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Abstract: Studies on the regulation of phage Ø29 gene expression revealed a new 

mechanism to accomplish simultaneous activation and repression of transcription  

leading to orderly gene expression. Two phage-encoded early proteins, p4 and p6, bind 

synergistically to DNA, modifying the topology of the sequences encompassing early 

promoters A2c and A2b and late promoter A3 in a hairpin that allows the switch from  

early to late transcription. Protein p6 is a nucleoid-like protein that binds DNA in a  

non-sequence specific manner. Protein p4 is a sequence-specific DNA binding protein with  

multifaceted sequence-readout properties. The protein recognizes the chemical signature of 

only one DNA base on the inverted repeat of its target sequence through a direct-readout 

mechanism. In addition, p4 specific binding depends on the recognition of three A-tracts by 

indirect-readout mechanisms. The biological importance of those three A-tracts resides in 

their individual properties rather than in the global curvature that they may induce.  

Keywords: transcription regulator; nucleoprotein complex; protein-DNA recognition; 

direct-indirect-readout; protein-induced DNA hairpin; A-track; minor groove malleability; 

arginine in minor groove 
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1. Introduction  

Viral genes are expressed in a time-dependent manner for optimization of protein function. Gene 

expression is regulated primarily at the level of transcription initiation, mainly by σ factors and by 

transcription factors that facilitate or prevent interactions of the RNA polymerase (RNAP) with the 

promoter. To initiate transcription from specific promoters, the bacterial RNAP core must associate 

with the initiation factor σ, which contains determinants that allow sequence-specific interactions with 

promoter sequences [1]. A family of proteins known as “anti-σ factors” inhibits promoter utilization by 

targeting specific σ factors. The founding member of “anti-σ factors” is the AsiA protein of 

bacteriophage T4, which inhibits transcription from bacterial promoters and phage early promoters, and 

co-activates transcription from phage middle promoters [2–4]. Adding complexity to this regulation, 

anti-σ factors are regulated by anti-anti-σ factors that turn on σ factor activity, and co-anti-σ factors that 

act in concert with their associated anti-σ factor to inhibit or redirect σ activity [5].  

Transcription factors are mostly regulatory proteins that bind to DNA sequences generally at or 

nearby the promoter sequence. These sequence-specific protein interactions are usually responsible for 

regulating transcription initiation [6]. However, some proteins that bind DNA without sequence 

specificity, such as the so–called “nucleoid proteins”, are also responsible for transcription regulation. 

Although bacteria do not have nucleosomes, they do have nucleoid proteins such as Fis or H-NS, 

which organize the genomes and bend DNA upon binding. Both proteins regulate transcription by 

affecting the DNA structure as well as antagonizing the function of other transcription factors, mainly 

acting as repressors [7–9]. Transcription factors were initially classified as activators or repressors if 

they improved or inhibited transcription, respectively. However, both activators and repressors  

exert dual functions depending on how and where they bind to the DNA [10–20]. The CI dimeric 

DNA-binding protein of phage λ can function as a repressor or activator, exerting the transition from 

one program of λ gene expression to another upon the formation of a higher-order protein-DNA  

complex [21]. Similarly, the TyrR protein of Escherichia coli is a dimer capable of self-association to 

hexamers. TyrR dimers activate transcription, but TyrR hexamers repress transcription binding to 

targets that overlap the promoter sequence [22]. Furthermore, most transcriptional regulatory systems 

rely on the function of more than one regulatory protein, where functional interaction between them 

results in antagonism or synergism of their functions [23–26]. Binding of regulators frequently affects 

locally the topology of the DNA with, in some cases, great distortion of the double-helix. Among those 

topological changes, DNA bending is a common feature that allows distal regulators to act 

synergistically allowing for correct interactions between regulators and the transcription machinery, or 

providing an appropriate conformation of the promoter for its interaction with the RNAP [27–33].  

2. Molecular Requirements in the Transcriptional Switch from Early to Late Gene Expression 

During Bacteriophage Ø29 Infection 

Phage Ø29 gene expression is directed by the Bacillus subtilis σ
A
-RNAP [34,35]. The core  

enzyme of B. subtilis has a subunit composition of β, β’, α2 and ω, homologous to the E. coli enzyme.  

The B. subtilis σ
A
 subunit is homologous to E. coli σ

70
; both recognize the same consensus  

sequences at the −35 and −10 hexamers [36–43]. 
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Figure 1. (a) Genetic and transcription map of phage Ø29. Genes are indicated by numbers 

from 1 to 17. Location of the promoters A1, A2c, A2b, A3, B2 and C2 are indicated, and 

the transcription terminator TD1 is denoted; (b) detail of the Ø29 genome intergenic region 

between early promoter A2c and late promoter A3. Protein p4 dimer is represented in 

violet-green. Protein p4 binding region 1 contains sites 1 and 2 and region 2 contains  

sites 3 and 4. 

 

 

During Ø29 infection of B. subtilis, only those genes involved in DNA replication and transcription 

regulation are expressed at early times (Figure 1) [44]. Early genes are located at both ends of the 

genome and are all coded by the same DNA strand. Genes coding for structural proteins and for 

proteins involved in morphogenesis and cell lysis, centered in the genome, are coded in the 

complementary DNA strand and are transcribed at later times of infection. Transcription starting at the 

main early promoters, A2b and A2c, gives rise to viral proteins p6, p5, p4, p3, p2 and p1. The weak A1 

promoter, located at the left end of the genome, is involved in the production of a small transcript 

essential in the packaging of DNA into the viral prohead [45]. Promoter B2 gives rise to short  

anti-sense transcripts to the late policistronic mRNA [46]. The other early promoter, C2, is located at 

the right end of the genome and drives the expression of genes involved in DNA replication. Late 

genes are expressed from a single promoter, A3. Initiation from the late A3 promoter, of low homology 

with the consensus sequence for σ
A
-RNA polymerase, requires early protein synthesis. 

Regulation of gene expression during the development of Ø29 has proven to be a very powerful 

system to analyze different molecular mechanisms of transcription regulation based on formation  

of DNA-protein complexes and on specific DNA sequence recognition [47]. Ø29 suppressor-sensitive 

mutants in early genes 4 and 6 have impaired transcription when they infect a non-suppressor  

host [48,49]. Protein p4 binds to specific target sites and is required for the activation of the late 

promoter A3 and for the repression of early promoters A2b and A2c [44]. Protein p6 is a  
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nucleoid-type protein that binds in a non-sequence specific manner to the phage DNA, generating large 

nucleoprotein complexes [50,51]. The p6-DNA complex formed at the right end of the genome 

represses promoter C2 [52,53]. In addition, p6 cooperates with p4 in transcription regulation [54]. Both 

proteins bind synergistically to the sequence containing early promoters A2c, A2b and late promoter 

A3 resulting in a multimeric complex that elicits the switch from early to late transcription by 

repressing early promoters A2c and A2b and simultaneously activating late promoter A3 [55].  

3. Protein p4-DNA Complex: Direct and Indirect-Readout Mechanisms Involved in the 

Recognition of Target Sequences 

Most DNA binding proteins recognize their targets through interactions between their amino acid 

side chains and DNA bases (direct-readout). However, protein-DNA complex formation frequently 

requires additional interactions whereby bases not contacted by the protein and apparent unspecific 

interactions provide specificity by an “indirect-readout” mechanism [56–59]. The affinity of a protein 

for its DNA target by indirect-readout relies on the fact that B-DNA exhibits a high degree of 

topological variation depending on its sequence. Aspects such as intrinsic curvature, topology of major 

or minor grooves, local geometry of backbone phosphates, flexibility, and water-mediated hydrogen 

bonds contribute to protein-DNA specificity [60–63]. 

Protein p4 is a DNA binding protein [64–66] that binds to two regions of the phage Ø29 genome 

encompassing the sequences from promoter A2c to promoter A3 (Figure 1) [67]. Each region contains 

two imperfect inverted repeats and each inverted repeat is an independent p4 binding site. Binding 

sites, with the consensus sequence 5'-CTTTTT-15 base pairs-AAAATG-3', were named sites 1 to 4. 

Protein p4 binds two-fold more efficiently to site 3 than to site 1, and about five-fold better to site 1 

than to site 2; site 4 is the lowest affinity binding site. 

The structure of p4 showed an elongated dimer of two identical subunits (Figure 2a) [68]. Each 

protomer consists of five anti-parallel β-sheets, four α-helices and one 310-helix. This is a novel fold, 

and searching for structurally related proteins [69] revealed no relatives to p4. Another peculiarity of 

p4 is the structural element present at the N-terminus where the polypeptide chain from Pro
2
 to Gln

5
 

runs anti-parallel to the stretch from Arg
6
 to Asp

11
. This structural element, named “the N-hook,” is a 

key feature for DNA recognition. In the structure of the p4-DNA complex, two p4 protomers are bound 

to the same face of the DNA helix. The DNA presents a continuous curved B conformation towards the 

bound protein that correlates with minor groove narrowing at the concave face and minor groove 

widening at the convex face, while the major groove is quite regular. The hooks, located at the tips of 

the p4 dimer, intrude into the DNA major groove making the only amino acid-base contact of the 

complex. The guanidinium group of Arg
6
 bonds with G at positions + and −13 (±13). In addition, three 

positively charged patches in the p4 dimer interact with DNA backbone phosphates at three separated 

A-tracts (Figure 2b) [68]. Two of those A-tracts are externally located and placed in the inverted 

repeats of the target; the third is near position 0. In the external A-tracts, Thr
4
 contacts the phosphate of 

the base at position ±12. In addition, helix α1 residue Tyr
33

 contacts DNA phosphates at position ±8 on 

the opposite DNA strand. Residues Lys
51

 and Arg
54

 asymmetrically contact phosphates at the central 

minor groove [68]. Analysis of alanine-substituted proteins at those residues, as well as the study of p4 

interaction with mutated binding sites, provided important insights into the determinants required for 



Int. J. Mol. Sci. 2010, 11             

 

 

5133 

p4-DNA complex formation. Alanine substitution of Arg
6
, the amino acid responsible for base 

recognition, or substitution of G ± 13 were deleterious for p4 binding. Substitution of Thr
4
 or Tyr

33
 by 

alanine or disruption of the two external A-tracts by replacement of the A•T base pairs at position ±10 

or ±11 for the less deformable base pair C•G, which increases the energy required to distort the DNA, 

abolished p4 binding [70]. Consequently, the N-hook motif is a new protein  

sub-structure for DNA binding. The motif establishes proper recognition of the DNA sequence by a 

direct-readout mechanism that involves Arg
6
-G ±13 interaction and with Thr

4
 contributing to the 

indirect-readout mechanism of recognition of the external A-tracts. 

Figure 2. (a) Structure of the p4 dimer in complex with site 3. Monomers of the p4 dimer 

are represented in green and purple, and each monomer is distinguished as A (green) or B 

(purple) depending on its position with respect to the terminal repetition of site 3. 

Numbered are amino acids involved in DNA recognition and those of the dimerization 

region; (b) scheme of site 3 showing the protein-DNA interactions from the 3D structure [68]. 

Amino acid interactions with the DNA are marked with arrows. 

 

 

We generated Molecular Dynamics (MD) simulations of DNA and p4-DNA complexes to 

investigate the basis for the p4-DNA complex specificity [70]. In the absence of p4, the free DNA 

sequence corresponding to site 3 relaxes to a non-bent B conformation. Hence, the bent structure of the 

DNA in the p4-DNA complex is a consequence of the induced conformational modification impressed 

by p4. In agreement, p4 does not require intrinsically bent DNA for binding [67]. Despite the two-fold 

symmetry of the protein dimer, the target DNA has pseudo-inverted repeats (Figure 2b). One protomer 

(monomer A) interacts at the end containing the sequence 5'-AAAAAG-3', and the other (monomer B) 
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at the opposite end at the sequence 5'-AAAATG-3'. Studies on the functionality of this asymmetry led 

us to conclude than each inverted repeat contributes to p4 binding affinity differently since the 

monomers display dissimilar binding entropies; monomer B presents higher entropic stability than 

monomer A [70]. This is probably due to the fact that the pyrimidine-purine T/G step is more 

susceptible to deformation than the A/G step due to its smaller area of base overlap that will allow a 

better orientation of G + 13 for its interaction with Arg
6
 (Figure 2). Therefore, the sequence-dependent 

characteristics of the external A-tracts provide an indirect-readout of the sequence by affecting the 

optimal complementarities, both for amino acid-base hydrogen bonding and to favor interactions 

between amino acids and phosphates on the narrowed minor groove. 

The C-termini of α1 helices contain a cluster of 12 positively charged amino acids, located after a 

kink that maintain the helix almost parallel to the DNA axis (Figure 2). From these amino acids only 

Lys
51

 and Arg
54

 contact the DNA backbone in the p4-DNA structure and do so at the central A-track, 

although not symmetrically (Figure 2(b)). One monomer establishes salt bridges with T − 2 and G − 1 

phosphates, and the other monomer contacts the T + 2 phosphate across the minor groove [68]. Studies 

on the contribution of those amino acids to p4-DNA complex stabilization and sequence specific 

recognition were carried out by analyzing punctual mutated proteins, mutated DNA targets and by MD 

simulations. The results showed that A·T pairs from position 0 to +2 and Arg
54

 are critical for  

p4-specific binding [71]. It is remarkable that while the location of Arg
54

-monomer B was quite stable 

along the MD simulation, interacting mainly with the T + 2 phosphate, the residue of monomer A 

modified greatly its position in the p4-DNA complex (Figure 3). The residue, originally superficially 

positioned across the minor groove contacting A0 and G − 1 phosphates, moves into the groove 

between residues T + 3 and G − 1. The movement seems to be accomplished by the establishment of 

simultaneous hydrogen bonds at both DNA strands with the G − 1, T + 2 and T + 3 phosphates and 

with the deoxyribose O3 atoms of A0 and T + 1. Arg
54

-monomer A, stapling both DNA strands, would 

narrow the minor groove locally. Hence, despite being chemically equivalent and in identical 

monomers, the arginines differed in their interactions with DNA. Participation of arginines in DNA 

interaction has been the subject of a number of investigations. The arrangement of Arg
54

 in the  

p4-DNA complex differs from that in the complexes of Hox, histones or phage-434 repressor [72–74]. 

In the nucleosomes, the arginines are positioned asymmetrically in the minor groove frequently 

bridging O4 atoms of nucleotides i and i + 3 [75]. In the 434 repressor-DNA complex, the arginine is 

docked in the centre of the groove with the guanidium group bridging the deoxyribose O4 atoms from 

nucleotide i and i + 2. In the p4-DNA complex Arg
54

 generally bridged deoxyribose O3 atoms with 

phosphates. Therefore, p4 uses its Arg
54

 and the inherent properties of the central A-tract in order to 

create specific target recognition. 
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Figure 3. Selected images of Arg
54

 rearrangement at (a) 0 ns, (b) 2.4 ns and (c) 4 ns. 

Arginine
54

-monomer B (violet) interacts only with T + 2 phosphate along the trajectory. 

Arginine
54

-monomer A (green) interacts with G − 1 phosphate in (a); with G − 1 and T + 3 

phosphates and with deoxyribose O3 atoms of A0 and T + 3 in (b) and with G − 1 

phosphate in (c). 

 

Binding of transcriptional regulators to specific sequences must be strong enough to allow the 

regulatory protein to bind to its target site in the presence of competing non-specific binding, but not so 

tight as to impede the normal turnover of the regulatory processes. This scenario would be archived if 

the specific DNA-protein interactions utilize an assortment of direct- and indirect-readout mechanisms. 

Direct-readout mechanisms implying several amino acid-base interactions confer higher specificity but 

may produce too tight interaction. However, a direct-readout mechanism based on a single amino acid-

base interaction, as it occurs with p4, complemented with several indirect-readout mechanisms would 

produce the grade of specificity and stability required for appropriate turnover. Moreover, the indirect-

readout mechanisms described here could enable binding of proteins with negligible direct-readout 

recognition such as p4, histones and some transcriptional regulators to use information in the minor 

groove to achieve the required grade of DNA-binding specificity. 

4. Zipper Model for p4 Specific Sequence Recognition and DNA Binding 

In the p4-DNA complex, stability is a consequence of p4-induced conformational modification of 

the DNA, whereas the primary function of the DNA is its ability to acquire a conformation capable of 

enhancing positive interactions with p4. Taking into account that: (i) the asymmetry of the DNA target 

is functionally required for p4-DNA interaction; (ii) p4 curves the DNA, and (iii) the distance from  

G − 13 to G + 13 is about 90 Å while the 75 Å distance from the Arg
6
 of one of the monomers to the 

Arg
6
 of the other monomer is too short for simultaneous interaction of both monomers, we propose  

a zipper binding model for p4. In the model, one of the p4 monomers interacts first with the higher 

entropic stability inverted repeat sequence, 5'-AAAATG-3'. The N-hook gets introduced into the major 

groove, providing the Arg
6
-G + 13 specific interaction. Subsequent local narrowing of the proximal 

minor groove mediated by the contacts of Thr
4
 and Tyr

33
 at both edges of the nearest A-track will 

approach the central minor groove to the patch of positive amino acids. Here, Arg
54

-DNA interactions 

would narrow the groove. Two consecutive minor grooves narrowed in the same direction will 

progressively bend the DNA allowing the 5'-AAAAAG-3' inverted repeat to reach the hook of 

monomer A [47]. 
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Figure 4. Model and Atomic Force Microscopy (AFM) images representing the hairpin  

on the p4-p6-DNA and on the p4-p6-RNAP-DNA complexes. (a) Localization of proteins 

and topology of the DNA on the ternary p4-p6-DNA complex. Protein p4 (dimer in  

violet-green) and protein p6 (dimer in yellow) binding between promoters A2c and A3 

results in the formation of the nucleoprotein-hairpin. P4 bound to sites 1 and 3 partially 

overlay the −35 elements of early promoters A2b and A2c, respectively; (b) Model of the  

p4-p6-RNAP-DNA quaternary complex. The RNAP is represented stably bound to 

promoter A3 but in an unstable interaction with promoter A2c; (c) AFM image of a 

quaternary complex p4-p6-DNA-RNAP. The image shows the large volume of the RNA 

polymerase bound to promoter A3 and to its right the hairpin structure originated by the 

binding of p4 and p6 to the DNA. 

 

5. Regulation of the Switch from Early to Late Gene Expression 

Upon Ø29 infection of B. subtilis, the host RNAP starts transcription from early promoters A2b and 

A2c. RNAP recognizes promoters A2c and A2b through interaction of the α and σ subunits at the 

promoter elements [76]. Efficient stabilization of the closed complex at late promoter A3 requires 

protein p4 since the consensus of its −35 element is poor [77]. Synthesis of early mRNA gives rise to 

the production of proteins p4 and p6. P4 binding sites 1 to 4 are placed between promoters A2c and A3 

with sites 1 and 3 overlapping the –35 element of promoters A2c and A2b, respectively (Figure 4). 

When p4 is bound to its four binding sites, the two DNA strands build an angle around p4 resulting in a 

13 nm hairpin structure [78]. This hairpin might be the triggering factor for the preferential binding of 

p6 between p4 sites 1 and 3 (displacing p4 from site 2) that leads to the stabilization of the 

nucleoprotein-hairpin that modifies the activity of promoters A2c, A2b and A3 [76]. The 

nucleoprotein-hairpin allows RNAP recognition of promoter A2c giving rise to a closed complex with 

impeded isomerization to the open complex. No transcription complex is detected at promoter A2b, 

most probably due to the topological modification of the promoter sequence located at the apex of the 
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nucleoprotein-hairpin. On the other hand, the p4 dimer at site 3, further stabilized by p6, interacts with 

RNAP overcoming the rate-limiting step (closed-complex formation) of promoter A3 [79,80]. 

6. Conclusions 

The switch from early to late transcription of the Ø29 genome is tightly regulated to ensure the 

appropriate sequence of gene expression. Repression of early promoters A2c and A2b and activation of 

the late promoter A3 are simultaneously regulated in a sophisticated manner by proteins p4 and p6, 

where protein p4 has a leading role in the process. 

The study of protein p4 revealed novel protein-DNA interaction paradigms: (i) The p4 structure 

adds a new DNA binding motif to the catalogue of DNA binding protein motifs, the N-hook; (ii) p4 

recognizes its targets through direct-readout of the boundary guanines in its target sites and by two 

additional indirect-readout mechanisms. Both indirect-readout mechanisms are based on the 

malleability of A-tracts. First, remodeling the topology of the external A-tracks, p4 provides a better 

adjustment of the N-hook to the DNA. Second, the over-winding of the central minor groove by the 

insertion of Arg
54

 would narrow it providing optimal complementarity between one p4 surface and its 

target. Therefore, p4 creates specificity in the protein-DNA complex using the intrinsic properties of 

minor groove A-tracts.  

Protein p4 bound to its targets remodel 120 base pairs of DNA to the structure of a  

nucleoprotein-hairpin that is stabilized by the incorporation of p6. The nucleoprotein-hairpin is the key 

factor that coordinates gene expression since the switch from early to late transcription is the interplay 

between the RNAP and the p4-p6 complex for binding to the sequence containing promoters A2c, A2b 

and A3. Efficient promoter complex formation and transcription initiation requires the appropriate 

positioning of the RNAP at the promoter. The stability of the hairpin structure, which depends on the 

availability of proteins p4 and p6 in the cell, might be critical. The hairpin impairs the correct 

interaction of the RNAP at early promoters A2c and A2b and simultaneously activates late promoter 

A3 stabilising the primary transcriptional complexes.  
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