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Abstract

Objectives: Artificial intelligence (Al) has been proved to be a highly efficient
tool for COVID-19 diagnosis, but the large data size and heavy label force
required for algorithm development and the poor generalizability of Al algo-
rithms, to some extent, limit the application of Al technology in clinical practice.
The aim of this study is to develop an Al algorithm with high robustness using
limited chest CT data for COVID-19 discrimination.

Methods: A three dimensional algorithm that combined multi-instance learning
with the LSTM architecture (3DMTM) was developed for differentiating COVID-
19 from community acquired pneumonia (CAP) while logistic regression (LR),
k-nearest neighbor (KNN), support vector machine (SVM), and a three dimen-
sional convolutional neural network set for comparison. Totally, 515 patients with
or without COVID-19 between December 2019 and March 2020 from five differ-
ent hospitals were recruited and divided into relatively large (150 COVID-19 and
183 CAP cases) and relatively small datasets (17 COVID-19 and 35 CAP cases)
for either training or validation and another independent dataset (37 COVID-19
and 93 CAP cases) for external test. Area under the receiver operating char-
acteristic curve (AUC), sensitivity, specificity, precision, accuracy, F1 score, and
G-mean were utilized for performance evaluation.

Results: In the external test cohort, the relatively large data-based 3DMTM-LD
achieved an AUC of 0.956 (95% confidence interval, 95% CI, 0.929~0.982)
with 86.2% and 98.0% for its sensitivity and specificity. 3DMTM-SD got an
AUC of 0.937 (95% ClI, 0.909~0.965), while the AUC of 3DCM-SD decreased
dramatically to 0.714 (95% CI, 0.649~0.780) with training data reduction.
KNN-MMSD, LR-MMSD, SVM-MMSD, and 3DCM-MMSD benefited significantly
from the inclusion of clinical information while models trained with relatively
large dataset got slight performance improvement in COVID-19 discrimination.
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1 | INTRODUCTION
The novel coronavirus disease 2019 (COVID-19) has
spread as a pandemic all over the world since its first
outbreak in the late of 2019, with great threats and
economic implications to human life.! As of Febru-
ary 2021, there have been more than 110 million con-
firmed cases worldwide with almost 2.5 million deaths
included according to the latest report from the World
Health Organization? Presently, the reverse transcrip-
tase polymerase chain reaction (RT-PCR) is widely
used for the diagnosis of patients with COVID-19.3 Nev-
ertheless, RT-PCR might not be sensitive enough for
COVID-19 screening, especially for early detection of
the suspicious patients*~” As a fast imaging technology,
computed tomography (CT) could show the pulmonary
structure and certain abnormalities of patients rapidly
without any invasive operations, which had been proved
to be able to provide complement information for early
detection in suspicious COVID-19 patients and severity
assessment in confirmed cases.>~'% However, demand
for chest CT examinations in COVID-19 screening
among highly suspected cohorts increased the interpre-
tation burden of radiologists dramatically and led to cer-
tain consumption of limited medical resource in emer-
gent scenarios. Furthermore, COVID-19 could present
heterogeneous imaging findings and may share some
similar radiological features with pneumonia caused by
other infection, making it challenging to discriminate
between COVID-19 and other types of pneumonia.’
Recently, artificial intelligence (Al) is developing
rapidly and has been extensively applied to clinical
settings to do medical tasks, for example, the pul-
monary nodule detection, the cerebral hemorrhage
prediction, the malignancy identification of mass in
human anatomic organs and the treatment manage-
ment and prognosis prediction of tumor.!'~'®> Regarding
the COVID-19 diagnosis, Al has been proved to be a
highly efficient and accurate tool.'® Several studies have
demonstrated the promise of machine learning and
deep learning in COVID-19 relevant investigations.!’ '
A deep learning algorithm was developed with 19291 CT
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3DMTM, trained with either CT or multi-modal data, presented comparably
excellent performance in COVID-19 discrimination.

Conclusions: The 3DMTM algorithm presented excellent robustness for
COVID-19 discrimination with limited CT data. 3DMTM based on CT data per-
formed comparably in COVID-19 discrimination with that trained with multi-
modal information. Clinical information could improve the performance of KNN,
LR,SVM, and 3DCM in COVID-19 discrimination, especially in the scenario with
limited data for training.

artificial intelligence, coronavirus disease 2019, deep learning, spiral computed, tomography

scans from 14435 pneumonia patients with or without
COQOVID-19 and achieved an accuracy of 94% for lesion
detection in validation cohorts." In another study, 1381
patients were used to build an automated radiomics CT
signature for COVID-19 detection, which had an area
under the receiver operating characteristic curve (AUC)
of 0.882 (95% ClI, 0.851~0.913) in the test cohort con-
sisting of 641 patients.??

However, previous Al studies on COVID-19 usually
required either enough label force or a large number
of targeted cases for algorithm development, which was
physically and emotionally exhausting. Considering the
certain radiological similarity between COVID-19 and
community-acquired pneumonia (CAP), specific clinical
features like laboratory test results might provide criti-
cal supplemental information for COVID-19 diagnosis,’
but the diversity of laboratory tests and the validity of
responding results increased the difficulty of data col-
lection, which to some extent limited its use in the field
of COVID-19-related Al studies.

Therefore, the purpose of this study was to construct a
diagnostic algorithm with high robustness using limited
multi-modal data for the discrimination between COVID-
19 and CAP

2 | MATERIALS AND METHODS

The institutional review board of the five hospi-
tals approved this multicenter retrospective study and
waived the informed consent since patient information
was anonymized to ensure privacy.

21 | Patient

A sum of 644 patients were enrolled between Decem-
ber 2019 and March 2020 from five different hospi-
tals. The corresponding clinical information and CT
data were collected and reviewed. Patients with posi-
tive RT-PCR results for severe acute respiratory syn-
drome coronavirus 2 (SARS-COV-2) were included in
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COVID-19 dataset. Patients with positive CT findings but
diagnosed as other CAP by negative RT-PCR results
since the COVID-19 outbreak were included for CAP
dataset.

The exclusion criteria for COVID-19 and CAP
datasets were as followed: (1) lack of corresponding lab-
oratory test results; (2) the time interval between RT-
PCR test and chest CT scans >14 days; (3) CT images
with poor quality. Process of patient enroliment was
showed in Figure 1, and detailed information of patient
distribution and clinical types was summarized in Table
1 and Appendix S-1.

2.2 | Image acquisition

CT scans used in this study were acquired with multi-
detector CT (Siemens SOMATOM Definition Flash,
Siemens FORCE CT, Siemens Sensation16, Siemens
Definiton AS 40, Siemens Definiton AS 20, GE Light-
Speed VCT, GE MEDICAL SYSTEMS OPTIMA CT540,
GE MEDICAL SYSTEMS OPTIMA CT660, uCT510).
The scanning parameters were as follows: tube voltage,
80-120KYV; current, automatic exposure control; recon-
struction slice thickness, 1.25 mm; and interslice gap,
1.25 mm. All CT scans were saved in the picture archiv-
ing and communication system.

2.3 | Study design

A novel weakly supervised algorithm that combined
multi-instance learning with the long and short-term
memory (LSTM) architecture (MIL-LSTM) was designed
for the discrimination between COVID-19 and CAPR. The
lesion layers in 3D CT scans, instead of one ran-
domly selected slice from averaged groups or all slices
in CT scans, were selected as the input instances
for this novel 3D-MIL-LSTM (3DMTM) algorithm using
a lesion instance generator based on a pneumonia
segmentation model (constructed by Infervision Med-
ical Technology Co., Ltd.)2® so as to reduce the
annotation label force and to enhance model per-
formance by extracting more spatial information of
lesions. Meanwhile, another three dimensional convo-
lutional neural network (3D CNN) and three classic
machine learning algorithms including logistic regres-
sion (LR), k-nearest neighbor (KNN), and support vec-
tor machine (SVM) were also developed using 3D
CT data to validate the feasibility of newly proposed
algorithm.

To verify the role of clinical information in identifying
COVID-19, clinical and radiological features were also
concatenated for training when exploring the effects of
multi-modal information on the performance of algo-
rithms in identifying COVID-19. Notably, the impact of

training data size on model performance was also stud-
ied by exchanging training and validation cohorts. Figure
1 showed the process of model development. Details of
algorithm design were available in Figure 2.

2.4 | Data partition and modeling

Data from four of the five hospitals was used for model
development and was divided into relatively large and
small datasets as either training or validation cohorts
through different combinations while the fifth hospital
acted as the data supplier of the independent external
test cohort. Detailed dataset combinations are showed
in Table 2.

Three classic machine learning models, including
KNN, SVM, and LR, were trained with selected clinical
features or the combination of clinical and radiomics
features. We first utilized the relatively large dataset as
the training cohort and the relatively small dataset as
the validation cohort. In subsequent, training and valida-
tion cohorts were switched in order to reveal the robust-
ness of employed algorithms on different sized datasets.
A sum of 12 machining learning models was obtained
(Table 3).

Of note, 3DCM and 3DMTM were both developed
with the same procedure and dataset combinations (LD-
CT and SD-CT, MMLD and MMSD). The corresponding
developed models are listed in Table 3.

2.5 | Visualization of lesion features
learned by 3DCM and 3DMTM models

To understand how 3DCM and 3DMTM models iden-
tified COVID-19, we visualized the most informative
regions for these models on CT images using gradient-
weighted class activation mapping (Grad-CAM).2* As an
output, attention heat maps were generated to indicate
the suspicious area in CT images that contributed most
to identify COVID-19.

2.6 | Statistical analysis

Area under the receiver operating characteristic (ROC)
curve (AUC), sensitivity, specificity, precision, accuracy,
F1 score,and G-Mean were utilized to evaluate the diag-
nostic performance of these proposed models. Categor-
ical variables were expressed in terms of frequency and
statistically analyzed by chi-square test or Fisher exact
probability test. Continuous variables would be ana-
lyzed by two-sample t-test if they distributed normally
with homogeneous variance; if not, Wilcoxon signed
rank test would be adopted. Continuous variables are
represented by the median (interquartile range, IQR).
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H1

(2020.01.20~2020.03.31)

H2

(2020.01.29~2020.03.16)

Inclusion:

COVID-19 (n=215)
RT-PCR (+)
have chest CT images

CAP (n=429)
RT-PCR (-)
have chest CT images

H3

I

(2020.01.22~2020.02.12)

H4

(2019.12.30~2020.03.06)

H5

Exclusion:

no complete laboratory test
results (COVID-19: 8; CAP: 83)

Interval days (RT-PCR~CT) >14 |

(COVID-19: 1; CAP: 35)

CT images with poor quality
(COVID-19: 2; CAP: 0)

(2020.01.24~2020.02.19)

T

External Test

COVID-19: 204 cases with 298 chest CT scans
CAP: 311 cases with 470 chest CT scans

Large Dataset for
Training: H1+H4

Small Dataset for
Training: H2+H3

Small Dataset for
Validation: H2+H3

Large Dataset for
Validation: H1+H4

FIGURE 1 Flow diagram of patient enroliment. A sum of 644 patients with or without COVID-19 were collected from five hospitals in this
study. Based on inclusion and exclusion criteria, 204 COVID-19 patients (298 CT scans) and 311 CAP patients (470 CT scans) were finally
recruited for model development. Patients from four hospitals (H1~4) were used for model development while patients from the fifth hospital
(H5) as independent external test data. During model development, large and small datasets were exchanged once from training to validation
sets for robustness assessment. CAP, community-acquired pneumonia; COVID-19, coronavirus disease 2019; CT, computed tomography; H1~5,
hospital 1~5; RT-PCR, reverse transcriptase polymerase chain reaction

TABLE 1 Summary of demographic information in recruited patients

Total COVID-19 CAP p-value
Patients (CT scans) 515 (768) 204 (298) 311 (470)
Gender
Male 270 (52.43%) 97 (47.55%) 173 (55.63%) 0.073
Female 245 (47.57%) 107 (52.45%) 138 (44.37%)
Age 38.00 (23.00) 44.50 (22.00) 38.50 (26.00) 0.004
Smoking status
Smoking or ever smoker 52 (10.48%) 12 (5.88%) 40 (13.70%) <0.001

None

Fever

Yes

None

Laboratory test

Leucocytes (x109%; 3.5-9.5)
Neutrophils (x109; 1.8-6.3)
Lymphocytes (x109%;1.1-3.2)
Lymphocytes percentage (%; 20-50)
Eosinophils (x10%L;0.02-0.52)
ALT (U/L; 7-40)

AST (U/L; 13-35)

LDH (U/L; 120-250)

CK-MB (IU/L; 0-24)

CRP (mg/L; 0.2-4.0)

444 (89.52%)

304 (79.0%)
81 (21.0%)

6.10 (3.80)8
3.26 (3.44)8
1.76 (3.31)8
14.80 (21.49)8
0.03 (0.07)"
21.00 (19.00)"
22.00 (9.75)"
195.00 (63.50)"
11.00 (7.00)"
11.60 (25.15)8

192 (94.12%)

133 (79.6%)
34 (20.4%)

4.60 (1.90)
3.00 (1.90)
1.22 (0.69)
27.00 (16.83)
0.01 (0.06)
21.00 (17.00)
20.00 (10.00)
189.50 (72.00)
9.00 (4.00)
8.75 (11.95)

252 (86.30%)

171 (78.4%) 0.775
47 (21.3%)

7.70 (3.40) <0.001
2.02 (3.14) 0.029
7.90 (16.60) <0.001
8.52 (11.06) <0.001
0.06 (0.10) <0.001
20.00 (18.00) 0.189
22.00 (11.00) 0.029
200.50 (57.00) 0.241
14.00 (8.80) <0.001
21.90 (43.85) <0.001

Note: Data are showed as n (%) or median (interquartile range, IQR).
Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase; CAP, community-acquired pneumonia; COVID-19, coronavirus disease 2019; CK-MB,
creatine kinase isoenzyme-MB; CRP, C-reactive protein; CT, computed tomography; LDH, lactate dehydrogenase.

"Patients with available data were less than 360.
SPatients with available data were more than 360.
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lllustration of the machine learning (ML) Model and deep learning (DL) Models. (a) Classic machine learning models (CMLM)

were trained with radiomics features or the combination of clinical and radiomics features to differentiate COVID-19 and community acquired
pneumonia (CAP), including k-nearest neighbor (KNN), support vector machine (SVM), and logistic regression (LR). (b) An improved three
dimensional convolutional neural network (3D CNN) model (3DCM), which constituted three convolutional blocks of Resnet and three fully
connected layers, was employed to distinguish between COVID-19 and CAP using CT images with or without the addition of clinical information.
(c) A novel algorithm based on multi-instance learning and long and short-term memory (LSTM) (3DMTM) was proposed for COVID-19
identification. Lesion instance generator enabled efficient selection of instance (slices) with lesions; feature instance generator based on
Resnet-18 extracted features from input instances. Clinical information could be concatenated after feature extraction. Long and short-term
memory (LSTM) helped obtain the spatial information by combining features from different layers

TABLE 2 Data partition for model development and validation
H1 H2 H3 H4 H5
CT Cl CT Cl CT Cl CT Cl CT Cl
Small dataset (SD-CT) X X
Small dataset (SD-CI)
Multi-modal small dataset (MMSD) X B
Large dataset (LD-CT) X X
Large dataset (LD-CI)
Multi-modal large dataset (MMLD) X X
External test set (ETS-CT) PY
External test set (ETS-CI)
Multi-modal external test set (MMETS) B
Abbreviations: Cl, clinical information; CT, computed tomography.
A two-sided 95% confidence interval for AUC was 3 | RESULTS
constructed following the approach of Hanley and
McNeil (1982)2° Model performance was compared 3.1 | Patient overview

using DelLong test?%27 All statistical analyses were
performed with the R statistical package (The R
Foundation for Statistical Computing, Vienna, Austria).
Figures in our study were made with GraphPad Prism
5 (GraphPad Software Inc., San Diego, CA, USA) and R
statistical package. p < 0.05 was considered statistically
significant.

Totally, 204 patients (298 chest CT scans) with COVID-
19 and 311 patients (470 chest CT scans) with CAP
were finally recruited for further analysis and model
development. Details of the recruited patients are sum-
marized in Table 1 and Appendix S-1. Briefly, most of
CQOVID-19 patients (184 cases, 90.20%) were clinically
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TABLE 3 Data partition for modeling and the corresponding model names
Type Algorithms Data Training set Test set Model-name
CMLM SVM (+)Clinical info MMLD MMSD SVM-MMLD
MMSD MMLD SVM-MMSD
(=)Clinical info LD-CT SD-CT SVM-LD
SD-CT LD-CT SVM-SD
KNN (+)Clinical info MMLD MMSD KNN-MMLD
MMSD MMLD KNN-MMSD
(—)Clinical info LD-CT SD-CT KNN-LD
SD-CT LD-CT KNN-SD
LR (+)Clinical info MMLD MMSD LR-MMLD
MMSD MMLD LR-MMSD
(=)Clinical info LD-CT SD-CT LR-LD
SD-CT LD-CT LR-SD
3DCM 3D CNN (+)Clinical info MMLD MMSD 3DCM-MMLD
MMSD MMLD 3DCM-MMSD
(—)Clinical info LD-CT SD-CT 3DCM-LD
SD-CT LD-CT 3DCM-SD
3DMTM 3D-MIL-LSTM (+)Clinical info MMLD MMSD 3DMTM-MMLD
MMSD MMLD 3DMTM-MMSD
(—)Clinical info LD-CT SD-CT 3DMTM-LD
SD-CT LD-CT 3DMTM-SD

Abbreviations: Cl, clinical information; CMLM, classic machine learning models; CNN, convolutional neural network; CT,computed tomography; KNN, k-nearest neighbor;
LD, large dataset; LR, logistic regression; MMLD, multi-modal large dataset; MMSD, multi-modal small dataset; SD, small dataset; SVM, support vector machine; 3DCM,

3D CNN model; 3DMTM, 3D-MIL-LSTM algorithm.

diagnosed as moderate type while seven (3.43%), six
(2.94%), seven (3.43%) were diagnosed as mild, severe,
and critical types, respectively. Seven clinical features
including gender, age, smoking status, fever, leucocytes,
neutrophils,and lymphocytes were selected and normal-
ized with the z-score normalization for further algorithm
training.

3.2 | Performance evaluation for
proposed models trained on relatively
large datasets

In addition to the newly proposed 3ADMTM algorithm, we
also utilized 3D CNN algorithm and classical machine
learning models (KNN, SVM, and LR) to identify COVID-
19. A relatively large dataset (150 COVID-19 cases with
251 CT scans and 183 CAP cases with 334 CT scans
from H1 and H4) and a relatively small dataset (17
COVID-19 cases with 17 CT scans and 35 CAP cases
with 35 CT scans from H2 and H3) were firstly utilized
as the training and validation datasets, respectively.

As shown in Figures 3A and 4, KNN-LD, SVM-LD,
and LR-LD trained only with radiomics features achieved
AUCs of 0.846 (95% CI,0.717~0.975), 0.843 (95% ClI,
0.713~0.973), and 0.824 (95% CI, 0.688~0.960) with

F1-scores of 0.667, 0.688, and 0.788 in the validation
cohort, respectively. Meanwhile, AUCs of 3DCM-LD and
3DMTM-LD trained with CT scans reached 0.807 (95%
Cl,0.669~0.944) and 0.951 (95% CI,0.877~1.000) with
0.683 and 0.882 for their F1-scores.

In addition, model performance was further evalu-
ated on another independent external test dataset (37
COVID-19 and 93 CAP cases with totally 231 CT scans
from H5, the fifth participated hospital). The highest
AUC of 0.956 (95% CI, 0.929~0.982) was achieved
by 3DMTM-LD, followed by KNN-LD of 0.851 (95% ClI,
0.802~0.900), SVM-LD of 0.836 (95% CI,0.785~0.887),
and LR-LD of 0.834 (95% CI, 0.783~0.885), while
3DCM-LD had the worst performance as well on the
external test set (AUC, 0.803, 95% CI, 0.748~0.859)
(Figures 3B and 4).

3.3 | Performance evaluation for
proposed models trained on
relatively small datasets

To explore the feasibility of the proposed algorithms
in different scenarios, the relatively small and large
datasets were switched once as training set to simulate
the data-insufficient scenario and to explore the impact
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Receiver operating characteristic (ROC) analysis of different models in this study for the discrimination between COVID-19 and

community acquired pneumonia (CAP). (a) Performance of large dataset trained models on validation set (SD); (b) performance of large
dataset trained models on external test set; (c) performance of small dataset trained models on validation set (LD); (d) performance of small
dataset trained models on external test set. KNN, k-nearest neighbor; LD, large dataset; LR, logistic regression; MIL-LSTM, multi-instance
learning with the long and short-term memory; SD, small dataset; SVM, support vector machine; 3D CNN, 3 dimensional convolutional neural

network; 3DMTM, 3D-MIL-LSTM model

of data size on model performance. Although perfor-
mance decrease was noted in all small data-based mod-
els in the validation cohort, 3DMTM-SD still presented
excellent ability in differentiating COVID-19 from CAP
(AUC, 0.928, 95%Cl, 0.898~0.957) with an increased
F1-score of 0.919 (Figures 3C and 4).

In the independent external test cohort, 3EDMTM-SD
outperformed other small data-based algorithms with a
comparable AUC of 0.937 (95% CI, 0.909~0.965) and
a F1-score of 0.910 to 3DMTM-LD (Figures 3D and 4
and Appendix S-5). 3DCM-SD showed significantly infe-
rior diagnostic performance with the reduction of train-
ing data (Figure 3D and Appendix S-5).

3.4 | Enhanced performance of
proposed models by training
with multi-modal information

Noticing the value of radiological information in iden-
tifying COVID-19, we further studied if multi-modal
data would improve the model diagnostic performance

in discriminating between COVID-19 and CAP by
combing CT imaging features with selected clinical
features. It turned out that all models in our study
benefited from the additional clinical features in the
validation cohort, no matter which dataset (the rel-
atively small or large datasets) they were trained
on (Figure 4). In the external test cohort, the perfor-
mance of KNN-SD, LR-SD, SVM-SD, and 3DCM-SD
got improved dramatically while and 3DMTM bene-
fited slightly from the inclusion of clinical information
(Appendix S-5).

3.5 | Grad-CAM visualization of 3DCM
and 3DMTM-enabled identification of
COVID-19

Attention heat maps were generated in our study to inter-
pret the diagnostic process of 3DCM and 3DMTM, which
could provide visual information like lesion location and
the probability of targeted lesion to be COVID-19. As
can be seen in Figure 5,inflammation lesions focused by
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FIGURE 4 Performance evaluation of proposed models in the discrimination between COVID-19 and CAP on validation and external test
sets. Area under the receiver operating characteristic curve (AUC), F1-score, accuracy and G-mean were utilized to evaluate the model
performance. Of note, two sets of models were developed with switched training and validation sets and both tested on another external test
set. (a—d) models performance on validation sets (plotted on diagram according to the metrics values); (e—h) models performance on external
test set (plotted on diagram according to the metrics values). CAP, community-acquired pneumonia; Cl, clinical information; COVID-19,
coronavirus disease 2019; CT, computed tomography; KNN, k-nearest neighbor; LD, large dataset; LR, logistic regression; SD, small dataset;
SVM, support vector machine; 3D CNN, 3 dimensional convolutional neural network; 3DMTM, 3D-MIL-LSTM model

(1) COVID-19

(2) CAP

Original MIL-LSTM Reference Annotation

FIGURE 5 Representative of visualized COVID-19 and CAP cases using gradient-weighted class activation mapping (Grad-CAM) on the
small dataset trained model in the independent external test set. (a) (1~2), original axial computed tomography (CT) images of COVID-19 and
CAP cases; (b) (1~2) and (c) (1~2), attention heat maps generated using Grad-CAM for three dimensional convolutional neural network (3D
CNN) and MIL-LSTM in the discrimination between COVID-19 and CAP; (d) (1~2), reference annotation by senior radiologists. 3DMTM detected
more inflammation lesions than 3DCM and shared a good consistency with the gold standardization annotated by senior radiologists. CAP,
community-acquired pneumonia; COVID-19, coronavirus disease 2019; Grad-CAM, gradient-weighted class activation mapping; MIL-LSTM,
multi-instance learning with the long and short-term memory; 3D CNN, 3 dimensional convolutional neural network; 3DMTM, 3D-MIL-LSTM
algorithm; 3DCM, 3D CNN model
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3DMTM were much larger than that noted by 3DCM and
shared a decent consistency with gold standard lesions
annotated by senior radiologists.

4 | DISCUSSION

In this study, a novel weakly supervised 3DMTM algo-
rithm was developed for the discrimination between
COVID-19 and CAPRP. Compared to the previous studies,
this study owned four innovations. First, the origi-
nal 3DMTM algorithm was developed with limited
multi-modal and multicenter data; second, no manual
annotation was required for algorithm training; third, we
systematically evaluated the performance of 3DMTM,
classic machine learning algorithms, and 3D-CNN
in identifying COVID-19 from CAP; last, the impact
of sample size on the performance of those algo-
rithms was investigated, and an independent external
dataset was used to verify the model robustness in this
study.

Many scholars have demonstrated the promising
value of machine learning or deep learning technology
in diagnosis, prognosis prediction, and medical manage-
ment of COVID-19 since its outbreak.?%28-31 Lj et al.
used a dataset consisting of 3322 patients with 4356
chest CT exams to develop a deep learning model,
which could fully automatically detect COVID-19 with an
AUC of 0.96 in the test set* In another study, which
included 1020 chest CT images from 108 COVID-19
patients and 86 non-COVID-19 pneumonia patients, 10
well-known CNNs were trained and showed good per-
formance to differentiate COVID-19 and non-COVID-19
pneumonia with AUCs of 0.894—0.994 32 Xu et al. estab-
lished an early screening system to differentiate COVID-
19 from influenza-A viral pneumonia (IAVP) and normal
patients with 618 CT samples (219 COVID-19,224 IAVP
and 175 normal cases), of which the overall accuracy
was up to 86.7% from the perspective of CT cases as a
whole33

Compared with previous deep learning researches
about COVID-19, which tended to recruit a large num-
ber of data or annotation for algorithm training, the
novel deep learning algorithm in our study, 3SDMTM-LD,
was trained with less than 500 chest CT scans (150
COVID-19 cases with 251 CT scans and 183 CAP cases
with 334 CT scans) and showed comparable excellent
performance for differentiating COVID-19 from CAP in
both validation (AUC = 0.951, accuracy = 92.3%) and
external test (AUC = 0.956, accuracy = 91.3%) sets. In
addition, no manual annotation was required during the
model development. What's more, 3DMTM also demon-
strated a decent feasibility when trained on the small
dataset (17 COVID-19 cases with 17 CT scans and 35
CAP cases with 35 CT scans) and validated on the rela-
tively large dataset, as evidenced by the unaffected diag-

nostic performance of 3DMTM-SD (AUC = 0.928, accu-
racy = 95.3%). In contrast, an obvious decrease was
noted in the performance of 3DCM-SD to differentiate
COVID19 from CAP when trained on the relatively small
dataset.

The decent robustness of 3DMTM algorithm in dif-
ferentiating COVID-19 from CAP benefited from its key
components consisting of MIL-LSTM architecture. The
automatic segmentation algorithm in lesion instance
generator enabled efficient selection of instances
(slices) with lesions from whole CT scans to improve
the signal noise ratio (SNR). MIL, in which labels are
associated with bags rather than the instances in the
bag, greatly reduces label requirement while CNN is a
fully supervised deep learning model that asks for fully
labeled samples for training3*~3” LSTM is one special
type of recurrent neural networks (RNNs),and it has bet-
ter control in long-term memory to reduce the signal loss
during the process of conventional RNN architectures
and to provide spatial information among layers."838.39

Thus, the combination of those two algorithms
allowed 3DMTM to extract more spatial information with
high SNR from targeted lesion without any manual anno-
tation. Especially in the case of insufficient training data,
3DMTM could effectively extract useful information from
limited data for training without any manual annotation.

Given that the novel SARS-COV-2 may coexist with
human in our daily life for a long time, radiological
manifestations may vary with the mutation of virus
or the regional divergence in COVID-19 patients all
over the world. The robustness of our algorithm with
different data size may allow the timely diagnosis and
treatment management for those patients with mutated
SARS-COV-2 from different regions, which may also
have potential value in medical management of rare
diseases.

Epidemiological investigations verified the role of clin-
ical information in the diagnosis and management of
COVID-19 patients.!043 Lj et al. discovered several
new associations between clinical features by review-
ing COVID-19 data from 151 published studies and
developed an Al model to discriminate COVID-19 from
influenza cases with a sensitivity of 92.5% and a speci-
ficity of 97.9%* Zhang et al. developed an Al sys-
tem for the differentiation of COVID-19 from common
pneumonia and normal controls with 3777patients and
demonstrated that clinical data could improve the
performance of the system in prognosis prediciton
significantly*®

No matter which dataset was used for training and
validation, the inclusion of clinical information could
improve the diagnostic performance of all models pro-
posed in our study, which confirmed the importance
of clinical data for COVID-19 diagnosis. Meanwhile, in
the external test cohort, KNN-MMSD, LR-MMSD, SVM-
MMSD, and 3DCM-MMSD benefited significantly from
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clinical information while models trained with relatively
large data just achieved slight enhancement in per-
formance of COVID-19 discrimination, indicating the
essential roles of multi-modal information when sample
size was limited. Of note, the slightly enhancement of
3DMTM with multi-modal data might result from its abil-
ity to effectively extract key and extra spatial information
from lesions on CT images, which equalized the impact
of multi-modal data on model performance. Considering
the difficulty of clinical data collation, the 3DMTM algo-
rithm in this study might be useful in the early screening
of COVID-19, especially in the case without comprehen-
sive clinical information.

The black box mechanism of deep learning technol-
ogy leads to the lack of the transparency of its operation
process. To improve the interpretability of deep learning
algorithms in this study, attention heat maps were gener-
ated using Grad-CAM to indicate suspicious areas that
contribute most to the identification of COVID-19.2* The
visualization of 3DCM and 3DMTM was realized in our
study to show not only the judgment process of 3DCM
and 3DMTM models, but also the more precise recog-
nition of inflammation lesion in CT scans of 3DMTM.
Without manual annotation, more lesion area was noted
by 3DMTM rather than 3DCM, and a higher SNR was
obtained by 3ADMTM, which might explain its outstand-
ing diagnostic performance in identifying COVID-19.
This visual output provided relatively intuitive informa-
tion about lesion location and reference proportion in
the deep learning process, which might be especially
useful for the detection of subtle pathological changes
in asymptomatic patients with no obvious macroscopic
imaging findings.

There were also several limitations in our study. First,
pneumonia could be caused by different factors like bac-
teria, virus, fungus, and medicine, we only focused on
the binary discrimination between COVID-19 and CAP
instead of a detailed etiology classification due to the
lack of etiological confirmation of CAP cases involved
in this study. Second, the 3DMTM algorithm was just
trained for COVID-19 diagnosis in our study. Subse-
quently, we would further expand our data collection
for the severity classification, prognosis prediction of
COVID-19, and the detailed etiological analysis of pneu-
monia. Third, 3DMTM was not compared with radiolo-
gists in COVID-19 diagnosis, and we would then make
a systematic analysis on the potential value of 3DMTM
in clinical practice.

In conclusion, the weakly supervised algorithm
3DMTM developed in this study showed excellent
robustness in discrimination between COVID-19 and
CAP with limited chest CT data. Clinical information
could significantly improve the performance of KNN,
LR, SVM, and 3DCM in COVID-19 discrimination in
the scenario with limited data for training. 3DMTM
based on CT data performed comparably in COVID-
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19 discrimination with that trained with multi-modal
information.

Abbreviations
AUC area under the receiver operating char-
acteristic curve
CAP community acquired pneumonia
Cl confidence interval
COVID-19 coronavirus disease 2019
CT computed tomography
KNN k-nearest neighbor
LR logistic regression
MIL-LSTM multi-instance learning with the long and
short-term memory
reverse transcriptase polymerase chain
reaction

RT-PCR

SARS-CoV-2 severe acute respiratory syndrome
coronavirus 2
SVM support vector machine
3D CNN three-dimensional convolutional neural
network
3DMTM three-dimensional MIL-LSTM algorithm
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