]. Here, we address the latter, while
considering the logical formalism using Answer Set Pro-
gramming (ASP) and focusing on the Boolean case. Note
that it is possible to represent a multivalued model using
only Boolean variables [14]. This work proposes the use
of ASP to check the consistency and repair Boolean mod-
els of signalling-regulatory networks considering mul-
tiple time-series data sets, in the context of either the
synchronous or asynchronous update scheme. Also, we
consider that the structure of the original network can-
not be modified during the model repair.

An increasing number of references can be found in
the literature with the successful application of ASP to
model and reason over biological networks [12, 15–21].
In comparison with other problem solving paradigms,
the ASP declarative language is easy to model and does
not require the development of sophisticated algorithms.

This paper is organized as follows. The next section
introduces the necessary background on logical models
and the application of ASP for the revision of Boolean
logical models. Afterward, the implementation of the
repair method using ASP is described. “Method evalua-
tion” section presents the obtained results, and the last
section provides some conclusions and future work.

Preliminaries
In this section, we introduce the required definitions
concerning logical formalism and ASP. We then review
the literature on the use of ASP for the model repair
problem.

Biological models are formal representations of com-
plex biological processes. In this work, the formal repre-
sentation uses a logical regulatory graph.

Logical regulatory graphs
A Boolean logical regulatory graph is defined by:

•	 a set of n regulatory components G = {g1, . . . , gn} ,
where each component is associated to a Boolean
variable representing the level of expression or activ-
ity of the component;

•	 a set of signed directed edges E, where (gi, gj) ∈ E
with i, j ∈ {1, . . . , n} denotes a regulatory activation
(resp. inibition), when the associated sign is positive
(resp. negative), between components gi and gj , i.e., gi
is a regulator of (influences) gj;

•	 to each component gi there is an associated logi-
cal regulatory function, Ki : B

n → B where
B = {false,true} , which defines its value based
on the value of its regulators;

•	 the value of a component gi at time t is given by:
gti = Ki(g

t−1
1 , . . . , gt−1

n) . Components without regu-
lators are denoted as inputs and have constant values
(either true or false).

An example of a Boolean logical regulatory graph is
shown in Fig. 1. The network G has four nodes {a, b, c, d}
and four edges with an associated positive sign.

A logical regulatory function can be defined by a
combination of two basic Boolean functions (and, or),
describing the evolution of a given component over time.
The dynamics of signalling-regulatory networks can be
represented by a state transition graph (STG) [22]. Each
node, in the STG, is a state where all regulatory compo-
nents have a specific expression level. The edges repre-
sent changes in the expression of one or more regulatory
components.

At each time step, the set of components that may
be updated simultaneously depends on the considered
updating scheme, influencing the system evolution (see
[23] for details). In the synchronous updating scheme,
each state has at most one successor, with all components
being updated at the same time. In the asynchronous
case, each state has as many successors as the number of
components called to update, exactly one component per
successor [24]. Due to the associated non-determinism, it
is computationally hard to generate the full asynchronous
dynamics. Alternatively, a stochastic exploration can be
performed by choosing randomly one successor at each
time step [25]. If no component is called to be updated at
a given state, then the state is denoted a stable state.

A time-series data set consists of a set of values, rep-
resenting the expression level, for the elements of G in

ab

c

d

Fig. 1  An example of a logical regulatory graphs. A logical regulatory
graph with four nodes and four edges with positive sign associated

Page 3 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

different time steps. Note that not all elements of G need
to have a value in all time steps. A biological model is said
to be consistent with the time-series data if and only if the
value of gi at time t is given by gti .

A repair operation is a modification to the biological
model, in order to produce a new consistent model.

Boolean functions
The specification of the logical functions is typically man-
ually performed by a modeller using any combination of
the logical operators: and, or and not. To avoid obtain-
ing different repairs for distinct, but equivalent, logical
functions, a standard format to describe each function is
required. In this work, we assume these functions to be
encoded in Disjunctive Normal Form (DNF), i.e., a dis-
junction (or) of conjunctions (and) of regulators, where
each regulator can be negated (not). Here, we adopt
the model specification format used by boolSim (https​
://www.vital​-it.ch/resea​rch/softw​are/boolS​im) [24]. The
Logical Qualitative Models of biological networks library
(bioLQM—https​://githu​b.com/colom​oto/bioLQ​M) can
be used to import/export models specified in different
formats, including SBML-qual [26].

In general, the number of possible Boolean functions
that can be used to repair a function increases exponen-
tially with the number of regulators of the target compo-
nent, following the expression 22n where n is the number
of arguments of the function [27]. We reduce this search
space by considering only monotone non-degenerated
Boolean functions. This means that each regulator always
appears with the same sign (inhibition/activation) in the
clauses of the function, i.e., a regulator cannot have a dual
role, and that all regulators in a function play a role in
changing the value of that function in at least one state
of the STG.

Answer Set Programming
In this section, a short overview of Answer Set Pro-
gramming (ASP) syntax and semantics is given (for
an in-depth description see [28–30]). ASP is a form of
declarative programming using logical semantics [29]
which has been successfully applied to model biological
networks [11–13, 15, 16, 20, 21]. An ASP program is a
finite set of rules and looks very similar to a Prolog pro-
gram. A rule r has a head and a body; it is written in the
following form:

where ai ( 0 ≤ i ≤ m ≤ n ) is a ground atom. A literal is an
atom or its (default) negation ∼ ai . The left side of ← is
the head of the rule and so the head of r is:

The right side is the body, i.e. the body of the rule r is:

a0 ← a1, ..., am,∼ am+1, ...,∼ an

head(r) = a0.

The body of the rule can be decomposed as follows
body(r) = body(r)+ ∪ { a|a ∈ body(r)−} where

body(r)+ = {a1, ..., am} and body(r)− = {am+1, ..., an}.
If the head of the rule is empty then r is called a con-

straint. The constraints act as filter to possible solutions.
r is called a fact if body(r) = ∅ . A ground (i.e., variable-
free) instantiation of a program P is obtained by sub-
stituting all the variables by elements in the Herbrand
universe.1 A (Herbrand) model is a set of (true) ground
literals such that all the logical rules are satisfied (rules
and default negation are considered as implications and
classical negation, respectively). The solutions for a given
problem, encoded using ASP, are called answer sets.
A model A is an answer set iff A is the subset-minimal
model of the reduct:

In ASP there are different types of rules that simplify the
writing of a program. Examples include: cardinality con-
straints, choice rules, weighted rules, aggregation rules,
optimization statements and conditional literals [28]. The
choice rules are written as follows:

where 0 ≤ m ≤ n ≤ o . If the body is satisfied, then
any subset of the atoms a0 to am can be included in the
answer sets.

The choice rule can be bounded with at-least (lower
bound) and at-most (upper bound) constraints which will
be applied in the proposed implementation.

When modelling a problem into ASP, it is possible to
separate the logic model from the data. The data corre-
sponds to facts, specific to each instance of the problem.
The logic model corresponds to the rest of the encod-
ing which is composed of rules (called program). In this
case, the so-called program encodes the properties and
constraints of a consistent Boolean network and the facts
represent the network per se (nodes, edges, functions,
observed values).

In order to reason over evolving data some ASP solvers,
such as clingo [32], provide iterative capabilities merg-
ing both grounding and solving parts of the solver. The
ASP program is separated into three sections by the key-
words: # base, # step(t) and # check(t). # base is used to
specify static rules which do not depend on the iteration
step t (for example the observed values can be defined in
this section). # step(t) is used to specify rules which are

body(r) = {a1, ..., am,∼ am+1, ...,∼ an}.

{head(r) ← body(r)+ | r ∈ P, body(r)− ∩ A = ∅}.

{a0; . . . ; am} ← am+1, . . . , an,∼ an+1, . . . ,∼ ao

1  The Herbrand universe H of program P is the set of all ground terms, which
can be constructed by the constants and function symbols from this program.
For more details see [31].

https://www.vital-it.ch/research/software/boolSim
https://www.vital-it.ch/research/software/boolSim
https://github.com/colomoto/bioLQM

Page 4 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

inferred differently depending on t. Finally, the rules in
the section # check(t) are used as the stopping criterion.
The iterative nature reduces the grounding problem [33],
since it only grounds based on the rules/head literals of
the previous iterations and not of the whole program.
Therefore, the grounded program is only part of the full
STG.

Repairing inconsistent models using ASP
In this work, we developed a tool to repair inconsistent
models implemented in C++. The tool encapsulates an
ASP solver (clingo [32] solver version 5.1.0) providing the
user with an easy way to generate the ASP facts. Figure 2
gives an overview of the tool main components. The tool
receives a model in the DNF format and one or more
time-series as matrices. Not all values have to be present
in the time-series matrices. If not present, the missing
values will be computed according to the chosen dynam-
ics. As the tool repairs models with different updating
schemes, it is required to specify the preferred updating
scheme (steady state, asynchronous or synchronous).
The user can also choose which type of repairs is desir-
able by combining the atomic repair operations, making
sure the result meets the user requirements. Finally, the
modeller can also provide a list of repairable nodes where
the problem may reside, reducing the search space and
potentially the execution time. The output of the tool is
all the cardinality minimal repaired models. These mod-
els are exported in DNF more precisely in the boolSim
format. Note that, if the process is interrupted before
finding the optimal solution, then the current best solu-
tion will be returned. The tool does not guarantee to
return models with minimized functions since the mini-
mization algorithm is not executed after repairing the
model.

Atomic repair operations
In this section, we describe the proposed method to cor-
rect inconsistent functions from a set of time-series data
sets. We start by defining the following set of atomic
repair operations:

n:	� Regulator negation—where a regulator can be
changed from an inhibitor to an activator, and
vice-versa;

s:	� Operator substitution—changing a Boolean opera-
tor, from and to an or, and vice-versa;

r:	� Regulator removal—all occurrences of a given
regulator are removed from the function. To pre-
vent the creation of components with no regula-
tors (i.e. inputs), the removal of the last regulator is
forbidden.

To illustrate the use of proposed atomic repair opera-
tions, let us consider a simple model and the correspond-
ing time-series data set at a steady state, represented in
Fig. 3a. This model is inconsistent with the time-series
data set since the function Kd cannot explain the value
of component d. The model can be corrected by differ-
ent sets of repair operations. The examples are shown
in Fig. 3 correspond to different cardinality minimal
solutions.

Figure 3b–d show the network and the corrected func-
tions after applying the r, n and s repair operations,
respectively.

Coverage and minimization of Boolean functions
The proposed atomic repair operations cover only a few
of all possible Boolean functions. Combining repairs will
allow obtaining more complex repair operations. Never-
theless, the whole space of Boolean functions is still not

Quine-McCluskey

model.net

observations

repaired
models.net

facts.lp

Grounder

Solver

clingo

Fig. 2  Overview of the tool. The different components of the proposed tool

Page 5 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

completely covered since these repairs depend on the
structure of the function. In particular, when combin-
ing repairs of the types r, n and s for a two-argument
function, a total of twelve functions are covered (all basic
Boolean functions, plus one of the derived Boolean func-
tions, the implication). Only the functions xor (exclusive
or), nxor (the equivalence function), true and false
are not achievable by these repairs. This is somehow
expected since both xor and nxor are non-monotone
functions. Table 1 shows the different combinations
of repairs needed to convert the particular function
f = A ∧ B into a different one (whenever possible).

Since it is possible to have different structures repre-
senting equivalent Boolean functions, we use the Quine–
McCluskey algorithm [34] to obtain the prime implicants
of a function.2 This ensures that all functions are mini-
mized and presented in the same Disjunctive Normal
Form (DNF), regardless of the initial form in which the
function was expressed in. In particular, equivalent func-
tions will share the same prime implicants and therefore
share the same repairs.

Since the repair operations depend on the structure of
the function, the resulting function may depend on the
initial structure of the function. Additionally, the same

Boolean function can be expressed in different ways,
which justifies the importance of normalizing the input.

Choosing the best repair operation
When the modeller defines a function for a given com-
ponent, she has a particular network structure in mind,
even if the modeller is not sure about the exact function.
Here, the method searches for the cardinality minimal
operation, i.e. the best repair is considered to be the one
that requires fewer repair operations.

The cardinality minimal repair is not necessarily the
repair that has less impact on the truth table. The con-
sideration of the impact on the truth table would add too
much overhead since it would require to enumerate the
complete truth tables of all possible functions. For exam-
ple, the transformation from the model in Fig. 3a into
the model in Fig. 3b (removing a from the function Kd )
causes a compaction of the truth table. Considering the
original truth table (shown in Table 2) for the function,
the output has changed in 3 lines out of 8 possible lines
(the italic numbers in Table 2). Furthermore, the function
can now be minimized, causing compaction of the truth
table in 4 lines. This is easy to check if one knows all the
values of the table. In this work, the truth tables of each
function are not computed since their size grows expo-
nentially with the number of arguments of the function.
Additionally, the repair may lose the intended network

a Original Model b Repair r

Kd(X) = (¬a ∧ b) Kd(X) = b ∨ ¬c
∨ (¬a ∧ ¬c)
Ka(X) = a Ka(X) = a
Kb(X) = b Kb(X) = b
Kc(X) = c Kc(X) = c

c Repair n d Repair s

Kd(X) = (a ∧ b) Kd(X) = (¬a ∨ b)
∨ (a ∧ ¬c) ∨ (¬a ∧ ¬c)
Ka(X) = a Ka(X) = a

Kb(X) = b Kb(X) = b

Kc(X) = c Kc(X) = c

Fig. 3  Cardinality minimal solutions for steady state. Model of a signalling-regulatory network at steady state before and after repair operations. The
repair operations shown are some of the cardinality minimal solutions. Green (red) nodes represent the assignment of a node to the value true
(false)

2  Used minimization algorithm from https​://githu​b.com/pfpac​ket/Quine​
-McClu​skey.

https://github.com/pfpacket/Quine-McCluskey
https://github.com/pfpacket/Quine-McCluskey

Page 6 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

structure, as shown in our toy example (from Fig. 3a to
Fig. 3b).

Model consistency check
The ASP implementation presented in this paper uses the
incremental solving capabilities of clingo to perform an
asynchronous search. Therefore, some predicates need
to have an argument t, representing the iteration where
they are inferred. The encoding described in this section

repairs a Boolean network with an asynchronous updat-
ing scheme (a simpler version could be applied to steady
state and synchronous updating schemes).

Network definition
In this section, the encoding of the Boolean logical reg-
ulatory graph is explained. Note that, the predicates
explained in this section are defined in the #base sec-
tion of the program. Therefore, they do not depend on t.

Consider Fig. 1 to illustrate the use of ASP. Each node
of G is encoded with predicate node/1. For example,
the literal node(a) represents the specific node "a",
while literal node(N) is a generic representation of any
node (N is a variable). A node without regulators is called

an input node and it is represented by the predicate
input/1.

The Boolean function Ki associated with the node
gi is represented through the combination the three
basic Boolean functions. These functions can be
encoded—or, and and identity—through the predi-
cate function/2, which associates the output node
of the function with the type. The type is represented

by the values 0 (or), 1 (and) and 2 (identity) (e.g.
function(b,1)). The output node is unique and
therefore it is used to identify the arbitrary number of
arguments of the function. The predicate regula-
tor/3 associates the function with a regulator. A regu-
lator has a sign associated (inhibition/activation) (e.g.
regulator(d,b,1)).

The encoding for regulatory graph displayed in Fig. 1 is
presented in Listing 1.

Listing 1 ASP encoding of the Boolean logical regulatory graph in Fig.1

0 #base.

1 node(a). node(b). node(c). node(d).

2 function(a,2). regulator(a,b,1). % Ka = b

3 function(b,1). regulator(b,c,1). regulator(b,d,1). % Kb = c ∧ d

4 function(c,2). regulator(c,a,1). % Kc = a

The example shown in Fig. 1 does not require the com-
bination of functions. Nevertheless, our encoding allows it.
The combination of functions is done though the definition
of facts for both function and regulators (function/2,
regulator/3) for all nested functions. When defining a
nested function, the output may not be a node (node/1).

One may need to encode nested functions as it is
shown in Fig. 3a. Function Kd requires the definition of
two auxiliary functions. One can encode this network
using the same predicates as before. Listing 2 shows a
possible encoding of function Kd . abd and acd represent
the first two arguments of function Kd . These two sym-
bols are not nodes and therefore they cannot be visited or
repaired. However, they still need to be validated.

Listing 2 ASP encoding of the Boolean function Kd from the Boolean logical graph

in Fig. 3a

0 #base.

1 node(a). node(b). node(c).

2 function(d,2). regulator(d,abd,1). regulator(d,acd,1). % Kd = abd ∨ acd

3 function(abd,1). regulator(abd,a,0). regulator(abd,b,1). % Kabd = ¬a ∧ b

4 function(acd,1). regulator(acd,a,0). regulator(acd,c,0). % Kacd = ¬a ∧ ¬c

Time‑series data
To encode each time-series data set the predicate exp/1
is used (e.g. exp(tS1)). Predicate obs_vlabel/4 asso-
ciates to each node, time step and time-series data set the
corresponding observed value (e.g. obs_vlabel(tS1
,c,0,1) where 0 is the value and 1 is the time step). The
predicate timeStep/1 represents the different columns

Page 7 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

of the time-series. This predicate is inferred based on
obs_vlabel/4 (see Listing 4, Line 7).

Asynchronous dynamics
Since the synchronous updating scheme finds lit-
tle biological support, in this section we consider an
asynchronous updating scheme during the repair
operation procedure. We define a method to verify
the consistency of the model against a time-series data
set, by visiting all nodes on each time-step. As men-
tioned above, this method uses the iterative capa-
bilities of clingo. The asynchronous updating scheme
allows only one node to be visited at a time. Therefore,
in each iteration one node is going to be visited. The
search ends when all the nodes have been visited in
each time step and all time steps available in the time
series have been iterated (i.e. after n iterations, where
n = number of lines× number of columns in the time-series ).
Table 3 presents a toy time-series data set for the graph
shown in Fig. 1, where the order of node visits is repre-
sented with different colours. The example is going to be
executed 12 times (3 for each node). In order to visit the
nodes the following rules are used:

in each time step present in the time-series; (Line 3) the
regulators must be visited before the node they regu-
late; (Line 4) a node is only visited in the time step ts if
and only if the same node has been visited in the previ-
ous time step in one of the previous iterations and (Line
5) a node can only be visited once in each time step. The
constraint in Line 4 ensures the correct validation of the
value on the time series given as input.

In terms of consistency checks, it is important to men-
tion that an exception is made for the first visited node
since no information about its regulators is known (it is
assumed to be consistent). The search is non-determinis-
tic and the program will choose the path that reduces the
number of repairs needed (discussed further on).

This implementation allows the dynamics to be
unrolled only when needed. This procedure avoids hav-
ing the full state transition graph in memory.

Let us consider again the example shown in Table 3.
The constraint in (Line 4) forces us to visit a node from
time step 1. However, the constraint in Line 3 forces us

Listing 3 ASP encoding of the Time-Series in Table 3

0 #base.

1 exp(tS1).

2 obs_vlabel(tS1,a,0,1). obs_vlabel(tS1,a,1,2). obs_vlabel(tS1,a,1,3).

3 obs_vlabel(tS1,b,0,1). obs_vlabel(tS1,b,1,2). obs_vlabel(tS1,b,1,3).

4 obs_vlabel(tS1,c,0,1). obs_vlabel(tS1,c,0,2). obs_vlabel(tS1,c,1,3).

5 obs_vlabel(tS1,d,1,1). obs_vlabel(tS1,d,1,2). obs_vlabel(tS1,d,1,3).

Listing 4 ASP encoding to perform the asynchronous dynamics

0 #step(t).

1 1{visit(P,N,TS,t): node(N),timeStep(TS),exp(P)}1.
2 :-not visit(P,N,TS,_),node(N),timeStep(TS),exp(P).

3 :-visit(P,N1,_,t),regulator(N1,N2,_),not visit(P,N2,_,_), t>1.

4 :-visit(P,N,TS,t), not visit(P,N,TS -1,_),timeStep(TS),timeStep(TS -1).

5 :-visit(P,N,TS,t),visit(P,N,TS,T),T!=t.

6 %Auxiliary definitions

7 timeStep(TS):-obs_vlabel(_,_,_,TS).

The first rule of Listing 4 (Line 1) ensures that exactly
one node is visited in each iteration. The four next con-
straints ensure that: (Line 2) all nodes must be visited

Page 8 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

to visit b before a, a before c, and c and d before b. This
reduces the nodes that can be visited in the first iteration
since only the first visited node is consistent by default
(even without visiting its regulators). In this case, it is
indifferent to visit first any of the nodes without colour.
Thereupon, the rest of the nodes with time step 0 can be
visited (represented in blue).

Afterward, nodes d and c have the same value in dif-
ferent sequential time steps, the possible next steps are
shown in light yellow and green. Choosing between vis-
iting first d or c is irrelevant. However, after visiting d
in the time step 2 one can visit the node d in the time
step 3. In this example, we show the path requiring the
fewest repair operations (see next section), and node b
has to be visited next (yellow). Visiting b requires the
application of repair s (changing the Boolean function).
Since the value of b is the same as before, b will be vis-
ited again. Now, it is possible to visit node a (orange)
without applying any repair operations (visiting a
before b would require the application of repair opera-
tion repair n to the function of Ka ). Finally, c (red) will
be visited and the visiting sequence ends. For a specific
visitation sequence, for the toy example, see Additional
file 1: Figure S1.

Consistency
The first line of Listing 5 is used to infer or not cur-
rent_vlabel/3 in the first iteration of the search.
current_vlabel(P,N,t) expresses that the value
of N in the iteration t for P is 1. The Lines 3–6 are used
to define the value of the visited node in this iteration.
The Lines 3, 4 and 5 represent the correct propagation
of the values for the functions and, or, and identity,
respectively. Line 6 ensures the correct propagation of
the values for an input node. Line 7 updates the cur-
rent values of previously visited nodes. Lines 9–10
are used to ensure that the value is coherent with
the observed value from time-series. The concept of
repair/2 will be discussed further on.

Let us consider again the example shown in
Table 3. The first iteration causes the inference of
visit(tS1, b, 1, 1). This in turn could cause the inference
of current_vlabel(tS1, b, 1) (Line 2). However, this would
cause the constraint shown in Line 9 to be violated.
Therefore, current_vlabel(tS1, b, 1) is not going to be
inferred.

Lines 12–15 are used to propagating the values
through nested functions. The only difference to the
previous lines (Lines 2–7) is the fact that they are not
visited. Therefore, the propagation must happen in the
same iteration and not based on the value of the previ-
ous iteration.

The value of a node must be consistent with the
Boolean function associated with it. The consistency
check of the network, with or without repairs, is made
with the help of auxiliary predicates. The predicate one-
Sign/4 (Lines 19–22) indicates that a node, influenced
by its associated function and based on the profile, has
at least one regulator with the value true/false. The
rules in the Lines 17–18 ensure that the predicates non-
eNegative/3 and nonePositive/3 are inferred
when all the regulators of the node have the value true
and false, respectively.

Above, we consider that the algorithm has already vis-
ited the node b in the first iteration. In the second itera-
tion the algorithm visits node a. As the value of b is 0, it
is possible to infer: oneSign(tS1, a, 0, 2) (Line 21). This in
turn, could cause the inference of nonePositive(tS1, a, 2)
(Line 18).

In order to represent changes in the network the fol-
lowing auxiliary predicates are defined. has_func-
tion/3 represents the presence of a function for a
given node. Finally, has_influence/4 represents the
presence of a positive or negative influence on a node.
These predicates simplify the handling of the repara-
tions caused by the possible repair operations dis-
cussed below.

Page 9 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

Repair operations
The predicate canRepair/1 indicates the nodes where
the program can apply repair operations. canRepair/1
can be inferred by the predicate repairable/1, by
user input, or, in its absence, the program considers all
nodes as repairable (Lines 1–2). Note that these rules are

Listing 5 ASP encoding to check the consistency

0 #step (t).

1 %Current value for nodes

2 {current_vlabel(P,N,1)}:- visit(P,N,_,t),t=1.

3 current_vlabel(P,N,t):- visit(P,N,_,t),t>1,has_function(N,1,t),
noneNegative(P,N,t-1),not repair(function(N,1),_).

4 current_vlabel(P,N,t):- visit(P,N,_,t), t>1 ,has_function(N,0,t),
not nonePositive(P,N,t-1),not repair(function(N,0),_).

5 current_vlabel(P,N,t):- visit(P,N,_,t),t>1,has_function(N,2,t),
oneSign(P,N,1,t-1).

6 current_vlabel(P,N,t):- visit(P,N,_,t),t>1,input(N),
current_vlabel(P,N,t-1).

7 current_vlabel(P,N,t):- not visit(P,N,_,t), t>1,
current_vlabel(P,N,t-1).

8 %Validation of consistency

9 :-visit(P,N,TS,t),current_vlabel(P,N,t),obs_vlabel(P,N,0,TS).

10 :-visit(P,N,TS,t),not current_vlabel(P,N,t),obs_vlabel(P,N,1,TS).

11 %Current propagation of values for nested function

12 current_vlabel(P,N,t):- not node(N),has_function(N,1),
noneNegative(P,N,t),not repair(function(N,1),_),t>1.

13 current_vlabel(P,N,t):- not node(N),has_function(N,0),
not nonPositive(P,N,t), exp(P),
not repair(function(N,0),_),t>1.

14 current_vlabel(P,N,t):- not node(N),has_function(N,2),
oneSign(P,N,1,t),t>1.

15 {current_vlabel(P,N,1)}:- not node(N),exp(P),has_function(N,_,t),t=1.

16 %Auxiliary definitions for validation

17 noneNegative(P,N,t) :- not oneSign(P,N,0,t), oneSign(P,N,1,t).

18 nonePositive(P,N,t) :- oneSign(P,N,0,t), not oneSign(P,N,1,t).

19 oneSign(P,N1,1,t):- function(N1,_),has_influence(N1,N2,1,_),

current_vlabel(P,N2,t).

20 oneSign(P,N1,1,t):- exp(P),function(N1,_),has_influence(N1,N2,0,_), not

current_vlabel(P,N2,t).

21 oneSign(P,N1,0,t):- exp(P),function(N1,_),has_influence(N1,N2,1,_), not

current_vlabel(P,N2,t).

22 oneSign(P,N1,0,t):- function(N1,_),has_influence(N1,N2,0,_),

current_vlabel(P,N2,t).

23 %Auxiliary definitions for network changes

24 has_function(N,S,t) :- function(N,S).

25 has_function(N,1-S,t) :- repair(function(N,S),_),S<2.

26 has_influence(N,M,1-X,t) :- regulator(N,M,X), regulator(N,M,_),
not repair(removeRegulator(N,M),_),
repair(negRegulator(N,M),_).

27 has_influence(N,M,X,t) :- regulator(N,M,X), regulator(N,M,_),
not repair(removeRegulator(N,M),_),

not repair(negRegulator(N,M),_).

only inferred at the beginning of the execution and so no
information about the iteration is required.

Let us consider again the example in Table 3. In
this case, it is possible to find a solution if one defines
repairable(b). However, as we do not know that
beforehand, all nodes have to be considered.

Page 10 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

For each type of repair the predicate pos/2 is inferred
if it is possible to apply the repair. Line 3 shows when
it is possible to switch an or to an and function (and
vice-versa). The literal repair_s represents the activation
of repair s. Lines 4 and 5 show the rules to negate and
remove a regulator, respectively. repair_n and repair_r
represent the activation of the respective repair opera-
tions. Note that it is impossible to remove all regulators
(Line 5).

The generation rule in Line 6 allows generating 0 or
more repairs from the possible repairs found. The ASP
solver is going to minimise the number of repair opera-
tions applied to the network, through the statement
shown in Line 7.

Let us consider once again the example in Table 3. In
this case, it is possible to find all types of repair opera-
tions. It is possible to remove regulator c or regulator d
(but not both) from function b. Still relating to function
b, it is possible to switch from an and to an or. Further-
more, it is possible to negate all four regulators. Recall
that it was necessary to perform a repair operation to
visit node b in the second time step ( visit(tS1, b, 2, 8) ).
The program infers repair(function(b, 1), 8) from the list
of possible repairs.

Listing 6 ASP encoding of the repair operations

0 #step (t).

1 canRepair(N):-node(N),not repairable(_).

2 canRepair(N):-repairable(N).

3 pos(function(N,S),t) :- repair_s, can_repair(N), function(N,S), S<2.

4 pos(negRegulator(N,M),t) :- repair_n, can_repair(N), regulator(N,M,_).

5 pos(removeRegulator(N,M),t) :- repair_r, can_repair(N),
regulator(N,M,_),regulator(N,L,_), M != L.

6 { repair(R,I) : pos(R,I) }.
7 #minimize { 1, R,I:repair(R,I) }.

Related work
Ostrowski et al. [9] successfully used ASP to infer net-
works based on time-series data. The objective is to find
all networks that satisfy the time-series data sets. To
achieve this goal, all combinations of edges and Boolean
functions are tested. The considered dynamic allows any
number of components to be updated at the same time.
Another approach is to use genetic algorithms [35] to
optimize Boolean networks from time-series data. These
authors consider an asynchronous updating scheme to
generate the dynamics. The training set is a set of time-
series data which the model has to reproduce. Con-
sidering that the original models are large, it becomes
difficult to reason over these models. With this in mind,

the objective is to find the smallest possible sub-network
to describe all the experimental values. However, not all
nodes can be removed. These nodes are defined by the
user and can represent key experimental readouts. More-
over, the optimization process tries to maintain the larg-
est possible number of edges, removing only the edges
that are inconsistent with the time-series data.

Abdallah et al. [12] implemented an ASP-based tool
following the discrete formalism called the Process Hit-
ting. The objective was to use an abstraction to model
large synchronous networks in order to study their prop-
erties. This abstraction is useful when dealing with very
large networks. The properties inferred with this abstrac-
tion are properties of the original network, avoiding hav-
ing to test them in the original network. However, if a
behaviour is impossible in the abstraction, nothing can
be inferred about the real network.

Rocca et al. [21] proposed two possible routes to vali-
date biological networks using different methods. The
first method discussed uses the Boolean method to val-
idate the consistency of the networks. The method was
implemented using ASP with an explicit definition of the
asynchronous dynamics. The ASP encoding proposed

by Rocca et al. [21] to encode Boolean functions does
not scale correctly. The encoding requires the definition
of specific rules for each function with different arity.
Therefore, every time a function with a different arity is
required, new rules need to be added. As the solution
proposed by Rocca et al. [21] uses an STG [22], it con-
sumes an unnecessary amount of memory given that
the complete dynamics is always defined. When con-
sidering this method, the authors do not propose any
type of repair operations. Only when considering the
Thomas method [36], the authors proposed repair opera-
tions. The latter add threshold parameters to explain
the dynamics of the network. The repair operations are
based on changing the predicted properties to guarantee

Page 11 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

consistency with all time-series data. The work consider-
ing the Thomas method was later extended with an ASP-
based automatic tool to detect and repair inconsistencies
in a biological model [19].

Recently, Merhej et al. [17, 18] successfully modelled
biological networks in ASP using a synchronous updating
scheme. In this work, the authors also proposed to repair
a model resorting to the addition and removal of regula-
tors, based on a set of pre-defined rules of thumb.

Method evaluation
In this section, we evaluate and compare our method
with the one recently proposed by Merhej et al. [18], the
synchronous updating scheme.

The authors consider five models and their respective
time-series data sets: Arabidopsis [6], Budding Yeast [37],
C. elegans [38], Fission Yeast [39], and Mammalian [40]
containing 10, 11, 8, 9 and 10 nodes, respectively. The
numbers of time steps vary from 10 to 13. We chose a
default function for these models where a node is active
whenever there is at least one activator and no inhibi-
tors present. This approach is similar to the activation
rule proposed by Merhej et al. [18], except that, in our
case, the updating constraints are more precise, since
they are expressed by a Boolean function. The differ-
ence lies in the case where, at a given time step, a gene is
active and there are no activators and no inhibitors. The
Boolean function states that on the following time step,
the gene will become inactive, and Merhej et al. activa-
tion rule states that the gene stays active, since there are
no inhibitors.

The tests were executed using the runsolver tool [41]
with a time out of 600 s and a limit of 3 Gb of memory.
The implementation was run on a computer running
Ubuntu 14, with 24 CPUs at 2.6 GHz and 64 Gb of RAM.

Since our method considers precise Boolean func-
tions, we would expect it to be slower due to the number
of possible functions considered for each model compo-
nent. However, Table 4 shows that our approach is faster
by at least two orders of magnitude than the approach
proposed by Merhej et al. [18], with thumb rules. The
solutions found by our method also have fewer repairs
with respect to the original model. The method proposed
by Merhej et al. considers additional constraints like the
network diameter that may play a role in the running
time and minimality of the solutions.

Next, to test the system capable of dealing with miss-
ing entries in the time-series data set, for each spe-
cies (Arabidopsis, Mammalian, Fission, C. elegans, and
Budding) we generated 10 files. From each file, values
were randomly removed, following an uniform distri-
bution. These incomplete data sets were tested using
our approach with the stopping criteria of reaching an

optimal solution. However, it is possible that the first
optimal solution found is not the closest solution to the
original data sets. With this in mind, Table 5 shows the
percentage of incorrect values found when deleting 10%,
20% and 30% of the data present on the time-series. A
value for a node is incorrect if it is not the same as the
value in the original time series. As expected, as we
increase the number of deleted values, it gets harder to
correctly recover the original values. For example, in the
Arabidopsis data set, the difference between the num-
ber of incorrect values when removing 10% and 20% is
smaller than when removing 20% and 30%. Note that the
percentages shown on Table 5 are based on the number
of deleted values and not on the complete data set.

Since removing values may change the number of
repairs needed, which may influence the prediction
results, Table 6 shows the number of files for which there
was a better solution in terms of repair operations.

When considering the C. elegans data sets with 30% of
missing values, almost all instances found a better solu-
tion (8 out of 10). The C. elegans data set with a higher
number of incorrect values is also the data set for which
the algorithm improves better the solution, in terms of
cardinality.

Also, due to the existence of different solutions given
by the tool, we studied what all of them had in com-
mon. So, for each of the species, the tool was run until
the first optimal solution was found, keeping also all the
non-optimal solutions found previously. For each species,
we compared these solutions, in order to find the most
common repairs, which would represent the most essen-
tial operations to be made to the model. Keeping in mind
that the results may be influenced by the search made by
the ASP solver since we do not enumerate all answers,
Table 7 shows the top 10 most common repairs in the

Fig. 4  The average execution time to find the first optimal solution.
Average execution time to find the first optimal solution to the
networks with 10 nodes and with the number of arguments
following the poison distribution with lambda 1 (and 3 time steps)

Page 12 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

solutions obtained. The knowledge of the most com-
mon repairs may act as an additional criterion, providing
some clues to the modeller to choose between different
repaired models.

Finally, the tool described in this document allows
the user to define a list of nodes whose functions can be
repaired. In order to test this feature, lists of different
sizes were randomly generated. The lists contained 20%,
30%, 50%, 70% and 90% of the nodes from the model. For
each of these list sizes 50 different sets of nodes were gen-
erated. Note that for lists containing 90% of the nodes the
number of different combinations can be lower than the
number of generated files. Since the considered updating
scheme is synchronous and their time-series matrices are
complete (no missing values), no propagation of values
happens. For this reason, the repairs found are always the
same (i.e. affect the same node). With these conditions,
when it is possible to repair the network, the solution is
the same as for the complete network. For all tests, the
execution time was below 1 s. The percentage of satisfi-
able instances varies with the size of the list as one can
see in Table 8. As expected, the percentage of satisfiable
instances found increases when the size of the list grows.
This table also shows the minimum number of inconsist-
ent nodes which need to be in the list in order to repair
the network. For example, for the Budding Yeast network
the node lists with less than 7 nodes will never be able to
repair the network since this network has 7 inconsistent
nodes. This functionality allows the modeller to repair a
network, focusing the repair only on a small part of the
network.

Table 1  Possible repairs for the function A ∧ B and which
repairs are used to achieve them

Function Repairs used

¬A ∧ ¬B n

¬A ∧ B n

A ∧ ¬B n

A ∨ B s

¬A ∨ B s,n

A ∨ ¬B s,n

¬A ∨ ¬B s,n

A r

B r

¬A r,n

¬B r,n

(A ∨ B) ∧ (¬A ∨ ¬B) –

(A ∧ B) ∨ (¬A ∧ ¬B) –

true –

false –

Table 2  The truth table for Kd before and after removing
regulator a (repair r)

Italic values represent the changes in the truth table

A B C Kd(X) = (¬a ∧ b) ∨ (¬a ∧ ¬c) Kd(X) = b ∨ ¬c

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 0 0

1 1 0 0 1

1 1 1 0 1

Table 3  A possible order of visits by the method on a toy time-series data

1 2 3 function repaired function order of visits

a 0 1 1 Ka = b

b 0 1 1 Kb = c ∧ d Kb = c ∨ d

c 0 0 1 Kc = a

d 1 1 1 input

On the right are thefunctions that needed to be repaired

Table 4  Execution time, in seconds, for different models with the number of required repairs in brackets

The solution Merhej et al. uses additional rules of thumb to validate the network

Arabidopsis C. elegans Budding Fission Mammalian

Our solution (rsn) 0.056 (1) 0.083 (4) 0.232 (8) 0.089 (3) 0.097 (6)

Merhej et al. [18] 155.224 (5) 3.369 (4) 600 (11) 20.068 (4) 600 (11)

Page 13 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

Asynchronous dynamics
After checking that the program was able to repair mod-
els using the synchronous updating scheme, we randomly
generated instances of time-series data to evaluate the
program when considering an asynchronous updating
scheme. The motivation to consider an asynchronous
dynamics is the fact that multiple components in the
time-series data may not be acquired at the same time
points. This relaxes the synchronism between compo-
nents, therefore increasing the search space considerably.

Characterization of the data sets
The randomly generated instances were separated into
different categories in order to evaluate the scalability of
the proposed solution. First, the model and the respec-
tive functions were generated through a script that cre-
ates random GINsim models (available at https​://githu​
b.com/ptgm/BoolN​etR2G​INsim​). With this script it was
possible to generate different models with different num-
bers of components (10, 20, 25, 50 nodes) and the arity
of each function would follow Poisson distribution (with
lambda parameter3 1, 2 and 4). The type of the function
(and, or) was randomly generated following an uniform
distribution. The data sets were produced by running the
implemented ASP program. Since these data sets (with
different number of time steps 2, 3, 5, 10 and 15) are by
default consistent with the model, we introduced some
random changes in the data, considering 5% of changed

values (randomly generated based on the uniform
distribution).

Results
Tests with 100 or more nodes, even with only two-time
steps and a lambda value of 1, are difficult to run within
the imposed time out, since just the propagation of val-
ues for the network takes on average 500 s.

All executions that did not time out found an opti-
mal solution without needing any repair operations,
i.e. only by choosing an order of visit. As one can see in
Fig. 4, repairs r and s are faster since they do not need to
change the structure of the network. Negating a regulator
(repair n) is slower than applying repair r since the pro-
gram internally adds new edges and nodes when applying
this repair, which increases the search space.

Table 9 shows the CPU time required to find an opti-
mal solution using repair s. One can see that with a 10
component model, it is relatively fast to obtain a solu-
tion even for a large number of time steps. Expectedly,
the growth in the number of components is accompanied
by an increase in the execution time. For example, it is
impossible to repair the network within the time limit
when considering 50 components and 5 time steps. With
more than 50 components, the search space makes it
even harder to repair a model within the time limit.

The overhead introduced by the Quine–McCluskey
minimization algorithm is mostly constant throughout
the different tests. However, when one looks at it from the
point of view of the percentage of time spent by the tool
it can be seen that it depends on the size of the network.
For the tests with two-time steps and with 10 nodes,
this percentage is around 15%, while with the tests of 50
nodes (still with two-time steps) the percentage is around
1%. Moreover, the weight of the minimization algorithm
decreases when the number of time steps increases, since
the program spends more time solving the network with
functions having the same level of complexity. So, the
minimization algorithm adds little overhead for normal
size networks, which is a good price to pay for having a
normalized input with minimal functions.

Conclusions and future work
In this work, we proposed an ASP-based tool capable of
repairing the logical functions of a Boolean logical model,
in order to make it consistent with a (set of) time-series
data sets. The extension to multivalued logical models
would be straightforward by applying a Boolean mapping
[14].

The proposed tool considers a specific input and output
(boolSim format), which can be obtained from SBML-
qual [26] or other formats through the bioLQM library
(https​://githu​b.com/colom​oto/bioLQ​M).

Table 5  Prediction rate when deleting 10%, 20% and 30%
of the time-series

Percentage of errors over deleted values

Arabidopsis C. elegans Budding Fission Mammalian

10% 1 22 10 10 14

20% 0.5 12 9 17 18

30% 27 14 26 5 20

Table 6  The number of new optimal solutions found
when the time-series has 10%, 20% and 30% of missing
values

Number of new optimal solutions

Arabidopsis C. elegans Budding Fission Mammalian

10% 1 3 0 0 2

20% 1 4 1 0 5

30% 2 8 1 0 5

3  The lambda parameter represents the average number of events in one
interval.

https://github.com/ptgm/BoolNetR2GINsim
https://github.com/ptgm/BoolNetR2GINsim
https://github.com/colomoto/bioLQM

Page 14 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

The tool was able to find an optimal solution for all
considered models, showing a significant increase in per-
formance when compared to the ASP encoding proposed
by Merhej et al. [18].

We also created data sets for all time-series with
increasing percentages of missing values. We show that
the method is robust, being capable of verifying the
model consistency and retrieving a repaired model even

with 30% of missing values. We could also retrieve the
most common repair operations, thus providing the
modeller with additional information to choose among
the retrieved solutions.

Regarding the extension for an asynchronous search,
we show that the running time is still acceptable consid-
ering the current model sizes. However, one could limit
the asynchrony between components by adding a sliding

Table 7  Most common repair operation for the five networks

rEdge stands for removing an edge, reg changing the sign of regulator, funcAND/funcOR changing the function

Arabidopsis C. elegans Budding Fission Mammalian

Repair % Repair % Repair % Repair % Repair %

reg(g7,g1) 100.00 rEdge(g2,g2) 100.00 rEdge(g11,g11) 100.00 rEdge(g1,g3) 93.33 rEdge(g4,g3) 100.00

reg(g9,g9) 61.90 reg(g6,g5) 68.75 rEdge(g4,g4) 100.00 rEdge(g6,g3) 86.67 rEdge(g4,g4) 100.00

reg(g4,g3) 57.14 rEdge(g4,g5) 62.50 rEdge(g7,g10) 100.00 rEdge(g7,g3) 86.67 rEdge(g9,g8) 100.00

reg(g10,g7) 57.14 reg(g3,g7) 62.50 rEdge(g7,g3) 100.00 rEdge(g9,g3) 83.33 rEdge(g2,g6) 98.08

reg(g7,g7) 52.38 rEdge(g5,g5) 56.25 rEdge(g7,g7) 100.00 rEdge(g9,g2) 73.33 rEdge(g2,g4) 96.15

rEdge(g2,g9) 47.62 reg(g7,g6) 56.25 rEdge(g8,g8) 100.00 rEdge(g4,g3) 70.00 rEdge(g1,g10) 94.23

reg(g6,g4) 47.62 rEdge(g5,g7) 50.00 rEdge(g1,g2) 97.30 rEdge(g6,g2) 70.00 rEdge(g5,g7) 94.23

reg(g7,g9) 47.62 funcAND(g2) 43.75 rEdge(g1,g5) 97.30 rEdge(g9,g7) 92.31

funcAND(g5) 43.75 rEdge(g7,g9) 97.30

Table 8  Percentage of satisfiable instances and number of repairs needed to return consistency, for the five synchronous
networks, considering different sizes of the repairable nodes list

The first column represents the percentage of repairable nodes in relation to the network size. For each list size, there are 50 randomly generated lists. The number of
inconsistent nodes in each network is also present

Arabidopsis C. elegans Budding Fission Mammalian

20%

 %Satisfiable instances 10 0 0 0 0

 #Repair 1

 Repairable node list size 2 1 2 1 2

30%

 %Satisfiable instances 36 0 0 0 0

 #Repair 1

 Repairable node list size 3 2 3 2 3

50%

 %Satisfiable instances 58 2 0 4 6

 #Repair 1 4 3 6

 Repairable node list size 5 4 5 4 5

70%

 %Satisfiable instances 72 6 2 4 24

 #Repair 1 4 8 3 6

 Repairable node list size 7 5 7 6 7

90%

 %Satisfiable instances 92 10 4 10 74

 #Repair 1 4 8 3 6

 Repairable node list size 9 7 9 8 9

Network size 10 8 11 9 10

#Inconsistent nodes 1 4 7 3 5

Page 15 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

window of size k, where the latest visits of all components
must be inside the window. Here, a component would
be allowed to be updated asynchronously as long as its
visiting time of any two nodes does not differ by more
than k. The introduction of such a window would limit
the search space and decrease the running times for the
asynchronous search.

The tool also uses the well-known algorithm of Quine–
McCluskey to minimize the Boolean functions, thus
reducing the search space of possible repair operations.
We also show that the minimization algorithm does not
have a significant impact on the CPU time of asynchro-
nous runs, especially with a larger number of time steps
and nodes.

As future work, we propose to reduce the search space
by removing symmetries when considering an asyn-
chronous updating scheme. In other words, by choosing
which nodes to visit, one can avoid testing concurrent
paths reaching the same state. This could help improve
the execution time for larger networks when more itera-
tions are required.

Additional file

Additional file 1: Figure S1. Visiting Sequence. One of many possible vis-
iting sequence performed by the methodwhen considering an asynchro-
nous updating scheme. The green (red) colour represent theassignment
of a node to the value true (false). This Figure complements the content of
Table3, choosing a specific visiting order.

Abbreviations
ASP: Answer Set Programming; STG: state transition graph; DNF: disjunctive
normal form.

Authors’ contributions
PTM and IL acquired funding and supervised the project. PTM designed the
project. AL developed the software and performed all the analyses. All authors
participated in the writing of the manuscript, reviewed the content and
agreed to endorse it. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the reviewers for their helpful comments
and suggestions that contributed to an improved manuscript. This work was
supported by national funds through Fundação para a Ciência e a Tecno-
logia (FCT) with reference UID/CEC/50021/2019 and FCT projects PTDC/

BBB-BIO/4004/2014 and PTDC/EEI-CTP/2914/2014 and by Universidade de Lis-
boa, Instituto Superior Técnico and Departamento de Engenharia Informática
(DEI).

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The method implementation and all the considered data sets for its validation
are available at https​://addal​emos.githu​b.io/RBN/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 12 December 2017 Accepted: 14 March 2019

References
	1.	 Markowetz F. All biology is computational biology. PLoS Biol.

2017;15(3):2002050. https​://doi.org/10.1371/journ​al.pbio.20020​50.
	2.	 Chaouiya C. Petri net modelling of biological networks. Brief Bioinform.

2007;8(4):210–9. https​://doi.org/10.1093/bib/bbm02​9.
	3.	 Glass L, Kauffman S. The logical analysis of continuous, non-linear bio-

chemical control networks. J Theor Biol. 1973;39(1):103–29. https​://doi.
org/10.1016/0022-5193(73)90208​-7.

	4.	 Thomas R, Thieffry D, Kaufman M. Dynamical behaviour of biological
regulatory networks: I. Biological role of feedback loops and practi-
cal use of the concept of the loop-characteristic state. Bull Math Biol.
1995;57(2):247–76. https​://doi.org/10.1007/BF024​60618​.

	5.	 Abou-Jaoude W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T,
Thieffry D, Chaouiya C. Logical modeling and dynamical analysis of
cellular networks. Front Genet. 2016;7:94. https​://doi.org/10.3389/fgene​
.2016.00094​.

	6.	 Bornholdt S. Boolean network models of cellular regulation: prospects
and limitations. J R Soc Interface. 2008;5(Suppl 1):85–94. https​://doi.
org/10.1098/rsif.2008.0132.focus​.

	7.	 Thomas R. On the relation between the logical structure of systems and
their ability to generate multiple steady states or sustained oscillations.
Springer Ser Synerg. 1981;9:180–93. https​://doi.org/10.1007/978-3-642-
81703​-824.

	8.	 Martin S, Zhang Z, Martino A, Faulon J-L. Boolean dynamics of genetic
regulatory networks inferred from microarray time series data. Bioinfor-
matics. 2007;23(7):866. https​://doi.org/10.1093/bioin​forma​tics/btm02​1.

	9.	 Ostrowski M, Pauleve L, Schaub T, Siegel A, Guziolowski C. In: Roux O,
Bourdon J, editors. Boolean network identification from multiplex time
series data. Cham: Springer; 2015. p. 170–81. https​://doi.org/10.1007/978-
3-319-23401​-4.

	10.	 Abdallah EB, Ribeiro T, Magnin M, Roux OF, Inoue K. Inference of delayed
biological regulatory networks from time series data. In: Computational
methods in systems biology—14th international conference, CMSB 2016,
Cambridge, UK, September 21–23, 2016, proceedings. 2016. p. 30–48.
https​://doi.org/10.1007/978-3-319-45177​-0.

	11.	 Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, Saez-Rod-
riguez J. Exhaustively characterizing feasible logic models of a signaling
network using answer set programming. Bioinformatics. 2013;393. https​
://doi.org/10.1093/bioin​forma​tics/btt39​3.

	12.	 Abdallah EB, Folschette M, Roux O, Magnin M. Exhaustive analysis of
dynamical properties of biological regulatory networks with answer set
programming. In: 2015 IEEE international conference on bioinformat-
ics and biomedicine (BIBM). 2015. p. 281–5. https​://doi.org/10.1109/
BIBM.2015.73596​94

	13.	 Gebser M, Guziolowski C, Ivanchev M, Schaub T, Siegel A, Thiele S, Veber P.
Repair and prediction (under inconsistency) in large biological networks
with answer set programming. In: Principles of knowledge representation
and reasoning: proceedings of the twelfth international conference, KR
2010, Toronto, Ontario, Canada, May 9–13. 2010.

Table 9  Execution time (in seconds) for repairing networks
with the repair s and lambda 1

of nodes Time steps

3 5 8 10 15

10 5.46 18.07 56.24 109.67 139.93

20 12.31 47.64 233.04 337.20 –

25 35.18 512.12 537.94 – –

50 146.80 – – – –

https://doi.org/10.1186/s13015-019-0145-8
https://addalemos.github.io/RBN/
https://doi.org/10.1371/journal.pbio.2002050
https://doi.org/10.1093/bib/bbm029
https://doi.org/10.1016/0022-5193(73)90208-7
https://doi.org/10.1016/0022-5193(73)90208-7
https://doi.org/10.1007/BF02460618
https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.1098/rsif.2008.0132.focus
https://doi.org/10.1098/rsif.2008.0132.focus
https://doi.org/10.1007/978-3-642-81703-824
https://doi.org/10.1007/978-3-642-81703-824
https://doi.org/10.1093/bioinformatics/btm021
https://doi.org/10.1007/978-3-319-23401-4
https://doi.org/10.1007/978-3-319-23401-4
https://doi.org/10.1007/978-3-319-45177-0
https://doi.org/10.1093/bioinformatics/btt393
https://doi.org/10.1093/bioinformatics/btt393
https://doi.org/10.1109/BIBM.2015.7359694
https://doi.org/10.1109/BIBM.2015.7359694

Page 16 of 16Lemos et al. Algorithms Mol Biol (2019) 14:9

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	14.	 Didier G, Remy E, Chaouiya C. Mapping multivalued onto Boolean
dynamics. J Theor Biol. 2010;270(1):177–84. https​://doi.org/10.1016/j.
jtbi.2010.09.017.

	15.	 Gebser M, Konig A, Schaub T, Thiele S, Veber P. The bioasp library: ASP
solutions for systems biology. In: 22nd IEEE international conference on
tools with artificial intelligence, ICTAI 2010, Arras, France, 27–29 October
2010, vol. 1. 2010. p. 383–9. https​://doi.org/10.1109/ICTAI​.2010.62.

	16.	 Kittas A, Barozet A, Sereshti J, Grabe N, Tsoka S. Cytoasp: a cytoscape app
for qualitative consistency reasoning, prediction and repair in biologi-
cal networks. BMC Syst Biol. 2015;9:34. https​://doi.org/10.1186/s1291​
8-015-0179-6.

	17.	 Merhej E, Schockaert S, Cock MD. Using rules of thumb for repair-
ing inconsistent answer set programs. In: Scalable uncertainty
management—9th international conference, SUM Quebec City, QC,
Canada, September 16–18, proceedings. 2015. p. 368–81. https​://doi.
org/10.1007/978-3-319-23540​-0.

	18.	 Merhej E, Schockaert S, Cock MD. Repairing inconsistent answer set pro-
grams using rules of thumb: a gene regulatory networks case study. Int J
Approx Reason. 2017;83:243–64. https​://doi.org/10.1016/j.ijar.2017.01.012

	19.	 Mobilia N, Rocca A, Chorlton S, Fanchon E, Trilling L. Logical modeling
and analysis of regulatory genetic networks in a non monotonic frame-
work. In: Bioinformatics and biomedical engineering: third international
conference, IWBBIO, Granada, Spain, April 15–17, proceedings, Part I.
2015. p. 599–612.

	20.	 Videla S, Guziolowski C, Eduati F, Thiele S, Gebser M, Nicolas J, Saez-Rod-
riguez J, Schaub T, Siegel A. Learning boolean logic models of signaling
networks with ASP. Theor Comput Sci. 2015;599:79–101. https​://doi.
org/10.1016/j.tcs.2014.06.022.

	21.	 Rocca A, Mobilia N, Fanchon E, Ribeiro T, Trilling L, Inoue K. ASP for
construction and validation of regulatory biological networks. New York:
Wiley; 2014. p. 167–206. https​://doi.org/10.1002/97811​19005​223.ch5.

	22.	 Naldi A, Remy E, Thieffry D, Chaouiya C. Dynamically consistent reduction
of logical regulatory graphs. Theor Comput Sci. 2011;412(21):2207–18.
https​://doi.org/10.1016/j.tcs.2010.10.021.

	23.	 Faure A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle. Bioinformat-
ics. 2006;22(14):124. https​://doi.org/10.1093/bioin​forma​tics/btl21​0.

	24.	 Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G. Synchronous ver-
sus asynchronous modeling of gene regulatory networks. Bioinformatics.
2008;24(17):1917–25. https​://doi.org/10.1093/bioin​forma​tics/btn33​6.

	25.	 Harvey I, Bossomaier T. Time out of joint: attractors in asynchronous
random Boolean networks. In: 4th European conf. on artificial life (ECAL).
1997. p. 67–75.

	26.	 Chaouiya C, Berenguier D, Keating SM, Naldi A, van Iersel MP, Rodriguez
N, Dmger A, Biichel F, Cokelaer T, Kowal B, Wicks B, Goncalves E, Dorier J,
Page M, Monteiro PT, von Kamp A, Xenarios I, de Jong H, Hucka M, Klamt
S, Thieffry D, Novere NL, Saez-Rodriguez J, Helikar T. SBML qualitative
models: a model representation format and infrastructure to foster inter-
actions between qualitative modelling formalisms and tools. BMC Syst
Biol. 2013;7(1):135. https​://doi.org/10.1186/1752-0509-7-135.

	27.	 Comtet L. Advanced combinatorics: the art of finite and infinite expan-
sions. Holland: Springer; 1974. p. 187.

	28.	 Gebser M, Kaminski R, Kaufmann B, Schaub T. Answer set solving in prac-
tice. Synthesis lectures on artificial intelligence and machine learning. San
Rafael: Morgan and Claypool Publishers; 2012.

	29.	 Gelfond M, Lifschitz V. The stable model semantics for logic program-
ming. In: Logic programming, proceedings of the fifth international
conference and symposium, Seattle, Washington, August 15–19, 1988,
vol. 2. 1988. p. 1070–80.

	30.	 Lifschitz V. Answer sets and the language of answer set programming. AI
Mag. 2016;37(3):7–12. https​://doi.org/10.1609/aimag​.v37i3​.2670.

	31.	 Lloyd JW. Foundations of Logic Programming. 2nd ed. Artificial intel-
ligence. Berlin: Springer; 1987. https​://doi.org/10.1007/978-3-642-83189​
-8.

	32.	 Gebser M, Kaminski R, Kaufmann B, Schaub T. Clingo = ASP + control:
preliminary report. In: Leuschel M, Schrijvers T, editors. Technical commu-
nications of the thirtieth international conference on logic programming
(ICLP’14). 2014. arXiv​:1405.3694v​1. Theory and Practice of Logic Program-
ming, Online Supplement.

	33.	 Gebser M, Kaminski R, Kaufmann B, Schaub T. Multi-shot ASP solving with
clingo. 2017. arXiv​:1705.09811​.

	34.	 Quine WV. The problem of simplifying truth functions. Am Math Mon.
1952;59(8):521–31. https​://doi.org/10.2307/23082​19.

	35.	 Dorier J, Crespo I, Niknejad A, Liechti R, Ebeling M, Xenarios I. Boolean
regulatory network reconstruction using literature based knowledge
with a genetic algorithm optimization method. BMC Bioinformatics.
2016;17(1):410. https​://doi.org/10.1186/s1285​9-016-1287-z.

	36.	 Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation
and memory. II. Logical analysis of regulatory networks in terms of feed-
back circuits. Chaos. 2001;11(1):180–95. https​://doi.org/10.1063/1.13498​
93.

	37.	 Hashimoto RF, Stagni H, Higa CHA. Budding yeast cell cycle modeled by
context-sensitive probabilistic Boolean network. In: IEEE international
workshop on genomic signal processing and statistics, GENSIPS. 2009. p.
1–4. https​://doi.org/10.1109/GENSI​PS.2009.51743​56.

	38.	 Huang X, Chen L, Chim H, Chan LLH, Zhao Z, Yan H. Boolean
genetic network model for the control of C. elegans early embry-
onic cell cycles. Biomed Eng Online. 2013;12(1):1. https​://doi.
org/10.1186/1475-925X-12-S1-S1.

	39.	 Davidich MI, Bornholdt S. Boolean network model predicts cell cycle
sequence of fission yeast. PLoS ONE. 2008;3(2):1672. https​://doi.
org/10.1371/journ​al.pone.00016​72.

	40.	 Faure A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle. Bioinformat-
ics. 2006;22(14):124–31. https​://doi.org/10.1093/bioin​forma​tics/btl21​0.

	41.	 Roussel O. Controlling a solver execution with the runsolver tool. JSAT.
2011;7(4):139–44.

https://doi.org/10.1016/j.jtbi.2010.09.017
https://doi.org/10.1016/j.jtbi.2010.09.017
https://doi.org/10.1109/ICTAI.2010.62
https://doi.org/10.1186/s12918-015-0179-6
https://doi.org/10.1186/s12918-015-0179-6
https://doi.org/10.1007/978-3-319-23540-0
https://doi.org/10.1007/978-3-319-23540-0
https://doi.org/10.1016/j.ijar.2017.01.012
https://doi.org/10.1016/j.tcs.2014.06.022
https://doi.org/10.1016/j.tcs.2014.06.022
https://doi.org/10.1002/9781119005223.ch5
https://doi.org/10.1016/j.tcs.2010.10.021
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1186/1752-0509-7-135
https://doi.org/10.1609/aimag.v37i3.2670
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1007/978-3-642-83189-8
http://arxiv.org/abs/1405.3694v1
http://arxiv.org/abs/1705.09811
https://doi.org/10.2307/2308219
https://doi.org/10.1186/s12859-016-1287-z
https://doi.org/10.1063/1.1349893
https://doi.org/10.1063/1.1349893
https://doi.org/10.1109/GENSIPS.2009.5174356
https://doi.org/10.1186/1475-925X-12-S1-S1
https://doi.org/10.1186/1475-925X-12-S1-S1
https://doi.org/10.1371/journal.pone.0001672
https://doi.org/10.1371/journal.pone.0001672
https://doi.org/10.1093/bioinformatics/btl210

	Repairing Boolean logical models from time-series data using Answer Set Programming
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Preliminaries
	Logical regulatory graphs
	Boolean functions

	Answer Set Programming

	Repairing inconsistent models using ASP
	Atomic repair operations
	Coverage and minimization of Boolean functions
	Choosing the best repair operation
	Model consistency check
	Network definition
	Time-series data
	Asynchronous dynamics
	Consistency
	Repair operations

	Related work
	Method evaluation
	Asynchronous dynamics
	Characterization of the data sets
	Results

	Conclusions and future work
	Authors’ contributions
	References

