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Abstract

When we fall asleep, our awareness of the surrounding world fades. Yet, the sleeping brain is far from being dormant and
recent research unraveled the preservation of complex sensory processing during sleep. In wakefulness, such processes
usually lead to the formation of long-term memory traces, being it implicit or explicit. We examined here the consequences
upon awakening of the processing of sensory information at a high level of representation during sleep. Participants were
instructed to classify auditory stimuli as words or pseudo-words, through left and right hand responses, while transitioning
toward sleep. An analysis of the electroencephalographic (EEG) signal revealed the preservation of lateralized motor activa-
tions in response to sounds, suggesting that stimuli were correctly categorized during sleep. Upon awakening, participants
did not explicitly remember words processed during sleep and failed to distinguish them from new words (old/new recogni-
tion test). However, both behavioral and EEG data indicate the presence of an implicit memory trace for words presented
during sleep. In addition, the underlying neural signature of such implicit memories markedly differed from the explicit
memories formed during wakefulness, in line with dual-process accounts arguing for two independent systems for explicit
and implicit memory. Thus, our results reveal that implicit learning mechanisms can be triggered during sleep and provide
a novel approach to explore the neural implementation of memory without awareness.
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Introduction

Sleepers are not disconnected from their environment during
sleep. On the contrary, the sleeping brain can encode sensory
information (Issa and Wang, 2008; Nir et al., 2013), recognize sa-
lient or familiar sounds such as a person’s own name (Perrin
et al., 1999), process sounds in their context and detect the viola-
tion of simple rules [oddball paradigm; (Czisch et al., 2009; Ruby
et al., 2008; Strauss et al., 2015)]. Sleepers can also process sen-
sory information at a high level of representation such as the
semantic level (Bastuji et al., 2002; Brualla et al., 1998; Ibanez
et al., 2006). We recently showed that the sleeping brain could
even build upon sensory processes and use semantic informa-
tion to prepare task-relevant responses (Kouider et al., 2014). But

can such processes trigger long-term memory? Indeed, when
we are awake, experience constantly imprints on the brain.
From pure noise (Andrillon et al., 2015) to more complex types of
sensory inputs such as words (Pulvermüller et al., 2001), pro-
cessing a given piece of information, even passively, leads to
the formation of a new memory trace or the strengthening of an
existing one (Kolb and Whishaw, 1998).

Exploring the sleeping brain’s ability to learn has been a
long-lasting scientific quest (Emmons and Simon, 1956) but pos-
itive results are scarce. Until recently, only some forms of learn-
ing independent from hippocampal structures had been
evidenced [(Hennevin et al., 1995; Ikeda and Morotomi, 1996;
Maho and Bloch, 1992), see “Discussion” section]. This contrasts
with the abundance of results showing the crucial role of sleep
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in promoting memory consolidation (Rasch and Born, 2013) as
well as studies showing how external stimulations can improve
this consolidation (Oudiette and Paller, 2013). To explain this
discrepancy, the main theories on the role of sleep in memory
have proposed that consolidation mechanisms directly or indi-
rectly prevent the formation of new memories (Diekelmann and
Born, 2010; Hasselmo, 1999; Tononi and Cirelli, 2014). For exam-
ple, memory systems (such as hippocampal structures) could
get disconnected from sensory circuits so as to prevent external
input from interfering with the consolidation process (Rasch
and Born, 2013). Alternatively, changes in neuromodulation oc-
curring during sleep could impair synaptic plasticity itself and
therefore the encoding of new memories (Hennevin et al., 2007;
Tononi and Cirelli, 2014). Yet, recent studies have shown that
even hippocampal-dependent forms of learning are possible
during sleep (Arzi et al., 2012; de Lavilléon et al., 2015), putting
into question the opposition between memory consolidation
and memory formation.

To investigate the brain’s ability to form memory traces dur-
ing sleep (here, the memory of having heard a specific item), we
relied on the classical old/new paradigm. For more than a cen-
tury (Ebbinghaus, 1885), this approach has been used to probe
recognition memory, i.e. the ability to recognize elements previ-
ously encountered. Recognition is a form of long-term and de-
clarative memory relying on the medio-temporal lobe, which
includes the hippocampus (Eichenbaum et al., 2007; Squire et al.,
2007). Accordingly, participants with bilateral lesions in these
areas show strong deficits in recognition memory (Reed and
Squire, 1997). More precisely, the ability to recognize a previ-
ously encountered item is thought to benefit from two separate
systems: an explicit episodic memory (i.e. “remembering”) and
an implicit sense of familiarity (i.e. “knowing”) (Tulving, 1985).
However, it is unclear whether these two types of information
are implemented through independent neural circuits
(Aggleton and Brown, 2006; Manns et al., 2003; Squire et al.,
2007). Part of the difficulty in disentangling these two forms of
memory stems from the difficulty to separate them at the be-
havioral level (Malmberg, 2008). Indeed, both implicit and ex-
plicit memories contribute to item recognition. A potential
solution consists in contrasting neural correlates of recollection
as a function of whether participants are aware or unaware of
learning a specific content (Rosenthal et al., 2010). Sleep, in this
regard, represents a unique tool to explore the formation of
memories in the absence of awareness.

Here we investigated the formation of memory traces for
words heard during Non-Rapid Eye-Movement (NREM) sleep. We
used a paradigm in which participants were exposed to words
and pseudo-words (phonologically valid but meaningless words)
during wakefulness and sleep (Kouider et al., 2014). To maximize
the probability that participants processed acoustic information
during sleep, we asked them to perform a task on these stimuli
while falling asleep. Subjects were instructed to indicate, each
time a stimulus was played, whether it was a real or an invented
word (lexical decision task). The task-set and stimuli presenta-
tion were held constant throughout the experiment so that par-
ticipants could automatize the task while being awake and
pursue it after falling asleep. Importantly, novel, unpracticed
items were presented exclusively during sleep (i.e. words which
were not presented during the wake session), allowing to confirm
interpretations in terms of lexico-semantic processing rather
that stimulus-response mapping (Abrams and Greenwald, 2000).
In a previous article, we have shown the maintenance of EEG in-
dexes of motor lateralization after stimuli onset and in accor-
dance with the expected side of response, showing that

participants continue to classify stimuli while asleep (Kouider
et al., 2014). The lexical decision task was used to prompt partici-
pants to process items at a high level of representation, as pro-
cessing depth is known to influence recognition memory (Craik
and Tulving, 1975). Upon awakening, participants recognized
items presented during wakefulness with high accuracy.
However, despite having categorized the novel items while sleep-
ing, participants did not explicitly remember these words. Here,
we show that despite the absence of explicit memory, more in-
depth analyses unraveled the presence of implicit mnesic traces
both at behavioral and neural levels. Interestingly, the EEG corre-
lates of memory for words presented during sleep markedly dif-
fered from those of the words presented in wakefulness, which
were explicitly recognized. These results reveal not only that the
human brain can recognize items encountered during sleep but
also pinpoint critical differences in the neural implementation of
explicit and implicit memories.

Material and Methods
Participants

Twenty-two (22) right-handed French speakers (16 females, age
ranging from 20 to 28 years) without history of neurological or
sleep disorders and with self-reported normal hearing partici-
pated in this study. Subjects had been selected based on their
responses to the Epworth Sleepiness Scale (ESS) in order to tar-
get individuals who could fall asleep in a noisy, unfamiliar envi-
ronment. Recruited participants had high but nonabnormal EES
scores (11.95 6 0.62, mean 6 SEM, standard error of the mean).
The day of the recordings, participants were moderately sleep
deprived (30% less than their usual sleep time) and asked to
avoid all exciting substances. This protocol has been approved
by the local ethical committee (Conseil d’évaluation éthique
pour les recherches en santé, Paris, France).

Stimuli

The auditory material consisted of 108 pairs of words and
pseudo-words selected from the Lexique database (New et al.,
2004). These 216 items were divided into three lists of 72 stimuli
matched for their frequency, duration, and consonant-vowel
structures (half CVC monosyllabic and half CV-CV disyllabic).
Pseudo-words did not violate the pronunciation rules of the
French language. Words were uttered by a male native French
speaker and digitized at 44 100 Hz. The attribution of the three
lists to either the wake period, the sleep period or the new list in
the old/new recognition task was counterbalanced across par-
ticipants. Stimuli were presented at about 50 dB through loud
speakers using the Psychtoolbox extension (Brainard, 1997) for
Matlab (MathWorks Inc. Natick, MA, USA).

Experimental procedure

Participants first performed a lexical decision task on the spo-
ken words presented every 9 s (nap session). Participants were
instructed to indicate whether the spoken words existed in the
French lexicon or not using response-handles placed in their
left and right hands. The mapping between stimulus category
(real or invented word) and the associated response side (left or
right) was counterbalanced across participants. Participants ini-
tially performed this task for about 10 min with the instruction
to remain awake and responsive. All the items of the wake list
were played once during this initial part to ensure that all items
of the wake list were processed at least once under optimal
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conditions. Participants were then placed in a reclining chair; in
a dark, electrically and acoustically shielded cabin. They were
asked to keep their eyelids closed. Participants were authorized
to fall asleep but were instructed to keep responding to auditory
stimuli as long as they were awake, and to resume responding
in case of an awakening.

Subjects’ vigilance state was assessed online using polysom-
nographic and behavioral data (see below). A novel list of words
and pseudo-words was presented to participants when they en-
tered the NREM2 stages (i.e. after the first spontaneous
K-complex or sleep spindle). The sleep list was played in NREM2
and NREM3 stages. However, only 11 participants entered the
NREM3 stage. Participants were switched back to the wake list
whenever they showed signs of arousal. This online sleep scor-
ing was confirmed offline using standard guidelines (Iber et al.,
2007). Trials associated with arousals (button presses or in-
crease in low-amplitude fast rhythms such as alpha oscillations

or oscillations above 16 Hz for more than 3 s and stable for at
least 10 s) and micro-arousals (less than 3 s) were carefully
marked and corresponding items were discarded from further
analyses. Indeed, our goal was here to analyze the presence of
mnesic traces to words processed during sleep and while ensur-
ing that sleep was preserved. Details about sleep scoring and
how we controlled for the presence of arousals can be found in
our previous publication (Kouider et al., 2014), which includes
the current dataset (see the “Sleep Lexical Decision” task). After
offline confirmation of the sleep scoring, four participants could
not be included in the sleep analyses (Fig. 1c) due to a low num-
ber of trials scored as sleep. One additional participant had less
than 20 novel words presented during sleep and was discarded
from the memory test analyses. Overall, the 17 participants in-
cluded in these analyses (Figs 2–5) heard each item of the wake
list 4.8 6 0.3 times on average and each item of the sleep list 2.1
6 0.2 times on average.

Figure 1. Experimental procedure and evidences for complex information processing during sleep. (a) Lexical categorization task: participants
(N ¼ 22) were asked to classify spoken words and pseudo-words while falling asleep (daytime nap). Each category (word or pseudo-word) was
associated with a response side (left or right). Once asleep (see “Methods” section for criterion) and unknown to participants, novel words and
pseudo-words were presented to participants (sleep list). Importantly, the initial set of stimuli (wake list) was played again to participants
whenever they awoke in order to present the elements of the sleep list during sleep only. (b) Memory test: upon awakening, participants (N ¼
17) underwent a memory test during which the words presented during the nap session (red: wake list; blue: sleep list) were played along new
words (gray: new list). For each word, participants were asked to indicate whether they remembered hearing the word during the nap session
(old vs. new recognition test). They were then instructed to estimate their confidence in their old vs. new response using a scale from 1 (not
sure at all) to 7 (absolutely sure). (c) LRPs: during the nap session, we computed LRPs during wake (red, left) and sleep (blue, right) to determine
whether participants performed the lexical categorization task even when unresponsive. The LRP was computed over right and left central
electrodes (see inset and “Methods” section) and averaged across participants. Shaded areas denote the standard error of the mean across par-
ticipants (N ¼ 18). Horizontal bars show the significant clusters (pcluster < 0.05). The LRP determines whether neural activity is lateralized in re-
spect to the expected side of response. A LRP was preserved in sleep, albeit delayed compared to wakefulness. (d) Average power spectra for
wake (red) and sleep (blue) trials. Power spectra were computed on C3/C4 referenced to the mastoids with a FFT and averaged across subjects.
Note the replacement of wake-related rhythms (a: 8–11 Hz; b: 20–30 Hz) by sleep-related oscillations (o: 0.1–4 Hz; r: 11–16 Hz). Shaded areas de-
note the standard error of the mean across participants (N ¼ 18).
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Upon awakening, after the nap session, participants were al-
lowed a few minutes to dissipate sleep inertia and then under-
went a memory test. Words (but not the pseudo-words)
previously presented during the nap session were played once to
participants (same voice, volume and experimental set-up) ran-
domly intermixed with novel items (new list). Participants were
first asked to indicate whether they remembered having heard
the word during the nap session (“old” or “new”). They were then
asked to indicate their confidence in their “old” vs. “new” re-
sponse by using a scale going from 1 (“I am not sure at all”) to 7
(“I am perfectly sure”). Responses were provided with a keyboard
and without time pressure. Participants were instructed to keep
their eyes closed and to remain still during the presentation of
the words in order to minimize movement-related artifacts in
the EEG signal. The memory test was self-paced.

Behavioral analyses

Using participants’ responses recorded in the memory test, we
computed the average percentage of “old” and “new” responses
for the different lists (first-order responses, Fig. 2a) as well as

the average confidence rating of these “old” and “new” re-
sponses (second-order responses, Fig. 2b) across participants.
Confidence ratings were normalized by subtracting the average
rating computed across all trials for a given participant in order
to compensate for biases in the way participants scaled their
own confidence. For the first-order response, we also computed
a sensitivity index: the d’ (Green and Swets, 1966; Macmillan,
2005). The d’ provides an unbiased estimate of participants’
ability to discriminate two conditions [here old words (wake or
sleep list) vs. new ones]. The d’ was computed as follows:

d0 ¼ zðHitÞ � zðFAÞ;

where z(x) corresponds to the z-score for proportion x; Hit corre-
sponds to the proportion of correct responses for the words
heard during the nap session (either wake or sleep list) and FA
(False Alarms) corresponds to the proportions of incorrect re-
sponses for the novel words.

To assess participants’ performance on the first- and sec-
ond-order responses, we also computed Receiver Operating

Figure 2. First- and second-order responses in the memory test. Behavioral results for the memory test. (a) Proportion of “old” and “new” re-
sponses for the wake (red), sleep (blue), and new (gray) lists (first-order responses). Proportions are averaged across participants (N ¼ 17) after
excluding items heard around arousals or micro-arousals for the sleep list. Note that participants responded to sleep items as if they were
new. (b) Confidence rating associated with the old and new responses for the wake, sleep, and new lists (second-order responses averaged
across participants). Ratings were normalized by subtracting for each participant the average confidence rating. Note the increase in confi-
dence for sleep items in comparison to new items when participants categorized them as old. (c) Sensitivity index d’ averaged across partici-
pants for the old vs. new discrimination and computed for the wake and sleep lists separately. As in panel a, the null d’ reveals participants’
failure to distinguish sleep and new items in their first-order responses. (d) Type-I and type-II ROC curves computed for the first order (old vs.
new, left) or second order (confidence rating, right) responses. Inset shows the AUC computed for the different ROC curves and averaged across
participants (0.5: area under the bisector line). In all subpanels, error-bars denote the standard error of the mean across participant. Stars atop
bars denote the significance levels when comparing with 0 [t-test (u-tests for AUC values) across participants; ***P < 0.005, **P < 0.01, *P < 0.05,
ns: P > 0.05]. Stars between bars show the paired comparison between bars (paired t-tests or u-tests).
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Characteristic (ROC) curves [(Fig. 2d (Macmillan, 2005)]. Type-I
ROC curves were computed for each participant using the
first-order responses. For each confidence level (from 1 to 7),
we computed the average proportion of hits (“old” response
when an old item was presented) and of false alarms (“old” re-
sponse when a novel item was presented). Figure 2d
(left) shows the type-I ROC curve averaged across participants.
Type-II ROC curves were computed for each participants using
second-order responses (Fleming et al., 2010; Macmillan, 2005).
Each confidence level was analyzed in turn (from 1 to 7): for
the confidence level n, second-order hits correspond to
trials in which participants scored their confidence higher or
equal to n while being correct, whereas false alarms corre-
spond to trials in which participants scored their confi-
dence higher or equal to n while being incorrect. For each
confidence level, we computed the average proportions of sec-
ond-order hits and false alarms to build the type-II ROC curves.
Figure 2d (right) shows the type-II ROC curve averaged across
participants.

We also extracted the area under the curves (AUC) for the
type-I and type-II ROC curves for each participant using
the “polyarea” function in Matlab. AUC were compared with the
AUC under the bisector line (0.5). Indeed, a type-I or type-II ROC
curve overlapping the bisector line characterizes at-chance
first- or second-order performance, respectively. Leftward devi-
ations from the bisector line characterize above-chance perfor-
mance and rightward deviations below-chance performance.
One participant did not have any second-order false alarm. Its
AUC was thus put to 1 (perfect performance). Excluding this par-
ticipant did not change the outcome of the statistical analyses
performed on type-II ROC curves.

EEG recordings

Participants were equipped for polysomnographic recordings
[electroencephalography (EEG), electromyography (EMG), and
electrooculography (EOG)] using a 65-channels EEG cap and ad-
ditional sensors placed on participants’ skin (Electrical
Geodesic Inc.). Data were acquired at 250 Hz and EEG deriva-
tions were referenced online to Cz. EOG were extracted by us-
ing electrodes placed close to the right and left canthi and
referenced to the opposite mastoids. Three EMG derivations
were recorded: on the chin and on the right and left abductor
pollicis brevis (thumb flexor muscle) to record EMG activity as-
sociated with hand responses. EEG, EMG, and EOG data were
continuously recorded in both the nap and the ensuing mem-
ory test.

Lateralized readiness potentials

The EEG data acquired during the nap has been previously ana-
lyzed. Details can be found in Kouider et al. (2014). Briefly, con-
tinuous EEG data were rereferenced to the average mastoids
and high-pass filtered above 0.1 Hz (two-pass Butterworth filter
at the fifth order). After a first epoching on large temporal win-
dows centered on stimuli onset ([�16, 16] s), EEG data were low-
pass filtered below 30 Hz (two-pass Butterworth filter at the fifth
order), epoched from �2 to 8 s and corrected for baseline activity
([�2, 0] s). Trials passing an absolute threshold of 250 mV were
rejected from further analyses. Lateralized readiness potentials
(LRPs) were computed by subtracting the EEG signal over the
right (electrodes 50 and 46 in the EGI HCGSN-64 v1 net, equiva-
lent to C4 and CP4 in the 10/20 montage) and left (electrodes 20

and 26 in the EGI HCGSN-64 v1 net, equivalent to C3 and CP3 in
the 10/20 montage) electrodes:

LRP ¼

ðC3=CP3right�hand � C3=CP3left�handÞþ
ðC4=CP4left�hand � C4=CP4right�handÞ

2
:

LRP quantifies the lateralization of brain activity toward the
expected side of response (Smulders et al., 2012). Since novel
words were presented during sleep, and since the decision to
prepare for the right or left responses was based on stimulus
category, the observation of an LRP also implies that auditory
information was processed at a high (i.e. lexico-semantic) level
of representation.

We also computed the spectral power around stimulus pre-
sentation (�2 to 6 s around stimulus onset) in order to compare
the neural dynamics in wake and sleep trials. Power spectra
were computed on C3–C4 electrodes over each epoch, using a
fast Fourier transform (FFT). For each epoch, power was normal-
ized by the power within higher frequencies (35–45 Hz) and ex-
pressed in decibels. The power spectra averaged across
participants for sleep and wake trials show clear differences
(Fig. 3d) with, notably, the replacement of wake rhythms (a: 8–
11 Hz; b: 20–30 Hz) by sleep oscillations (o: 0.1–4 Hz; r: 11–16 Hz).

Event-related potentials

Upon awakening, participants underwent a memory test during
which EEG data were recorded along participants’ behavioral re-
sponses. We computed event-related potentials (ERPs) time-
locked to stimuli onset for the three lists (wake, sleep, and novel
words). EEG data were rereferenced to the averaged mastoids
and high-pass filtered above 0.1 Hz (two-pass Butterworth filter
at the fifth order). The EEG signal was then epoched on tempo-
ral windows time-locked to stimulus onset ([�4, 4] s) and
low-pass filtered below 30 Hz (two-pass Butterworth filter at the
fifth order). Next, EEG data were epoched from �0.2 to 1.5 s
around stimulus onset and corrected for baseline activity ([�0.2
0] s). Finally, EEG data were de-noised using the joint decorrela-
tion approach by optimizing the repeatability across all trials
(de Cheveigné and Parra, 2014). Briefly, a principal component
analysis (PCA) was applied to the average ERP computed across
all trials and for a given participant (i.e. regardless of the stimu-
lus list). Components were sorted according to their participa-
tion to the average ERP. The first 10 components, characterized
by the strongest mean effect relative to overall variability, were
used as a bias filter on the single-trial EEG data. EEG data were
then averaged for all the trials of a given list and for each partic-
ipant. Figure 3 shows the corresponding ERP traces averaged
across participants. Differences between ERP traces could be ob-
served when comparing the wake and new lists (P3 and Late
Negativity, Fig. 3) or the sleep and new lists (Centro-Parietal
Negativity, Fig. 3).

Decoding

For each participant and EEG sensor, we extracted the signal av-
eraged over the “P3” cluster (wake vs. new comparison) for each
and every trial. The cluster was defined as a [0.73, 0.86] ms win-
dow post-stimulus onset on parieto-occipital electrodes (elec-
trodes showing the P3 effect: P < 0.05 when comparing the
wake and new lists across participants). A leave-one-out ap-
proach was performed at the subject level. For all subjects but
one, the cluster data were z-scored for each channel and trials,
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and aggregated across participants. The corresponding values
(training set) were then used to fit a linear regression classifier
that was then applied to the remaining participant (test set) in
order to predict trials’ category (wake or new). This procedure
was iterated until all subjects had been included in the test set.
The predictions were compared to the actual categories and
both d’ and AUC were computed for each participant (Fig. 4).
The same procedure was applied to the sleep vs. new cluster
(Fig. 3, [0.49, 0.63] ms post-stimulus onset over centro-parietal
electrodes).

Time-frequency decomposition

We computed the time-frequency decomposition of the EEG sig-
nal in response to sounds. To do so, a FFT was applied to the

Figure 3. ERP to wake, sleep, and new words. The EEG signal time-
locked to sound onset was averaged across participants (N ¼ 17) for
the three lists separately (red: wake; blue: sleep; gray: new lists). (a)
Shows the ERPs for electrode Pz and (b) for electrode Cz. Horizontal
bars show the significant clusters for the comparison between the
wake list (red bars) or the sleep list (blue bars) and the new list (pclus-

ter < 0.05). The scalp topographies corresponding to the different

clusters are shown on (c) [t-values computed by comparing the sig-
nal averaged over the cluster time-window between the wake (or
sleep) and new lists, nonsignificant t-values (P > 0.05) were set to 0].
Note the classical posterior positivity when comparing wake (explic-
itly remembered) and new items (‘P3’). For sleep items, an opposite
negativity (centro-parietal negativity) was observed in lieu of a posi-
tivity, despite the absence of explicit recognition at the behavioral
level (Fig. 2). (d) Shows the same ERPs as in (b) (Cz electrode) for sleep
and new items declared as new. The inset shows the topography of
the significant cluster observed between the sleep and new lists. In
(a), (b), and (d), dotted lines show the standard error of the mean
computed across participants (N ¼ 17).

Figure 4. Decoding stimulus category with the EEG signal. The EEG
amplitude over the clusters observed in Fig. 3 (‘P3’ cluster: [0.73, 0.86]
s over parieto-occipital electrodes; “Centro-Parietal Negativity” clus-
ter: [0.49, 0.62] s over centro-parietal electrodes) was retrieved on a
single trial basis for all participants. A leave-one-out approach was
applied at the subject-level to fit a logistic regression (see “Methods”
section), which was then used to predict stimulus category (sleep vs.
new or wake vs. new). The sensitivity index d’ (left) and AUC (right)
of this prediction was computed for each participant and each con-
trast and averaged across participants. The bars show therefore the
extent to which we can predict if an item (red: wake item; blue: sleep
item) had been previously heard from the EEG signal. Stars atop bars
show the Monte Carlo P-values comparing the real decoding perfor-
mance with surrogate datasets obtained through the permutation of
trial categories (see “Methods” section: ***P < 0.001, **P < 0.005, *P <

0.05, ns: P > 0.05). Note that the P3 cluster allows classifying only
wake items while the negative sleep vs. new cluster could differenti-
ate both wake and sleep items from new ones.
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EEG signal on band-passed de-noised stimulus-locked data ([0.1,
40] Hz, [�2, 2] s) using a window of 800 ms. The average power
was computed across all trials (Fig. 5 top) or across all trials for a
given list (Fig. 5 bottom) and expressed as the log ratio of the
power at a given time and frequency over the power average
over the baseline for the corresponding frequency. We later fo-
cused on the alpha band ([8, 12] Hz) by averaging the power
within the corresponding frequency range.

Statistics

Parametric statistics were used here (Student t-tests to compare
conditions or a condition with chance-level, ANOVA for
analyses of variance) when the corresponding data could be
considered normally distributed. Nonparametric tests (e.g.

Mann–Whitney U test to compared two conditions) were used
otherwise.

To correct for multiple comparisons in time-plots and time-
frequency-plots, we used a principled approach called “cluster
permutation” (Maris and Oostenveld, 2007). Each cluster was
constituted by the samples [in one dimension (time) or two di-
mensions (time and frequency)] that consecutively passed a
specified threshold (for time-plots: P < 0.1; for time-frequency-
plots: P < 0.01). It has been shown that the rate of type-I errors
(false positives) was immune to the choice of this cluster-
defining threshold (Maris and Oostenveld, 2007). The cluster
statistics were chosen as the sum of the t-values of all the sam-
ples within the cluster. Then, we compared the cluster statistics
of each cluster with the maximum cluster statistics of 1000 ran-
dom permutations (Monte Carlo method). From this compari-
son, we obtained a Monte Carlo P value: the cluster P value
(pcluster).

We also used the EEG signal to try to predict stimulus cate-
gory (see above). To determine whether the accuracies of such
decoding were above chance-level, AUC and d’ values were
compared to AUC and d’ values computed on surrogate datasets
in which trial conditions of the training set were shuffled within
each participant (N ¼ 1000 permutations). The position of the
real AUC (or d’) value within the surrogate values’ distribution
was used to compute a Monte Carlo P value reported in the
“Results” section.

When examining the presence of mnesic traces in the sleep
lists, we obtained several null results. To check the informative-
ness of these null results, we computed Bayes Factors given the
effect observed in wakefulness (Dienes, 2014). Bayes factors al-
lowed assessing whether a null result is in favor of the null hy-
pothesis or reflects data’s lack of sensitivity. The larger the
Bayes Factor, the more the data is in favor of the null
hypothesis.

Results

In a recent publication, we have shown that sleepers can main-
tain complex and flexible processing of sensory information
during NREM sleep (Kouider et al., 2014). Such feat was not ac-
companied by any explicit memory, contrasting with what hap-
pens when we are awake. Here we investigated the presence, in
the behavioral and EEG data, of implicit mnesic traces for words
heard during sleep.

Memory traces for words heard while awake

Upon awakening, in the memory test, we used both first- and
second-order responses to determine the presence of a mnesic
trace. We first checked whether the list category (wake, sleep,
or new) and the list itself (i.e. which list was defined as the
wake, sleep, or new list for a given participant) had an effect on
accuracy (first-order response) and confidence rating (second-
order response). Using ANOVAs, we observed, for both correct-
ness and confidence, an effect of the list category [F(2) ¼ 80.5
and F(2) ¼ 5.67, P ¼ 4.10�15 and P ¼ 0.007 resp.] but not of the
list itself [F(2) ¼ 2.39 and F(2) ¼ 0.03, P ¼ 0.10 and P ¼ 0.97
resp.). There was no significant interaction [F(4) ¼ 0.39 and F(4)
¼ 0.60, P ¼ 0.82 and P ¼ 0.66 resp.), suggesting that the differ-
ent lists were correctly balanced between vigilance states.
Thus, a difference in either first- or second-order responses be-
tween the wake (or sleep) list and the new one can be inter-
preted as evidence for the existence of a mnesic trace. In
addition and following previous work, first-order responses

Figure 5. Alpha desynchronization during memory recognition. Top:
time-frequency decomposition of the EEG signal recorded at elec-
trode Pz and for all trials. Power is expressed as a log ratio of the
baseline activity and was averaged across participants (N ¼ 17). The
contours show the significant clusters (pcluster < 0.05). After stimuli
onset, clear modulations of the power can be observed in the theta
([3–8] Hz), alpha ([8–12] Hz) and beta (>20 Hz) bands. Bottom: Power
modulation for the alpha band ([8–12] Hz) over electrode Pz for the
different lists of stimuli (red: wake, blue: sleep, gray: new list).
Horizontal bars show the significant cluster when comparing the
wake and new lists (red: pcluster ¼ 0.02) or the sleep and new lists
(blue: pcluster ¼ 0.009) across participants. Insets show the corre-
sponding topographies for these clusters: power was averaged on
the clusters’ time-window and t-values were computed by compar-
ing the corresponding power for the wake (or sleep) list and the new
one. Nonsignificant t-values (P > 0.05, uncorrected) were set to 0.
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were used to determine the explicit nature of a memory
(Kouider and Dehaene, 2007), that is to say that words leading
to above-chance first-order performance were interpreted
as being explicitly remembered. On the contrary, words show-
ing significant effect without above-chance first-order perfor-
mance were interpreted as being implicitly recognized (Chong
et al., 2014; Rosenthal et al., 2016, 2010).

Words presented during wakefulness were explicitly recog-
nized as “old” words with a high degree of accuracy (83 6 4%,
Fig. 2a). Such performance led to a high d’ index when contrast-
ing these wake items with novel ones [t-test comparing with 0,
t(16) ¼ 6.62, P ¼ 6.10�6]. Participants also attributed high levels
of confidence when they were correctly recognizing an item (6.2
6 0.17 over 7) and low levels of confidence when missing to
identify an item previously heard (3.7 6 0.40 over 7, see Fig. 2b
for normalized values). Such pattern of results led to type-I and
type-II ROC curves clearly distinct from the bisector line.
Accordingly, the wake list AUCs were highly significant when
compared to bisector’s AUC (u-test: P < 5.10�4 for both the type-
I and type-II ROC curves). The type-I ROC curve in particular had
an asymmetric shape that is typical of strong and explicit mem-
ory traces (Squire et al., 2007). Overall, participants were unsur-
prisingly able to accurately and confidently discriminate items
heard while awake from new ones.

These behavioral effects were accompanied by differences in
the ERP between the wake and new lists (Fig. 3). Namely, a posi-
tivity over occipito-parietal electrodes was observed around
700 ms when comparing the wake and new lists across partici-
pant (cluster on Pz: [0.72, 0.86] s, pcluster ¼ 0.026) in accordance
with previously published results (Kayser et al., 2007; Rugg et al.,
1998; Voss and Paller, 2007). This rather delayed difference af-
fects the third positivity within the stimulus-locked ERPs and
was thus termed the “P3 effect” in the literature. Such late (�700
ms post-stimulus) memory-related effect should not be con-
founded with the earlier P300, which indexes attention and ex-
pectation during perception (Polich, 2007). Another negativity,
maximal over parietal electrodes, was also observed later in
time (cluster on Pz: [1.17, 1.40] s, pcluster¼0.003) and will be re-
ferred here as the “late negativity” according to previously pub-
lished work (Kayser et al., 2007).

Implicit memory traces for words heard during sleep in
the absence of explicit recognition

What about sleep? First of all, and as previously reported
(Kouider et al., 2014), participants did not explicitly recognize
the items presented during NREM sleep despite having pro-
cessed them at a high level of representation (Fig. 1c). Indeed,
the pattern of “old/new” responses for the sleep list was strik-
ingly similar to the new list (Fig. 2a) leading to null d’ [t-test
comparison to 0: t(16) ¼ 0.73, P ¼ 0.25]. To determine whether
this null result was informative and not reflecting data insensi-
tiveness, we computed the Bayes Factor associated with the ef-
fect on the sleep list (on d’) when considering the effect on the
wake list (Dienes, 2014). A Bayes Factor superior to 1000 indi-
cates very strong evidence for the null hypothesis (Kass and
Raftery, 1995). In line with the null d’ for the sleep list, the type-I
ROC curve for sleep items did not deviate from the bisector line
(Fig. 2d, left; u-test comparison to 0.5: t(16) ¼ 1.34, P ¼ 0.18;
Bayes factor >1000).

For second-order responses, we observed that although par-
ticipants sometimes responded “old” for both sleep and novel
items, they tended to give low-confidence ratings in such cases
(Fig. 2b). Such low-confidence ratings reflect the absence of

explicit memory for the sleep list. Importantly however, we
found that the sleep and new lists did not lead to identical sec-
ond-order responses (Fig. 2b) contrary to first-order responses
(Fig. 2a). Indeed, participants were more confident when re-
sponding “old” for sleep items compared to genuinely novel
word [paired t-test: t(15) ¼ 2.3, P ¼ 0.036]. The fact that partici-
pants rated their responses differently for the sleep items com-
pared to new ones (second-order responses) without, crucially,
being able to explicitly (first-order responses) differentiate these
words, advocates for the implicit nature of such memory trace.
Thus, our results suggest the presence of an implicit mnesic
trace for words heard during sleep.

This effect of sleep exposure on confidence was confirmed
when examining the type-II ROC curves for the sleep and novel
lists (Fig. 2d). First of all, the corresponding curves drastically
differed (the wake list is below the bisector line, the sleep list
above). But, this difference is due to the way these curves are
computed and the fact that an “old” response is considered as
being correct for the sleep list and “incorrect” for the new list.
Nonetheless, when recomputing the sleep-list ROC curves while
considering the “old” response as being incorrect (i.e. when con-
sidering that participants did not have any explicit recollection
of the sleep items), such sleep (unfilled blue dots) and new lists
type-II ROC curves still differed, with the sleep list showing a
smaller AUC [paired u-test comparing AUCs: t(16) ¼ �2.30, P ¼
0.022]. This result provides further evidence that sleep items
were not merely processed as novel items.

Thus, the presence of a second-order effect in the absence of
first-order difference suggests the existence of an implicit mne-
sic trace for items heard during sleep. The pattern observed in
the sleep-list type-II ROC curve can be interpreted as a conflict
between the absence of explicit memory for sleep words and
the presence of an implicit mnesic trace (see “Discussion”
section).

EEG evidence for implicit memory traces for words
heard during sleep

Differences between the sleep list and the novel list were also
observed when examining the corresponding ERPs (Fig. 3).
A “centro-parietal negativity” was observed when comparing
the sleep and novel lists (cluster on Pz: [0.48, 0.62] s, P ¼ 0.006;
on Cz: [0.49 0.63]s, P ¼ 0.044), suggesting that the two lists were
not processed identically. In addition, this centro-parietal nega-
tivity was present even when focusing on the stimuli catego-
rized as “new” (Fig. 3d: [0.53, 0.63]s, pcluster ¼ 0.043). On the
other hand, there was no P3 or Late Negativity difference when
contrasting the sleep list with the new list. This absence of the
neural signatures of explicit recognition again suggests that the
sleep list was not processed as the wake list. The centro-
parietal negativity observed for the sleep lists actually over-
lapped spatially and temporally with the P3 positivity but with
an opposite sign. Finally, this centro-parietal negativity oc-
curred long before participants’ motor responses (first-order re-
sponses: 1.94 6 0.08 s; second-order responses: 3.39 6 0.18 s;
mean post-stimulus onset 6 SEM across 17 participants) mak-
ing it unlikely that the observed potential is due to a motor
component.

To verify that the clusters reported above were not impacted
by the preprocessing and in particular by the data-dependent
joint-decorrelation procedure (see “Methods” section), we cre-
ated surrogate datasets (N ¼ 1000 for the 17 participants) in
which the very same preprocessing steps were applied but ex-
perimental conditions were shuffled across trials. The
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differences, obtained in the original dataset, between the ERPs
of the wake list or the sleep list and the ERPs of the new list
were then compared to the same differences obtained in the
surrogate datasets. Monte Carlo P-values were computed to es-
timate the likelihood that the differences observed in the real
dataset were significant. This procedure led to similar results as
reported above for both the wake list and sleep list clusters (e.g.
P3 effect on Pz: [0.72, 0.86] s, pcluster ¼ 0. 017; Late-Negativity on
Pz: [1.17, 1.40] s, pcluster < 10�4).

We further checked whether the differences observed in the
ERP waveforms could allow us to predict stimuli category. To do
so, we extracted the average voltage over the P3 cluster and the
“centro-parietal negativity” for the different stimuli lists. For
each participant, we trained and tested a classifier using a
leave-one-out approach (see “Methods” section) to predict stim-
uli category based on the EEG signal. Figure 4 shows that such
procedure led to above-chance levels discrimination for the
wake vs. new lists discrimination when using the P3 cluster
(both d’ and AUC: Monte Carlo P < 0.001, see “Methods” sec-
tion). Importantly, when using the EEG data computed over the
centro-parietal cluster associated with the sleep list, we could
predict the stimuli category better than chance when compar-
ing the sleep and the new lists (both d’ and AUC: Monte Carlo P
< 0.001, see “Methods” section). In addition, we could also pre-
dict stimuli category for the sleep vs. new contrast when using
the P3 cluster (AUC: Monte Carlo P < 0.005) and for the wake
vs. new contrast when focusing on the centro-parietal negativ-
ity (AUC: Monte Carlo P < 0.05). Note that differences between
the significance level of the d’ and AUC values stress the in-
crease sensitivity of AUC computation in assessing decoding
performance.

Finally, we examined the time-frequency decomposition of
the EEG signal in response to the items of the different lists
(Fig. 5). When pooling all words from all lists, it appears that
stimuli presentation modulates the EEG signal in three distinct
frequency bands. Stimulus onset was followed by a synchroni-
zation within the theta band (i.e. increase in power for the [4, 8]
Hz band) and a desynchronization (decrease in power) within
the alpha ([8, 12] Hz) and beta band (>16 Hz). Interestingly, vari-
ation in the theta and alpha power has been associated with
changes in recollection performance (Klimesch, 1999; Klimesch
et al., 1997). We did not observe any difference between lists in
the theta band. However, the new list elicited stronger alpha
desynchronization over occipital regions compared to the wake
list (pcluster ¼ 0.02, Fig. 5 bottom) in accordance with previous
findings (Klimesch et al., 1997). Importantly, a similar and even
stronger effect was observed when contrasting the wake and
sleep lists (pcluster ¼ 0.009). Once again, the brain response to
the sleep and new lists show that despite equivalent first-order
responses, the sleep items were not processed as novel words.

Overall, both behavioral and EEG data reveal the presence of
implicit mnesic traces for words heard during sleep. However,
the opposite effects observed in the ERP between the wake and
sleep lists suggest that the memory traces associated with wake
and sleep items are qualitatively distinct.

Discussion
Memory for words heard during sleep

Until recently, scientific efforts to understand whether humans
can learn while sleeping had remained largely inconclusive due
to the paucity of positive results and doubts raised by methodo-
logical flaws (Bruce et al., 1970; Webb, 1990; Wood, 1990). At first

sight, our results are consistent with previous studies showing
no memory for the words presented during sleep (Cox et al.,
2014; Emmons and Simon, 1956; Wood et al., 1992). Indeed, while
words presented during wakefulness elicited close-to-perfect
explicit recognition (Fig. 2) and classical ERP signatures of recol-
lection (Fig. 3, P3 effect), items presented during sleep seemed
to be processed as new items when considering these two
markers (Figs 2 and 4), evidencing the absence of explicit
recognition.

However, a more detailed investigation of both behavioral
and EEG data revealed differences between the sleep and new
lists, suggesting the presence of subtler mnesic traces. Sleep
items that were declared as previously encountered elicited
higher confidence judgments than sleep items judged as “old”
(Fig. 2b). This difference in confidence estimation between the
wake and sleep lists was confirmed when analyzing the type-II
ROC curves (Fig. 2d). Analyzing brain responses to the sleep and
new lists confirmed that these two lists were not processed
identically (Fig. 3), with sleep items eliciting a larger centro-
parietal negativity around 500 ms. This centro-parietal negativ-
ity was present even when restricting our analysis to items
categorized as new by the participants (Fig. 3d). When extract-
ing the EEG signal over the corresponding cluster, a classifier
could separate novel from sleep items with above-chance per-
formance (Fig. 4), which participants themselves could not do.
Differences between the sleep and new lists could also be evi-
denced when examining the stimulus-related alpha desynchro-
nization (Fig. 5). The EEG signal contains therefore information
about the fact that sleep items had been previously heard but
participants did not use this information to perform the old/
new task.

Nature of the memory traces formed in sleep

Although behavioral and EEG data indicate that words pre-
sented during sleep left a trace in participants’ brain, such
traces seem quite different from the explicit memory formed
during wakefulness. Indeed, wake items were explicitly recog-
nized (high first- and second-order performance, Fig. 2). On the
contrary, sleep items did not lead to above chance first-order
performance. The memory effect was restricted, at the behav-
ioral level, to second-order responses. An improvement of sec-
ond-order responses with at-chance first-order responses has
been often interpreted as the manifestation of an unconscious
(i.e. implicit) memory trace (Jachs et al., 2015; Rosenthal et al.,
2016, 2010; Scott et al., 2014; Tulving, 1985).

In fact, the patterns of results observed on confidence rating
(increased confidence for sleep items correctly categorized as
old compared to new one but lower confidence ratings com-
pared to sleep items incorrectly categorized as new, see Fig. 2b)
could be interpreted as a conflict between the absence of ex-
plicit memory for sleep items and the presence of implicit mne-
sic traces. Under such conditions, when the implicit memory
trace is weak or absent, participants would tend to process sleep
items as new with a rather high degree of confidence. On the
contrary, when the implicit trace is stronger, participants would
declare such items as old but with a rather low degree of confi-
dence due to the lack of explicit recognition. Nonetheless, these
items would elicit higher confidence ratings compared to incor-
rectly classified new items for which no implicit memory trace
exists. As a result, second-order responses exhibit a complex
pattern, whereby type-II ROC curves indicate a trend for below-
chance second-order performance (Fig. 2d).
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Thus, our results could fit with the classical distinction be-
tween “knowing” (explicit recollection) and “remembering” (im-
plicit recognition) (Tulving, 1985). According to this view, the
explicit recollection and familiarity both contribute to recogni-
tion but recruit different memory systems (Rugg et al., 1998;
Vilberg and Rugg, 2008; Voss and Paller, 2007). However, disen-
tangling the contribution of explicit and implicit memory at the
behavioral level and in their neural signature is very complex
(Malmberg, 2008; Rotello et al., 2004; Voss and Paller, 2007). The
pattern of behavioral results observed here does not indeed
constitute irrefutable evidence for the implicit nature of the
mnesic traces formed during sleep. Further investigations will
be needed to definitely clarify this point but the fact that partici-
pants were in a state of minimal, if not absent, consciousness
during the encoding period [i.e. NREM sleep (Nir et al., 2013)] ar-
gues in favor of an implicit determinant of learning. As a conse-
quence and contrary to many studies in which the explicit/
implicit nature of a stimulus is manipulated by processing
depth [e.g. (Rugg et al., 1998)], we can here better isolate the neu-
ral activity underlying implicit memory. Interestingly, many
studies showed quantitative rather than qualitative changes be-
tween the neural correlates of implicit and explicit memory
(Allan et al., 1998). Here, on the contrary, sleep items elicited a
centro-parietal negativity that appeared as the opposite of the
classical signature of explicit recollection (i.e. P3 effect; see
Fig. 3).

We further checked that this centro-parietal negativity de-
pended on the stimuli and not subjects’ response by focusing
on sleep and new items both categorized as “new” by partici-
pants. In such case, behavioral responses were identical for the
two conditions. Nevertheless, a similar cluster was observed
over Pz ([0.48, 0.62] s, pcluster ¼ 0.01), suggesting that the centro-
parietal negativity depends on prior exposure and not on partic-
ipants’ choice.

Alternatively, it has been proposed that the difference be-
tween explicit and implicit memory could stem from a differ-
ence in memory strength rather than different neural sources
(Squire et al., 2007). However, such view would predict an ERP
modulation similar to the wake list, albeit weaker, for the sleep
list in lieu of the opposite effects observed. While both familiar-
ity and recollection could be encoded in similar structures
within the medio-temporal lobe (Squire et al., 2007), our results
suggest that they can be dissociated under certain conditions.

Learning or consolidating during sleep?

Sleep has often been seen as a state promoting memory consoli-
dation to the detriment of memory encoding (Hasselmo, 1999;
Hennevin et al., 2007; Tononi and Cirelli, 2014). It has been pro-
posed that the low-level of acetylcholine in NREM sleep as well
as the relative disconnection of the sleepers from its environ-
ment would impair the formation of new memories. However,
recent research showed that the role of sleep in memory consol-
idation does not necessarily preclude any sleep-learning.
Accordingly, animals and humans can be conditioned during
sleep (Arzi et al., 2014, 2012; de Lavilléon et al., 2015; Hennevin
et al., 2007, 1995) even for hippocampus-dependent forms of
learning. One key element potentially explaining the success of
these studies consists in their ability to bypass sensory isolation
by providing either olfactive information (Arzi et al., 2012),
which does not transit by thalamic relays (Jones, 2007), or by us-
ing intracranial stimulations (de Lavilléon et al., 2015). Here, we
similarly ensure that the stimuli were processed at a high level
of representation by checking the preservation of task-related

motor preparation indexes (Fig. 1c) that can be observed if and
only if the novel information is correctly processed (Kouider
et al., 2014). It is also important to note that we studied mostly
light stages of NREM sleep (nap studies). It is possible that light
NREM is a stage more favorable to the processing of external in-
formation and the formation of memory in opposition to deeper
stages of sleep in which sensory isolation and changes in neuro-
modulation are more pronounced (Genzel et al., 2014).

Conclusions

The formation of memory during sleep is thus possible but is a
highly constrained phenomenon with little effect at the behav-
ioral level. Nonetheless, sleep-learning resulted here in distinc-
tive neural responses upon awakening, demonstrating the
recruitment of implicit learning mechanisms during NREM
sleep. Further research is needed to elucidate whether sleep-
learning can be optimized when taking into consideration sleep
stages or sleep rhythms, as it is the case for memory consolida-
tion (Batterink et al., 2016).
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