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Abstract: Local adaptation may facilitate range expansion during invasions, but the mechanisms 

promoting destructive invasions remain unclear. Cheatgrass (Bromus tectorum), native to Eurasia 

and Africa, has invaded globally, with particularly severe impacts in western North America. We 

sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages 

invaded North America, where long-distance gene flow is common. Ancestry and phenotypic 5 

clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes 

colonized different regions. Common gardens showed directional selection on flowering time 

that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, 

genomic predictions of strong local adaptation identified sites where cheatgrass is most 

dominant. Preventing new introductions that may fuel adaptation is critical for managing 10 

ongoing invasions.  
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Main Text: Biological invasions are a major cause of global change, but the mechanisms driving 

the most destructive invasions remain poorly understood(1). Is invasion success primarily 

determined by the susceptibility of invaded ecosystems(2), or are the worst invaders adapted to 

spread and dominate(3)? For example, local adaptation to the environment could increase fitness 

and abundance(4). On the other hand, colonizing genotypes may reach new environments to 5 

which they are maladapted, potentially hindering further spread(5,6). Furthermore, if the 

diversity of colonizing propagules is low, these new populations may be unable to adapt to new 

conditions(7), phenotypic plasticity of invasive genotypes may counteract local adaptation(1), or 

colonization bottlenecks may increase the frequency of deleterious mutations(8). Alternatively, if 

colonizing propagules are diverse, new populations may quickly adapt to local environments, 10 

facilitating invasive spread(3,9). Testing these hypotheses requires a rare combination of 

genomic, fitness, and abundance data(10). 

Multiple mechanisms could contribute to local adaptation during invasions, generating distinct 

patterns of genomic and phenotypic variation(11,12). In general, selection may change along 

environmental gradients and promote clines of genotype and phenotype(13). If environmental 15 

gradients are similar in native versus invaded regions, clines may also be similar(14), consistent 

with niche conservatism between regions(15). Alternatively, if selective pressures are novel in 

the invaded range, clines may be unique, creating distinctive patterns of variation in native 

versus invaded regions(16–18). Furthermore, invasive genotypes may represent newly admixed 

populations(19), or form novel genotypes via introgression from congeners(20). Understanding 20 

extremely successful invasions thus requires dissecting global patterns of genomic and 

phenotypic variation, which has seldom been accomplished. 

Bromus tectorum L. (cheatgrass) is a grass native to Eurasia and northern Africa that spread 

across North America by the 1890s(21, 22), with devastating impacts in the arid and semi-arid 

ecosystems of the Intermountain West(23). It occurs in high abundance across an estimated 31% 25 

(210,000 km2) of this region(24), displacing native perennials via rapid reproduction and 

shortened fire return intervals(23), reducing biodiversity and degrading wildlife habitat(25). It is 

a highly selfing, typically winter annual plant, with a high-quality reference genome (~2.5 

Gb)(22,26). Existing genetic studies have been limited to small numbers of markers and 

populations, though they suggest that multiple introductions from different regions in Europe 30 

might have occurred in North America(22, 27–32). Studies have shown evidence for local 

adaptation at small scales(33–37), but global patterns of local adaptation are unclear.  

We aimed to identify the mechanisms and consequences of local adaptation in the North 

American cheatgrass invasion. We sequenced whole genomes of a global panel of 307 genotypes 

from the native and invaded ranges and measured phenotypes and performance in controlled 35 

experiments. We asked whether there were multiple and diverse introductions to North America 

and examined how geography and environment shape genomic diversity. We then evaluated if 

ancestry, trait, and allele frequency-environment clines were repeated in native and invasive 

genotypes, and if selection maintains clines. Finally, we assessed whether genomic matching to 

local climates facilitated invasive dominance. 40 

  

Diverse native range ancestries invaded North America 

Cheatgrass populations in North America stem from multiple, diverse introductions. Using 

~267k unlinked single-nucleotide polymorphisms (SNPs), different clustering analyses of global 

genomic variation showed that population genetic structure largely followed geography in the 45 
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native range and to a lesser degree in North America (Fig. 1 showing K=4 genetic clusters, fig. 

S1). In the native range, west Asian, Mediterranean, and Atlantic genotypes primarily fell in a 

single cluster, while central and eastern European genotypes were mostly assigned to two 

clusters differentiated by latitude. In the invaded range, genotypes were assigned to all four 

clusters in western North America (WNA), but only to two clusters in eastern North America 5 

(ENA) (Fig. 1A–C, fig. S2). Most invasive genotypes were similar to genotypes from north-

central-eastern Europe (Fig. 1D). In WNA, however, warm desert genotypes in southern 

California and Nevada were similar to genotypes in Iran and Afghanistan. The warm Mojave and 

the cool Pacific Northwest also harbored genotypes similar to those from the western 

Mediterranean (Fig. 1E,F). The diversity of genotypes found in WNA likely reflects colonization 10 

by propagules from different native regions. 

 

High genome-wide diversity in WNA 

Much of North America harbors great genomic diversity with little evidence of elevated genetic 

load (fig. S3,S4 using ~15.1M SNPs). In WNA, nucleotide diversity () was comparable to the 15 

most diverse native region, north-central-eastern Europe (0.0016 ± 4.510–6 se vs. 0.0018 ± 

4.610–6 se, respectively), followed by the Mediterranean (0.0015 ± 3.810–6 se) and west Asia 

(0.0011 ± 3.110–6 se), and was much lower in ENA (0.0009 ± 4.510–6 se). In WNA, the skew 

in the site frequency spectrum (Tajima’s D) was positively shifted (mean=2.8±0.006 se) 

indicating an excess of intermediate-frequency SNPs, consistent with strong population structure 20 

and variable ancestry across the region. In ENA, Tajima’s D was low (mean=0.5±0.009 se) 

indicating more rare variants, suggesting recent population expansion. In the Mediterranean and 

north-central-eastern Europe, Tajima’s D was positively shifted (Mediterranean 

mean=1.6±0.005, north-central-eastern Europe mean=2.2±0.007), suggesting substantial 

population substructure within these regions, while west Asian genotypes appeared more closely 25 

related to each other (Tajima’s D mean=0.3±0.006).  

To understand the effects of potential bottlenecks and drift in North America, we inspected 

variation in deleterious mutation load using ~15.1M SNPs (under the hypothesis that most 

protein changing mutations are deleterious). Estimated load was not different between native 

versus invaded range genotypes of the same ancestry (Tukey HSD on 2-way ANOVA p=0.3–1). 30 

The central-eastern European ancestry (dark green in fig. S4), widespread in North America, 

showed the lowest load in both ranges, suggesting large populations. In contrast, the west Asian 

and Mediterranean ancestry (pink in fig. S4) was associated with higher load in both ranges. 

Taken together, the high diversity in WNA indicates great potential for adaptation in this region.  

 35 

Little isolation-by-distance but strong isolation-by-environment in North America 

Both geography and environment shape genomic diversity in the native range, but geography 

plays a weak role in North America. Isolation-by-distance (based on ~267k SNPs) was strong in 

the native range (geographic vs. genetic distance Mantel p=10–4, Fig. 2A) but very weak in North 

America (Mantel p=0.06, Fig. 2B). At 0–100 km distance we often found very unrelated 40 

genotypes in WNA (fig. S5A). Moreover, several groups in North America (“2–10” in Fig. 1E) 

composed of 4–14 near-clonal genotypes (>98% SNPs identity) were found across distances of 

>3000 km. In contrast, such far-flung, near-clonal genotypes were absent in the native range. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2024. ; https://doi.org/10.1101/2024.09.12.612725doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.12.612725
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

 

These patterns suggest long-distance dispersal (past or ongoing) within North America, 

introductions from distinct native range populations to nearby locations, and vice versa. 

The weak spatial patterns in North America may reflect genotype sorting along the steep, 

heterogeneous climatic gradients that are common in WNA. Pairwise climatic distance (fig. S5B) 

significantly increased with spatial distance in both native and invaded ranges (Mantel p=10–4 5 

and Mantel correlation=0.6 in both ranges), but this relationship was weaker in WNA (Mantel 

correlation=0.3 WNA vs. 0.7 ENA; fig. S5C), reflecting the climatic heterogeneity of this region. 

To examine genomic differentiation along climate gradients, we performed redundancy analysis 

(RDA) with variance partitioning, comparing the role of climate and spatial variables in 

explaining genomic variation. SNP variation was better explained by these predictors in the 10 

native than in the invaded range (native R2
adj=0.25, invaded R2

adj=0.10; Fig. 2C,D). Spatial 

variables explained little in North America (native R2
adj=0.07, invaded R2

adj=0.005), confirming 

low isolation-by-distance. In both ranges the abiotic environment explained the largest portion of 

SNP variation (native R2
adj=0.13, invaded R2

adj=0.09; Fig. 2E,F), highlighting the importance of 

isolation-by-environment in both the native and invaded range.  15 

 

Repeated ancestry-climate clines in the native range and North America 

Ancestry-environment clines were remarkably similar in the native and invaded ranges, 

suggesting environmental filtering of pre-adapted genotypes or directed gene flow (as opposed to 

local adaptation by novel genotypes). We focused on aridity and temperature gradients 20 

representative of global climatic variation in the cheatgrass range (see fig. S5B) and used 

generalized-additive-models (GAMs) to detect significant climate trends between ranges (fig. 

S6). In native and invasive genotypes, the west Asian and Mediterranean genetic cluster (pink) 

was more frequent in drier regions (GAM p=0.0004, pseudo-R2=0.5), the northern Europe 

cluster (blue) was more frequent in humid regions (GAM p=0.007, pseudo-R2=0.08), the central 25 

Europe cluster (dark green) was more frequent in regions with little precipitation seasonality 

(GAM p=10–5, pseudo-R2=0.2), and the northeast Europe ancestry (light green) was more 

frequent in regions with colder winters (GAM p=0.002, pseudo-R2=0.1). 

 

Repeated phenotype-climate clines in the native range and North America 30 

Consistent with the hypothesis that pre-adaptation to local climate facilitated the cheatgrass 

invasion, we found similar phenotype-environment clines in the invaded and native ranges. To 

assess whether cheatgrass has phenotypic clines involved in local adaptation, we measured 

genetic variation among 169 native and invasive genotypes for eleven phenotypes in a growth 

chamber (data S1, table S1). A principal components (PC) analysis detected multi-trait axes of 35 

variation (Fig. 3A). PC1 explained 35.4% variation and suggests a life history axis of delayed 

flowering and high vegetative investment (more tillers and leaves) versus rapid flowering and 

high reproductive investment (taller, more fecund inflorescences). PC2 explained 22.2% 

variation and indicated an axis associated with larger plants with greater growth after 

vernalization versus shorter plants with little growth after vernalization. Native genotypes had on 40 

average earlier flowering and higher reproductive investment than invasive genotypes (t-test 

p<0.01 for PC1, flowering time, and individual seed mass) which may be due to different 

ancestry proportions in the native range. We found no significant native versus invasive trait 
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differences after accounting for relatedness, thus no evidence for evolution of increased 

competitive ability by invasive cheatgrass(38). 

Multiple trait-climate clines potentially maintained by selection were mirrored between the 

native and invaded range (Fig. 3B). We focused on two climatic variables that we hypothesized 

would capture distinct climatic stressors: maximum vapor pressure deficit (Pa), which is a 5 

measure of aridity, and mean winter temperature (ºC) (fig. S5). To test for evidence of selection 

maintaining clines, we used linear-mixed models that accounted for genomic similarity (lmkin 

below), similar to QST–FST tests(39). When significant, these models suggest selection is driving 

trait-climate clines, because the cline is stronger than expected by the genome-wide patterns of 

variation. In native and invasive genotypes, earlier flowering was associated with higher aridity 10 

(native lmkin-p=2e–8, linear-R2=0.5; invaded lmkin-p=0.03, linear-R2=0.3), suggesting a locally 

adaptive cline of rapid phenology/early reproductive investment in arid regions versus delayed 

phenology/early vegetative investment in humid regions. Also, clines showed evidence of 

selection specifically within WNA, but not in ENA (fig. S7), consistent with the low genomic 

diversity of ENA. These patterns suggest genotypes pre-adapted to local climates now occur 15 

throughout WNA. 

 

Selection on flowering time along a temperature gradient in WNA 

Selection on flowering time changed direction between common gardens that differed in 

temperature. To test whether phenotypic clines in WNA were promoted by selection, we 20 

conducted two common garden experiments in different climates in Idaho with fall plantings 

across two years (2021 and 2022). One site was cooler (Sheep Station, ID, USA 44.2456ºN, 

112.2144ºW, annual mean temperature 6ºC) and the other warmer (Wildcat, ID, USA 

43.4744ºN, 116.9018ºW, annual mean temperature 12ºC). We planted 95 diverse genotypes from 

across WNA, for a total of 14,800 plants. We measured flowering time, survival, and fecundity. 25 

In both years (Fig. 3C), selection favored later flowering at the cool site, with late flowering 

genotypes often having 3 the fitness of earlier flowering genotypes (~300 vs. ~100 seeds 

produced per original sown seed). By contrast, at the warm site, selection favored earlier 

flowering, with the earliest flowering genotypes often having >10 the fitness of the later 

flowering genotypes (e.g., ~170 vs. ~17 seeds produced per original sown seed). This suggests 30 

that late flowering genotypes have an extreme disadvantage in warm climates. This strong 

selection is consistent with our finding that the hottest sites in WNA were almost exclusively 

comprised of west Asian-like genotypes. We saw no clear admixture from distantly related, but 

geographically proximate European-like genotypes inhabiting cooler and wetter higher 

elevations (Fig. 1A), suggesting a barrier to maladapted immigrants. Thus, the climate gradients 35 

in WNA appear to impose changes in selection maintaining a strong phenotypic cline. 

 

Repeated allele frequency-climate clines in the native range and WNA 

Putative quantitative trait loci (QTL) for traits under selection showed similar allele frequency-

climate clines in the invaded and native ranges (Fig. 4, fig. S8–S9). Using genome-wide 40 

association studies (GWAS), we identified several genetic loci associated with trait variation 

(data S2). We highlight flowering time QTL with annotations based on homology to known 

genes in other species(26).  
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The top flowering time QTL contained multiple SNPs along a haploblock of ~28 Mb 

(chromosome 1: 56–84 Mb, allele frequency (AF)~0.9) containing 64 genes with annotations 

based on homology to Oryza sativa and Arabidopsis thaliana. These genes were enriched for 

Gene Ontology terms describing developmental processes involving reproductive 

structure/system, embryo, embryo ending in seed dormancy, post-embryonic, fruit, and seed (8 5 

O. sativa genes and 14 A. thaliana genes, p<0.0003, FDR=0.01). Such a large haploblock could 

indicate a structural variant, a potential driver of local adaptation(40, 41); this locus merits 

further investigation. 

The top SNP of the haploblock (chromosome 1: 71007448 bp, AF=0.91) was 25 kb downstream 

of a O. sativa homolog, the DnaJ protein ERDJ3B. Expression of ERDJ3B is critical for heat 10 

stress tolerance during seed development(42). Late flowering alleles were more frequent in 

humid/colder regions of the native range and WNA (Fig. 4A–C), suggesting cheatgrass 

adaptation to cold might be linked to seed sensitivity to temperature stress.  

The fourth top flowering time QTL comprised three SNPs (chromosome 1: 236616590 bp, 

236616999 bp, 236617691 bp, AF=0.82) 0.5 kb upstream (putative promoter region) of the A. 15 

thaliana homolog ATE1 (AT5G05700). ATE1 regulates seed maturation, seedling metabolism, 

and abscisic acid (ABA) germination sensitivity(43). Early flowering alleles were associated 

with lineages from drier regions, corresponding to the closely related native Mediterranean-west 

Asia, and invaded Mojave-Lahontan Basin, but also reaching Mediterranean climates of coastal 

WNA (Fig. 4D–F). These patterns suggest that even the specific mutations underlying local 20 

adaptation are operating in the invaded range. 

 

Stronger predicted local adaptation where cheatgrass dominates 

Whole genome-environment associations in the native range predicted local adaptation in the 

invaded range, especially where cheatgrass is most dominant. To further evaluate whether 25 

invasive genotypes matched local climates as in the native range, we used a predictive genome-

environment model. Using the native range RDA model of genotype based on climate (Fig. 2E), 

we predicted invasive genotypes for locations of our sequenced samples, and calculated the 

genetic distance between predicted and observed genotypes, similar to the ‘genomic offset’(44). 

Genotype-environment matching (i.e., low genetic distance, or offset, between predicted and 30 

observed genotypes) was strongest at northern latitudes across North America, particularly in 

WNA. Putative maladaptation (i.e., high genetic distance between predicted and observed 

genotypes) was strongest in the southeast USA (Fig. 5A). By comparing mean genetic distance 

to means of 1000 null permutations, we found the mean genetic distance was significantly lower 

than the null in WNA (p<0.002), but not in ENA (p=0.5, Fig. 5B). This finding is consistent with 35 

the hypothesis that local adaptation to climate in WNA has repeated the patterns of the native 

range and may facilitate invasion, while cheatgrass in ENA has a different strategy. Unlike 

WNA, cheatgrass populations in ENA are more restricted to an ephemeral life history in highly 

disturbed urban and agricultural sites, rarely forming large monospecific stands(45). 

To assess whether matching of specific genotypes to local environments promotes cheatgrass 40 

invasion, we compared the strength of genotype-environment correlations with variation in 

cheatgrass abundance from 11,307 field surveys across the Great Basin (Fig. 5A, polygon), 

where the invasion has its worst impacts(24). Locations where cheatgrass occurs in high 

abundance showed high genotype-environment matching based on the native range model 

(N=55, t-test p=0.006, Fig. 5C), suggesting local adaptation promotes cheatgrass dominance. 45 
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This pattern was consistent when comparing genotype-environment matching of high-abundance 

sites to 1,000 null permutations of genotypes within the Great Basin (p=0.01), evidence that this 

pattern was not merely due to environmental characteristics of the low-abundance sites but 

reflects the match of genotypes to their local environments. 

 5 

Synthesis 

Biological invasions pose a major environmental threat, but the role of genomic diversity and 

adaptation is poorly understood. Our results have general implications for understanding the role 

of adaptation in the success of devastating invasions. Multiple diverse introductions and long-

distance dispersal post-introduction likely increased the chances of cheatgrass genotypes finding 10 

suitable environments. In turn, local adaptation via environmental filtering of pre-adapted 

genotypes contributed to the success of invasive populations. Local adaptation could also be due 

to selection on newly admixed populations(19) but we found no novel admixed genotypes in the 

invaded compared to the native range. Instead, our results suggest that climate gradients can 

drive coordinated physiology-life cycle strategies shared across ranges, consistent with niche 15 

conservatism in North America(15,46).  

In WNA, selection regimes associated with temperature likely maintain a major life history cline, 

with the most locally adapted populations being the most ecologically dominant. Dominance 

could facilitate further dispersal and colonization creating more opportunities to reach matched 

climates. Our common garden results also indicate that genetic diversity (e.g., for flowering 20 

time) is critical to maintaining fitness across a temperature gradient. Our findings emphasize that 

ongoing introductions can contribute to adaptation in already established, naturalized, invasive 

species(47). Limiting incoming diversity could likely minimize the cheatgrass potential for rapid 

adaptation under climate change. 

 25 
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Fig. 1: The cheatgrass invasion involved multiple diverse introductions from the native 

range to North America (A) Admixture proportions for K=4 ancestral genetic clusters (colors) 

for invasive and native genotypes in different regions; WNA: western North America (n=107), 

ENA: eastern North America (n=67), out: not in North America (n=8), MD: Mediterranean 

(n=24), NCE EU: north-central-east Europe (n=53), WA: west Asia (n=28). Geographic 5 

distribution of (B) invasive (n=194, North American only) and (C) native (n=105) genotypes. 

(D) Genetic differentiation (FST) between native and invaded regions, with notations following 

panel A. (E) Principal components analysis showing PC1 (y-axis) and PC2 (x-axis) explaining 

20.6% of genomic variation. Axes are shifted to better reflect the latitudinal distribution of 

genotypes. Gray letters denote geographic origin in the native range. Black numbers mark groups 10 

of invasive genotypes: 1 warm desert genotypes, 2–10 quasi-clonal genotypes found up to 3000 

km apart (2 includes one from Germany). (F) Neighbor-joining tree annotated with native (gray 

letters) and invaded locations (black numbers and starts). Native notations follow the ISO alpha-

3 country code or their cardinal direction in Europe (EU). Numbers are as in panel E. Stars mark 

branches with invasive genotypes.  15 
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Fig. 2: Genomic variation is structured by environment in the native and invaded ranges. 

Strong isolation-by-distance in the (A) native but not in the (B) invaded range (**Mantel p=10-

4); plots show raw pair-wise data with a spline. Euler Plots show genomic variation is best 

explained by both the abiotic environment and spatial distance in (C) the native range, but only 

by the abiotic environment in (D) the invaded range. Fields of squares represent total genomic 5 

variation, circles represent genomic variation explained by a particular group of variables 

calculated using variance partitioning with RDA ordination (native n=105, invaded n=194). (E) 

Native and (F) invasive genotypes projected on the first two canonical axes of RDA (x-axis: 

RDA1 y-axis: RDA2). Arrows represent environmental predictors that strongly correlate with a 

maximal proportion of variation in linear combinations of SNPs. ELV: elevation, PET: potential 10 

evapotranspiration, PRC: total annual precipitation, PSE: precipitation seasonality, TAR: 

temperature annual range, TDR: temperature diurnal range, TMP: annual mean temperature. 

Colors are K=4 ancestral clusters. Geographic annotations are depicted in bolded black; N EU: 

north Europe, E EU: east Europe, C EU: central Europe, MD: Mediterranean, WA: west Asia, W 

coast: west coast, InterM. W: intermountain west, ENA: eastern North America. 15 
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Fig. 3: Selection along aridity and temperature gradients shapes flowering phenology. (A) 

Eigenvector plot with loadings of eleven phenotypes onto PC1 (x-axis) and PC2 (y-axis) 

describing axes of life history variation of 169 genotypes in a growth chamber; fl: Flowering, n: 

Number, inflor: Inflorescence. (B) Growth chamber phenotype-environment associations for 

invasive (left; n=138–145) and native genotypes (right; n=31–36). Coefficients of determination 5 

(R2), trends (gray lines), and 95% confidence intervals (gray shades) come from linear 

regressions. Significance comes from linear-mixed kinship models that accounted for relatedness 

among genotypes: *p<0.05, ***p<0.0001. (C) Fitness advantage of early flowering genotypes at 

a warm site/common garden (WI: Wild Cat, gray crosses) and of late flowering genotypes at a 

cool site/common garden (SS: Sheep Station, gray open circles) in two consecutive years (top: 10 

2022 harvest and bottom: 2023 harvest). Trends (gray lines) and 95% confidence intervals (gray 

shades) come from linear regressions. Significance comes from linear-mixed kinship models of 

fitness (seed count for 2022 and inflorescence mass for 2023) in response to mean first day of 

flowering (fl), site, and their interaction (int): *p<0.05, **p<0.005, ***p<0.0005. In all panels 

colors are K=4 ancestral clusters. 15 
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Fig. 4: Environmental trends of two flowering time QTL are mirrored between native and 

invasive genotypes. (A and D) Geographic distribution of QTL SNP alleles in the native (top) 

and invaded (bottom) range; crosses represent the reference/major (ref) allele, and open circles 

the alternate/minor (alt) allele. (B and E) Zoomed-in Manhattan plots showing Wald-test p-

values (plotted as –log10) from GWAS and genomic location of top SNP (marked in green), with 5 

respective false-discovery-rate (FDR) and minor allele frequency (MAF). (C and F) Phenotypic 

(boxplots to the left) and environmental variation (boxplots to the right) of flowering time QTL 

SNP alleles (alt and ref) identified with GWAS. ***p<0.0008 from a two-sampled t-test, but no 

significant differences were detected from linear-mixed effects models that accounted for genetic 

similarity among genotypes. Max VPD: Maximum vapor pressure deficit in kPa. 10 
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Fig. 5: Genomic predictions of strong local adaptation occur in regions where cheatgrass is 

most dominant. (A) Geographic distribution of the genomic offset estimated for each invasive 

genotype. The genomic offset or maladaptation is the genetic distance between observed 

invasive genotypes and the genotype-environment predictions in the invaded range based on the 

native range genotype-environment association. (B) Histograms of the mean genetic distance 5 

(offset) of 1000 null permutations in western North America (WNA) and eastern North America 

(ENA), relative to their estimated mean genetic distance (red lines). (C) Within the Great Basin 

(polygon in A), the mean genetic distance (offset) is significantly lower in areas where 

cheatgrass occurs in high (i.e., representing >15% vegetation cover) vs. low abundance. 
 10 
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