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Abstract. The COOH terminus of decay accelerating 
factor (DAF) contains a signal that directs attachment 
of a glycophospholipid (GPI) membrane anchor. To 
define this signal we deleted portions of the DAF 
COOH terminus and expressed the mutant cDNAs in 
CV1 origin-deficient SV-40 cells. Our results show that 
the COOH-terminal hydrophobic domain (17 residues) 
is absolutely required for GPI anchor attachment. 
However, when fused to the COOH terminus of a 

secreted protein this hydrophobic domain is insufficient 
to direct attachment of a GPI anchor. Additional 
specific information located within the adjacent 20 
residues appears to be necessary. We speculate that by 
analogy with signal sequences for membrane translo- 
cation, GPI anchor attachment requires both a COOH- 
terminal hydrophobic domain (the GPI signal) as well 
as a suitable cleavage/attachment site located NH2 ter- 
minal to the signal. 

novel mechanism for anchoring proteins to the plasma 
membrane has recently been described involving 
covalent attachment of a complex structure contain- 

ing phosphatidylinositol, carbohydrate, and ethanolamine to 
the COOH terminus of the protein (for reviews see Low, 
1987; Low and Saltiel, 1988; Ferguson and Williams, 1988). 
Attachment of this glycophospholipidinositol (GPI) ~ anchor 
is thought to occur in the endoplasmic reticulum (Bangs et 
al., 1985, 1986; Ferguson et al., 1986) after proteolytic 
removal of 17-31 COOH-terminal residues including a hy- 
drophobic domain (Boothroyd et al., 1980; Tse et al., 1985). 
A functionally diverse group of • 30 proteins is currently 
known to be anchored in this way (Low and Saltiel, 1988), 
including Thy-1 (Low and Kincade, 1985; Tse et al., 1985), 
the variant surface glycoproteins of African trypanosomes 
(Ferguson et al., 1985), acetylcholinesterase (Futerman et 
al., 1985; Roberts and Rosenberry, 1986), the neural cell 
adhesion molecule (Hemperly et al., 1986), Qa-2 (Stroy- 
nowski et al., 1987; Waneck et al., 1988), the Scrapie prion 
protein (Stahl et al., 1987), and decay accelerating factor 
(DAF) (Davitz et al., 1986; Medof et al., 1986). 

DAF is a complement regulatory protein that binds acti- 
vated complement fragments, C3b and C4b, thereby inhibit- 
ing amplification of the complement cascade on host cell 
membranes (Kinoshita et al., 1986; Medof et al., 1984; 
Nicholson-Weller et al., 1982). We recently identified two 
classes of DAF mRNA in HeLa cells, one apparently related 
to the other by a splicing event that causes a coding frame- 

1. Abbreviations used in this paper: COS, CVI origin-deficient SV-40; DAE 
decay accelerating factor; gD, glycoprotein D; GPI, glycophospholipid- 
inositol; hGH, human growth hormone; IRMA, immunoradiometric assay; 
LDLR, low density lipoprotein receptor; PIPLC, phosphatidylinositol- 
specific phospholipase C. 

shift near the COOH terminus (Caras et al., 1987a). TWo DAF 
proteins are therefore possible, having divergent COOH- 
terminal domains. The spliced DAF mRNA predicts a hydro- 
phobic COOH terminus and generates GPI-anchored, mem- 
brane-bound DAE The protein encoded by the unspliced 
cDNA has a hydrophilic COOH terminus and is secreted. 
These observations suggest that the COOH terminus of mem- 
brane DAF contains information required for attachment of 
a GPI anchor. We confirmed this by showing that the last 37 
amino acids of membrane DAF, when fused to a secreted 
protein, are sufficient to target the fusion protein to the plas- 
ma membrane by means of a GPI anchor (Caras et al., 
1987b). Similar experiments involving the construction of 
hybrid proteins by exon switching indicated that the COOH- 
terminal domain of the Qa-2 antigen can produce a GPI- 
anchored H-2 antigen (a molecule normally anchored by a 
transmembrane domain near the COOH terminus). Con- 
versely, a fusion containing the NH2-terminal portion of 
Qa-2 and the COOH-terminal domain of an H-2 antigen was 
not GPI anchored (Stroynowski et al., 1987; Waneck et al., 
1988). 

The nature of the signal that directs processing and attach- 
ment of a GPI anchor is not known. Inspection of the pre- 
dicted COOH-terminal amino acid sequences available for 
GPI-anchored proteins has revealed no obvious homology, 
the only common feature being a short (15-20 residues) hy- 
drophobic domain of variable sequence at the COOH termi- 
nus. This hydrophobic region is thought to be removed dur- 
ing processing and replaced with the GPI anchor. In this 
report we describe experiments aimed at deciphering the 
GPI signal of membrane DAF. We took two different ap- 
proaches. First, we constructed mutants of membrane DAF 
having altered COOH termini and studied their expression 
in CV1 origin-deficient SV-40 (COS) cells. Second, we ana- 
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lyzed fusion proteins containing portions of the DAF COOH 
terminus fused to a normally secreted protein, human growth 
hormone (hGH). Our results suggest that GPI anchor attach- 
ment requires the COOH-terminal hydrophobic domain of 
17 amino acids as well as additional information (possibly 
a suitable cleavage/attachment site for the anchor) located 
within the adjacent 20 amino acids. 

Materials and Methods 

Materials 
Phosphatidylinositol-specific phospholipase C (PIPLC) purified from Ba- 
cillus thuringiensis was generously provided by Dr. Martin G. Low of 
Columbia University. Monoclonal antibodies against DAF were obtained 
from Dr. V. Nussenzweig of NYU; purified rabbit antibody against hGH 
was provided by the Medicinal Analytical Chemistry Department at Genen- 
tech, Inc. (South San Francisco, CA); anti-HSV-I was from Dako Corp. 
(Santa Barbara, CA); IgG coupled to either fluorescein or rhodamine was 
obtained from Cappel Laboratories (Malvern, PA); [3H]ethanolamine was 
from Amersham Corp. (Arlington Heights, IL). Oligonucleotides were 
provided by Mark Vasser, Parkash Jhurani, and Peter Ng of Genentech, Inc. 

Recombinant Plasmids, Mutagenesis, and 
Fusion Proteins 

Deletion or substitution mutants of membrane DAF were constructed by 
oligonucleotide-directed mutagenesis of an MI3-DAF vector essentially as 
described (Zoller and Smith, 1982). To construct hGH-DAF 17, an XbaI- 
KpnI fragment of the hGH gene was cloned into the M13 vector mp 19. In- 
sertional mutagenesis was carried out (Zoller and Smith, 1982) using a 79- 
bp synthetic oligonucleotide encoding the last 17 amino acids of membrane 
DAE This created an in-frame fusion between hGH and the COOH-ter- 
minal hydrophobic domain of DAE hGH-DAF 27, hGH-DAF 37, hGH- 
LDLR-DAE hGH-DAF, and hGH-A4 DAF were constructed by inser- 
tional mutagenesis of hGH-DAF 17 in an M13 vector, using synthetic 
oligonucleotides, gD-1-DAF 17 was constructed by oligonucleotide-di- 
rected deletion mutagenesis of gD-I-DAF (Caras et al., 1987b) cloned into 
an M13 vector. All of the recombinant plasmids were verified by sequenc- 
ing. Recombinant DAE hGH-DAE or gD-I-DAF cDNAs were inserted 
into a mammalian expression vector between a cytomegalovirus enhan- 
cer/promoter and an SV-40 polyadenylation sequence (Eaton et al., 1986). 

Transfections 
Cells were transfected by the calcium phosphate coprecipitation method as 
described by Wigler et al. (1979) using 3-10 ttg of plasmid DNA. Cells were 
incubated with the calcium phosphate-DNA precipitates for 3 h and then 
treated with 15% glycerol for 30 s. 

Metabolic Labeling and Immunoprecipitation 
Metabolic labeling of cells with [35S]methionine or [35S]cysteine (Amer- 
sham Corp., Arlington Heights, IL) (166/xCi/35-mm dish) was carried out 
in methionine- or cysteine-free Dulbecco's minimal essential medium for 
4-6 h. [3H]Ethanolamine labeling (166 #Ci/35-mm dish) was carried out 
overnight in a 1:1 mixture of Fl2 and Dulbecco's minimal essential medium 
supplemented with 10% FBS. After radiolabeling, the culture medium was 
removed and cleared by centrifugation. The cells were harvested by scraping 
and lysed with 1% NP-40 in the presence of a protease inhibitor (1 mm 
PMSF). Immunoprecipitations were carried out as described by Anderson 
and Blobel (1983). 

Immunofluorescent Labeling of Cells 
Immunofluorescent labeling of intact cells (cell surface labeling) or permea- 
bilized cells (internal labeling) was carried out as described (Caras et al., 
1987b). 

Immunoradiometric Assay (IRMA) for hGH 
hGH was assayed by a solid-phase two-site IRMA as described (Hybritech, 
Inc., San Diego, CA). 

PIPLC Digestions 
Transfected cells were washed in PBS and resuspended in PBS containing 
2% heat-inactivated FBS with or without PIPLC, 4 ~g/ml. Incubation was 
for 60 min at 37°C. 

Results 

Mutagenesis of the DAF COOH Terminus and Effect 
on GPI Anchor Attachment 
We previously localized the GPI signal of membrane DAF 
to the last 37 amino acids predicted by the eDNA. To further 
define the GPI signal, we constructed three deletion mutants 
in which portions of this COOH-terminal region were re- 
moved from membrane DAF (Fig. 1 a). The A1 deletion re- 
moved the last 17 residues predicted by the DAF eDNA 
(residues 331-347; comprising the COOH-terminal hydro- 
phobic domain), replacing them with a termination codon 
(TAG). Deletions A3 and A4 are internal deletions removing 
8 and 20 residues, respectively (323-330 and 311-330), im- 
mediately NH2 terminal to the hydrophobic domain. This 
upstream region presumably contains the proposed process- 
ing site. In addition, we constructed two point mutants, 
Ala 33° and Ser 33°, in which Cys TM had been changed to Ala 
or Set, respectively. Cys 33° was specifically chosen for site- 
directed mutagenesis since the anchor of Thy-1 is known to 
be attached to a Cys residue after removal of 31 residues, in- 
cluding a hydrophobic region, from the COOH terminus 
(Tse et al., 1985). 

The wild-type and mutant DAF cDNAs were transiently 
expressed in COS cells under control of the cytomegalovirus 
promoter. The cells were labeled with [35S]cysteine and 
DAF was immunoprecipitated from the cell extracts and cul- 
ture media. Wild-type DAF was localized primarily in the 
cell lysate as an ,~40-kD unglycosylated precursor and an 
,~70-kD mature form, both of which electrophoresed as 
doublets (Fig. 1 b, lane 1 ). In addition, the culture medium 
contained a minor soluble form of "~68 kD (Fig. 1 b, lane 
7). Pulse-chase experiments suggest that the soluble form is 
derived from membrane DAF by a cleavage within the GPI 
anchor (possibly by a phospholipase) which leaves [3H]eth- 
anolamine attached to the protein but removes [3H]palmi- 
tate (data not shown). The patterns of expression of A 3, A4, 
Ala 33°, and Ser 33° DAF were similar to wild type. Both the 
unglycosylated and mature DAF species were localized in 
the cell lysates (Fig. 1 b, lanes 3-6), although the relative 
amounts of soluble (released) DAF in the medium appeared 
greater than was observed with wild-type DAF (Fig. 1 b, 
lanes 9-12). In contrast, the expression pattern for A1 DAF 
was dramatically different. The cell lysate contained only the 
unglycosylated form, while all of the mature protein was 
secreted into the culture medium (Fig. 1 b, lanes 2 and 8). 

To determine whether the cell-associated DAF was on the 
cell surface, we analyzed the cells by immunofluorescence. 
Cell surface staining of intact cells revealed that, with the ex- 
ception of A1 DAF, all the mutant DAF proteins were ex- 
pressed on the cell surface of transfected COS cells (Fig. 2). 
Analysis of permeabilized cells showed localization of these 
proteins in a perinuclear region (possibly endoplasmic retic- 
ulum) as well as in a Golgi-like organelle located on one side 
of the nucleus (data not shown). Permeabilized cells express- 
ing A1 DAF showed a more diffuse staining pattern charac- 
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Figure L (a) Schematic diagram showing dele- 
tions (A1, A3, A4) and amino acid substitu- 
tions (Ala 33°, A; Ser a3°, S) at the DAF COOH 
terminus. The COOH-terminal hydrophobic 
domain (17 residues) is shown in black. (b) im- 
munoprecipitation of mutant DAF proteins 
from [35S]cysteine-labeled transfected COS 
cells. COS cells transfected with mutant DAF 
cDNAs were labeled with [35S]cysteine as de- 
scribed in Materials and Methods. DAF was 
immunoprecipitated from cell lysates (lanes 
1-6) or culture media (lanes 7-12). Lanes as in- 
dicated show the expression of wild-type (WT), 
deletion mutant (A1, A3, and A4), and sub- 
stitution mutant (Ala 33° and Set 33°) DAF de- 
scribed in a. 

teristic of secreted proteins (our unpublished observations). 
These data suggest that the COOH-terminal hydrophobic do- 
main (deleted from A1 DAF) is required for expression of 
DAF on the cell surface, whereas deletion of sequences adja- 
cent to this region, which presumably contains the cleav- 
age/attachment site, do not affect targeting to the cell surface, 
although their absence may enhance release. 

We next determined whether the mutant DAF proteins 
expressed on the cell surface are anchored by means of a 
GPI anchor, l~S]Cysteine-labeled cells were incubated with 
PIPLC from Bacillus thuringiensis, and residual cell-bound 
as well as released DAF was analyzed by immunoprecipita- 
tion. After incubation with PIPLC the levels of 70-kD ma- 
ture DAF in the cell lysates were significantly decreased both 
for wild-type DAF and all the mutants except A1 DAF (Fig. 
3 a). The levels of 40-kD unglycosylated DAF, presumably 
an intraceUular protein, were unaffected by PIPLC. The 
PIPLC-released DAF was specifically recovered in the su- 
pernatants from the incubations in all cases except A1 DAF 
(Fig. 3 b). These results suggest that both wild-type DAF and 

the mutant DAFs with the exception of A1 DAF are anchored 
on the plasma membrane by a GPI anchor. 

To confirm this, we immunoprecipitated DAF from cells 
labeled metabolically with [3H]ethanolamine, a component 
of the GPI anchor. Labeled species corresponding to both 
unglycosylated and mature DAF were detected in cell lysates 
from cells expressing either wild-type or mutant DAF pro- 
teins, with the exception of A1 DAF (Fig. 3 c). The ,'~68-kD 
soluble form of DAF in the culture media from these cells 
was also labeled with [3H]ethanolamine, suggesting that 
this form is derived from membrane DAF by a nonproteo- 
lytic release mechanism (Fig. 3 c). In contrast, neither the 
intracellular unglycosylated form nor the secreted mature 
form of A1 DAF was labeled with [3H]ethanolamine, indi- 
cating that this mutant does not contain a GPI anchor (FigL 
3 C, lanes 2 and 8). 

These results suggest that the 17-residue hydrophobic do- 
main at the COOH terminus of membrane DAF is critical for 
attachment of a GPI anchor, whereas the 20 residues im- 
mediately NH2 terminal to this region do not appear to play 

Caras et al. Signal for Glycophospholipid Membrane Anchor 1389 



Figure 2. Immunofluorescent labeling of 
wild-type and mutant DAF proteins on the 
cell surface of transfected COS cells. Fixed, 
nonpermeabilized COS cells were labeled as 
described in Materials and Methods, 24 h 
after transfection. (A) Wild-type DAF; (B) 
A1 DAF; (C) A3 DAF; (D) A4 DAF; (E) 
Ala 33° DAF; (F) Ser 33° DAE Bar, 10 #m. 

an essential role. Cys 33° (a candidate for the site of anchor 
attachment by analogy with Thy-1) is not critical since it can 
be replaced by Ser or Ala without affecting GPI anchorage 
of DAE 

Construction of Fusion Proteins to Probe 
the GPI Anchor Signal 

To determine whether the COOH-terminal hydrophobic do- 
main alone is sufficient to signal the attachment of a GPI 
anchor we used gene manipulation to construct a fusion pro- 
tein, hGH-DAF 17, in which the COOH-terminal hydro- 
phobic domain of DAF (17 amino acids) was fused in frame 
to the COOH terminus of hGH, a secreted protein (Fig. 4 a). 
When expressed in COS cells, this fusion protein was not a 
substrate for GPI anchor attachment and was targeted for 
secretion (see below). We considered two possible explana- 
tions for this result: (a) the 17-residue hydrophobic domain 
of DAF contains insufficient information to direct GPI an- 
chor attachment; or (b) the DAF hydrophobic domain was 
positioned too close to the possibly folded COOH terminus 
of the normally secreted hGH protein, preventing access of 
the processing enzyme (the residue third from the COOH 
terminus of hGH is a cysteine known to be involved in a 
disulfide bond). To test these possibilities, we modified the 
hGH-DAF 17 fusion protein by inserting additional in-frame 
sequences between hGH and the DAF hydrophobic domain 
and asked what is required to retarget the secreted fusion 
protein to the plasma membrane by means of a GPI anchor. 

We constructed hGH-DAF 27 and hGH-DAF 37 which con- 
tain an additional 10 or 20 residues of DAF sequence, re- 
spectively, immediately NH2 terminal to the 17-residue hy- 
drophobic domain (Fig. 4, b and c). This additional DAF 
sequence corresponds to the sequence deleted in mutant A4 
DAF described above and forms part of the 76-residue ser- 
ine/threonine-rich domain ofDAF (Caras et al., 1987a). We 
also constructed hGH-LDLR-DAF 17 which contains a 15- 
residue segment (738-752) from the serine/threonine-rich 
domain of the low density lipoprotein receptor (LDLR) 
(Cummings et al., 1983; Russell et al., 1984) inserted be- 
tween the hGH sequence and the hydrophobic domain of 
DAF (Fig. 4 d); and hGH-syn-DAF 17 which contains a 
synthetic octapeptide (designed to be hydrophilic) similarly 
inserted between hGH and the DAF hydrophobic domain 
(Fig. 4 e). The latter two constructions were designed to test 
the hypothesis that steric hindrance prevents correct process- 
ing of hGH-DAF 17, in which case insertion of a random 
"spacer" sequence might allow GPI anchor attachment to 
occur. 

Expression of hGH-DAF Fusion Proteins 
in COS Cells 

The hGH-DAF fusion proteins were transiently expressed in 
COS cells under control of the cytomegalovirus promoter 
and localized by [35S]methionine labeling followed by im- 
munoprecipitation using a purified rabbit anti-hGH anti- 
body. The hGH-DAF 17 and hGH-syn-DAF 17 expression 
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Figure 3. (a and b) PIPLC release of mutant DAF proteins from 
tmnsfected COS cells. Transfected COS cells were labeled with 
[35S]cysteine and then incubated for 1 h at 37"C in PBS containing 
2% BSA, with or without PIPLC (4/zg/ml) as indicated. After 
treatment, cells and supernatants were separated by centrifugation 
and DAF was immunoprecipitated from both NP-40 cell lysates (a) 
and incubation supernatants (b). (c) [JH]Ethanolamine labeling of 
mutant DAF proteins expressed in COS cells. Transfected COS 
cells were labeled with [3H]ethanolamine (166/~Ci/35-mm dish) 
for 16 h. DAF was then immunoprecipitated from NP-40 cell ly- 
sates (lanes 1-6) and cell culture media (lanes 7-12). Equivalent 
amounts of sample were loaded in each lane and exposure times for 
lysate or media immunoprecipitations were the same. 

products were secreted into the culture medium as unpro- 
cessed fusion proteins (Fig. 5 a, lanes 6 and 10). This was 
deduced by comparing their apparent molecular weights 
with that of  native hGH (not shown). The fusion proteins 
were secreted less efficiently than native hGH since signifi- 
cant amounts of  fusion protein remained cell associated (Fig. 

5 a, lanes 1 and 5) whereas <10% of mature hGH expressed 
under similar conditions was cell associated (not shown). 
This suggests that an unprocessed DAF COOH-terminal hy- 
drophobic domain, although unable to act as a membrane an- 
chor, may retard secretion. The fusion proteins hGH-DAF 
27, hGH-DAF 37, and h G H - L D L R - D A F  17 were cell as- 
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Figure 4. Schematic diagram showing hGH-DAF fusion proteins. 
Shaded areas are as follows: (m) COOH-terminal hydrophobic do- 
main of DAF (residues 331-347); ([]) DAF sequence immediately 
NH2 terminal to the hydrophobic domain (residues 321-330 in 
hGH-DAF 27 and 311-330 in hGH-DAF 37); ([]) residues 738- 
752 from the serine/threonine-rich domain of the LDLR; ([]) syn- 
thetic octapeptide; ([]) hGH signal peptide. 

Table I. IRMA of  hGH in Supernatants from Transfected 
COS Cells Incubated with or without PIPLC 

Addition 
Fusion 
protein None PIPLC 

hGH (ng/ml) 

h G H - D A F  17 22.0 29.0 
h G H - D A F  27 2.9 3.6 
h G H - D A F  37 4.5 33.0 
h G H - L D L R - D A F  17 3.9 3.8 
h G H - S y n - D A F  17 15.5 16.2 

Numbers shown represent the average of two experiments. 

sociated (Fig. 5 a, lanes 2-4)  with only trace amounts of pro- 
tein appearing in the culture medium (Fig. 5 a, lanes 7-9). 

To determine whether the cell-associated fusion proteins 
were on the cell surface we analyzed the cells by indirect im- 
munofluorescence. Although analyses of permeabilized cells 
showed strong fluorescence in populations transfected with 
each of the five hGH-DAF cDNAs (data not shown), surface 
immunofluorescence of intact cells was observed only with 
cells expressing hGH-DAF 37 (Fig. 5 b). The hGH-DAF 27 

and hGH-LDLR-DAF 17 fusions, although cell associated, 
were undetectable on the cell surface by immunofluores- 
cence. 

We next tested for the presence of GPI-anchored cell sur- 
face fusion proteins by incubating transfected COS cells with 
PIPLC. The levels of hGH in the incubation supernatants 
were measured using an IRMA (Hybritech, Inc.). Signifi- 
cant levels of hGH were detected in the absence of PIPLC 
in incubation supernatants from cells transfected with hGH- 
DAF 17 or hGH-syn-DAF, confirming that these proteins 

Figure 5. (a) Immunoprecipitation of hGH-DAF fusion proteins from [35S]methionine-labeled transfected COS cells. COS cells were la- 
beled with [35S]methionine 24 h after transfection with DNAs encoding hGH-DAF fusion proteins as indicated. The hGH-DAF fusion 
proteins were immunoprecipitated from cell lysates (lanes 1-5) and culture media (lanes 6-10) using a purified rabbit antibody against 
hGH. (b) Immunofluorescent labeling of hGH-DAF 37 on the cell surface of transfected COS cells. Fixed, nonpermeabilized COS cells 
expressing hGH-DAF 37 were labeled as described in Materials and Methods. Bar, 5/zm. 

The Journal of Cell Biology, Volume 108, 1989 1392 



(Fig. 6, lane 8), presumably derived from the membrane 
form by a nonproteolytic release mechanism. 

The above results demonstrate that the 17-residue hydro- 
phobic domain of DAF plus the adjacent 20 residues (37 
residues in total) will target hGH to the plasma membrane 
via a GPI anchor. The 17-residue hydrophobic domain alone 
appears to be insufficient, as is the hydrophobic domain with 
only 10 additional residues of DAF sequence or with non- 
specific "spacer" sequences. 

Figure 6. 13H]Ethanolarnine labeling of hGH-DAF fusion proteins 
in transfected COS ceils. After overnight labeling of transfected 
COS cells with [3H]ethanolamine, hGH-DAF fusion proteins as 
indicated were immunoprecipitated from cell lysates (lanes 1-5) 
and culture media (lanes 6--10) using an anti-hGH antibody. 

are secreted (Table I). In contrast, release of the hGH-DAF 
37 fusion protein is PIPLC dependent, indicating that this 
protein is anchored to the plasma membrane by a GPI an- 
chor. Insignificant levels of hGH were detected in incubation 
supernatants from cells expressing hGH-DAF 27 or hGH- 
LDLR-DAF, consistent with the observation that these fu- 
sion are neither secreted nor expressed on the cell surface, 
but may be trapped intracellularly. 

It is possible that the nonsecreted fusion proteins con- 
tained GPI anchors. To examine this we labeled transfected 
COS cells with [~H]ethanolamine and analyzed the labeled 
proteins by immunoprecipitation. Of the five fusion proteins 
analyzed, only hGH-DAF 37 was significantly labeled with 
[3H]ethanolamine (Fig. 6, lane 3), suggesting that this is the 
only fusion protein that is correctly processed and targeted 
to the cell surface by means of a GPI anchor. The signifi- 
cance of the minor labeled species visible in the remaining 
lanes is unclear. A soluble species of [3H]ethanolamine- 
labeled hGH-DAF 37 was detected in the culture medium 

gD-1-DAF Fusion Protein 

To strengthen the argument that the COOH-terminal hydro- 
phobic domain alone is insufficient to direct GPI anchor at- 
tachment, we used a different secreted protein to test the 
putative GPI signal. We modified a previously described gD- 
1-DAF fusion protein (Caras et al., 1987b) which contains 
the last 37 residues of DAF (residues 311-347) fused to the 
COOH terminus of a truncated, secreted form of glycopro- 
tein D (gD-1) from herpes simplex virus type 1. This fusion 
protein is expressed on the cell surface of mammalian cells 
as a GPI-anchored protein (Caras et al., 1987b). We con- 
structed by deletion mutagenesis of gD-1-DAF a new fusion, 
gD-1-DAF 17, in which residues 311-330 of the DAF se- 
quence were removed, leaving only the COOH-terminal hy- 
drophobic domain of DAF (17 residues) fused directly to the 
COOH terminus of the truncated gD-1 protein. Immuno- 
precipitation of [35S]methionine-labeled gD-1-DAF 17 from 
transfected COS cells indicated that this protein is secreted 
into the culture medium as a heterogeneous (presumably 
glycosylated) 40-50-kD protein (Fig. 7, lane 4), while the 
cell lysate contains only the 37-kD unglycosylated form (Fig. 
7, lane 2). In addition, we were unable to detect cell surface 
gD-1-DAF 17 by immunofluorescent labeling of intact, trans- 
fected COS cells, although COS cells expressing gD-1-DAF 
(the GPI-anchored fusion) were strongly positive (Caras 
et al., 1987b). These data are consistent with the above 
results obtained with the hGH-DAF 17 fusion and suggest 
that, whereas the last 37 residues of DAF predicted by the 
cDNA can direct attachment ofa  GPI membrane anchor, the 
17-residue COOH-terminal hydrophobic domain alone is 
insufficient. 

Redundant Element in DAF 

The above results indicate that, in the context of a fusion pro- 
tein, the 20 amino acids NH2 terminal to the hydrophobic 
domain (residues 311-330) are essential for directing attach- 
ment of a GPI membrane anchor. However, these same resi- 
dues can be deleted from the DAF protein (as in A4 DAF) 
without affecting GPI anchor attachment. To explain this ap- 
parent contradiction we hypothesized that the essential infor- 
mation contained within the 311-330 region might be re- 
peated in the DAF molecule such that deletion of residues 
311-330 brings a redundant or cryptic element into juxtapo- 
sition with the hydrophobic domain, creating a viable signal 
for GPI anchor attachment. To test this hypothesis we con- 
structed a fusion protein, hGH-A4 DAF, containing a 37- 
residue segment from the COOH terminus of A4 DAF fused 
in-frame to the COOH terminus of hGH. This 37-residue 
segment of A4 DAF includes the COOH-terminal hydropho- 
bic domain (residues 331-347) juxtaposed with 20 residues 

Caras et al. Signal for Glycophospholipid Membrane Anchor 1393 



Figure 7. Immunoprecipitation of gD-1-DAF 17 from [35S]methio- 
nine-labeled transfected COS cells. Transfected COS cells were 
labeled with [35S]methionine and gD-1-DAF 17 was immunopre- 
cipitated from the cell lysate and culture medium using a rabbit 
polyclonal antibody to HSV-1. (Lanes 1 and 3) Mock transfected 
COS cells; (lanes 2 and 4) cells transfected with gD-1-DAF 17. 

(291-310) NH~ terminal to the 311-330 region that was de- 
leted from A4 DAF (Fig. 8 a). 

When expressed in COS cells, the hGH-A4 DAF fusion 
protein was localized on the cell surface as indicated by 
immunofluorescent staining of the transfected cells (Fig. 8 
b). Immunoprecipitation of [35S]methionine-labeled pro- 
teins from cell lysates and culture media confirmed that 
hGH-A4 DAF is cell associated (data not shown). To test for 
the presence of a GPI anchor, we incubated transfected COS 
cells with PIPLC and measured hGH levels in the incubation 
supernatants. Incubation with PIPLC resulted in a significant 
release of hGH-A4 DAF from the cell surface (Table II), in- 
dicating that this protein, like hGH-DAF 37, is linked to the 
plasma membrane via a GPI anchor. The effect of PIPLC on 
the release ofhGH-DAF 37 and hGH-DAF 17 was measured 

in the same experiment and is shown for comparison (Table 
II). The PIPLC-independent release of hGH-DAF 37 and 
hGH-A4 DAF (Table II) presumably represents protein re- 
leased from the cell surface by an endogenous phospholipase 
or protease. 

We conclude that DAF contains a second element (located 
between residues 291 and 310) that can substitute for the 
311-330 region and, in conjunction with the COOH-terminal 
hydrophobic domain, will direct a normally secreted protein 
to the plasma membrane by means of a GPI membrane 
anchor. 

Discussion 

A COOH-Terminal Hydrophobic Domain Is Critical 
for GPI Anchor Attachment 

In a previous report we showed that the last 37 residues of 
membrane DAF are sufficient to direct a secreted protein to 
the plasma membrane by means of a GPI anchor (Caras et 
al., 1987b). In the present study we selectively removed por- 
tions of this region from membrane DAF to further define 
the GPI signal. As criteria for cell surface expression and 
GPI anchorage we used immunofluorescent labeling of the 
protein on intact cells, its release by PIPLC, and specific la- 
beling by [3H]ethanolamine, a component of the GPI an- 
chor. Removal of the last 17 residues (the hydrophobic COOH- 
terminal domain) predicted by the DAF cDNA resulted in 
lack of attachment of a GPI anchor and secretion of the DAF 
protein, suggesting that a COOH-terminal hydrophobic do- 
main is critical for GPI anchor attachment. A similar conclu- 
sion was reached by Berger et al. (1988) who showed that 
mutants of placental alkaline phosphatase containing 13 or 
fewer hydrophobic residues at the COOH terminus failed to 
become GPI anchored and were secreted. Consistent with 
this, all known GPI-anchored proteins are synthesized with 
a 10-20-residue hydrophobic domain of variable sequence at 
the COOH terminus (Low, 1987; Low and Saltiel, 1988). 

Importance of  the Region NH2 Terminal to the 
Hydrophobic Domain 

Deletion of up to 20 residues immediately NH2 terminal to 
the hydrophobic domain did not affect GPI anchorage of 
DAF suggesting that this region, which presumably contains 
the cleavage/attachment site, is not essential and implying 
that the COOH-terminal hydrophobic domain alone might 
constitute the GPI signal. However, fusion of the DAF 

Table II. PIPLC Release of hGH-A4 DAF from 
Transfected COS Cells 

Addition 
Fusion 
protein None PIPLC 

hGH (ng/ml) 

None 1.2 1.2 
hGH-A4 DAF 24.0 286.0 
hGH-DAF 17 9.6 l l .3  
hGH-DAF 37 77.0 215.0 

After incubation of transfected cells either with or without PIPLC, hGH levels 
in the supernatants were determined by an IRMA. Numbers shown represent 
the average of two experiments. 
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Figure 8. (a) Schematic diagram showing the hGH-A4 DAF fusion protein. Shaded areas are as follows: (w) COOH-terminal hydrophobic 
domain of DAF (residues 331-347); (~) DAF sequence (residues 291-310) NH2 terminal to the A4 (311-330) deletion; (r~) hGH signal 
peptide. (b) Immunofluorescent labeling of hGH-A4 DAF on the cell surface of transfected COS cells. Fixed, nonpermeabilized COS cells 
expressing hGH-A4 DAF were labeled as described in Materials and Methods. Bar, 5 ttm. 

COOH-terminal hydrophobic domain to the COOH termi- 
nus of two different secreted proteins, hGH or a truncated 
form of gD-1, failed to produce a GPI-anchored protein. We 
considered two possible explanations for this result: (a) GPI 
anchor attachment requires a COOH-terminal hydrophobic 
domain plus additional specific information (acting as a 
component of the signal or as a substrate for processing) 
which was lacking in these fusions; or (b) correct processing 
was prevented by steric hindrance resulting from the direct 
fusion of a hydrophobic domain to the possibly folded COOH 
terminus of a normally secreted protein. To distinguish be- 
tween these possibilities we inserted either specific (the adja- 
cent DAF sequence) or nonspecific sequences between hGH 
and the DAF COOH-terminal hydrophobic domain. The 
nonspecific sequences chosen were a synthetic octapeptide 
composed primarily of hydrophilic amino acids, or a portion 
of the serine/threonine-rich region of the LDLR (a similar 
serine/threonine-rich domain is located NH2 terminal to the 
hydrophobic domain in DAF). The inclusion of nonspecific 
"spacer" sequences between hGH and the COOH-terminal 
hydrophobic domain failed to produce a GPI-anchored pro- 
tein. In contrast, both hGH-DAF and gD-1-DAF fusions 
containing 37 residues of DAF sequence (the COOH-ter- 
minal hydrophobic domain plus the adjacent 20 residues) 
were expressed on the cell surface as GPI-anchored proteins. 
This result suggests that specific information required for 
GPI anchor attachment is located in the region NH2 termi- 
nal to the hydrophobic domain. The inclusion of only l0 
residues of DAF sequence proximal to the hydrophobic do- 
main did not direct GPI anchor attachment, indicating that 
at least some of the information required lies in the region 
between 10 and 20 residues NH2 terminal to the hydropho- 
bic domain. Deletion analysis of DAF suggested that this re- 
gion is not essential for GPI anchor attachment. To resolve 
this apparent contradiction we proposed that redundant in- 
formation resides in the 76-residue serine/threonine-rich do- 

main of DAE If this is the case, deletion of a portion of this 
region (as in A3 DAF and A4 DAF) would not be expected 
to significantly affect GPI anchor attachment. To test this hy- 
pothesis we constructed the hGH-z~4 DAF fusion, contain- 
ing a 37-residue segment from the COOH terminus of A4 
DAF fused to the COOH terminus ofhGH. This segment in- 
cludes the COOH-terminal hydrophobic domain of DAF but 
not the adjacent 20 residues. Instead, the 20 residues im- 
mediately NH: terminal to the A4 deletion are juxtaposed 
with the hydrophobic domain. The hGH-A4 DAF fusion was 
expressed on the cell surface as a GPI-anchored protein, 
confirming the presence of a second element present in the 
DAF protein that is able to direct GPI anchor attachment in 
conjunction with the hydrophobic domain. 

Of the four hGH-DAF fusion proteins which were not 
processed, two were secreted (hGH-DAF 17 and hGH-syn- 
DAF 17) and two were apparently trapped intracellularly 
without a GPI anchor (hGH-DAF 27 and hGH-LDLR-DAF 
17). This difference might be related to O-linked glycosyla- 
tion of the latter two proteins at sites within the DAF or 
LDLR segments of the protein. Alternatively, improper fold- 
ing of the latter fusions may have prevented transport through 
the secretory pathway (Lodish, 1988). 

Cleavage~Attachment Site 

Although the COOH-terminal residue of mature DAF has 
not yet been determined, a proteolytic processing event that 
removes the COOH-terminal hydrophobic domain is pre- 
sumed to occur before or simultaneous with GPI anchor at- 
tachment. It is possible that whereas the COOH-terminal 
hydrophobic domain acts as the signal for GPI anchor attach- 
ment (analogous to hydrophobic signal sequences in mem- 
brane translocation), an appropriate cleavage/attachment site 
(analogous to the signal peptidase site) is also required. 
Known cleavage points for GPI-anchored proteins occur 
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10-12 residues NH2 terminal to a COOH-terminal hydro- 
phobic domain (Boothroyd et al., 1980; Tse et al., 1985). It 
is precisely this region of the DAF sequence (between 10 and 
20 residues NH2 terminal to the hydrophobic domain) that 
appears to be necessary for GPI anchorage of an hGH-DAF 
fusion protein. The GPI attachment sites have been deter- 
mined for Thy-1 (Tse et al., 1985), placental alkaline phos- 
phatase (Micanovic et al., 1988), and the VSGs of Trypano- 
soma brucei (Holder and Cross, 1981; Boothroyd et al., 
1980), but they as yet reveal no recognizable sequence simi- 
larity which might allow correct prediction of the cleavage 
site for DAE 

It is reasonable to speculate that hGH-DAF 37 and gD- 
1-DAF contain both a GPI signal (the 17-residue COOH- 
terminal domain) and a suitable cleavage/attachment site 
(located between 10 and 20 residues NH2 terminal to the 
hydrophobic domain) and are therefore targeted to the cell 
surface by means of a GPI anchor. In contrast, fusion pro- 
teins containing the GPI signal alone (hGH-DAF 17 and gD- 
1-DAF 17) or in combination with sequences which presum- 
ably lack a suitable processing site (hGH-DAF 27, hGH- 
LDLR-DAF 17, and hGH-syn-DAF 17) fail to become 
cleaved or GPI anchored. The serine/threonine-rich region 
of DAF is somewhat repetitive and might contain several 
cryptic cleavage sites which substitute for the normal cleav- 
age site in the deletion mutants A3 DAF and A4 DAF, and 
in the hGH-A4 DAF fusion, thereby allowing these proteins 
to be processed normally. Further analysis of the GPI signal 
will require both saturation mutagenesis of the 20 residues 
proximal to the hydrophobic domain of DAF (in the context 
of a fusion protein) and knowledge of the cleavage/attach- 
ment site. 
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