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Bioactive small molecules isolated from animals, plants, fungi and bacteria, including natural
antimicrobial peptides, have shown great therapeutic potential worldwide. Among these
peptides, snake venom cathelicidins are being widely exploited, because the variation in
the composition of the venom reflects a range of biological activities that may be of
biotechnological interest. Cathelicidins are short, cationic, and amphipathic molecules.
They play an important role in host defense against microbial infections. We are currently
facing a strong limitation on pharmacological interventions for infection control, which has
become increasingly complex due to the lack of effective therapeutic options. In this
review, we will focus on natural snake venom cathelicidins as promising candidates for
the development of new antibacterial agents to fight antibiotic-resistant bacteria. We will
highlight their antibacterial and antibiofilm activities, mechanism of action, and modulation
of the innate immune response.
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INTRODUCTION

The rapid increase in microbial resistance to different drugs has been raising concerns worldwide,
thus encouraging the search for effective alternative treatments (Nathan and Cars, 2014), especially
when dealing with multidrug-resistant pathogens (Koo and Seo, 2019). This resistance has been
associated with morbidity and mortality, not only in humans but also in animals, whereas the
excessive and inappropriate use of antibiotics has been considered the main cause of bacterial
resistance emergence (Sala et al., 2018; Koo and Seo, 2019).

For decades, there has been a lack of innovation in antibiotic classes, with these molecules being
just optimized, and almost no new classes have been introduced on the market (Singh and
Abraham, 2014). Given this problem, the development of new antimicrobial drugs is of great
importance (Koo and Seo, 2019). Therefore, antimicrobial peptides (AMPs) represent potent and
efficient candidates for the development of a new drug generation (Singh and Abraham, 2014).
As a result, some AMPs have already reached clinical trial levels, and currently some are already
available in the market, such as polymyxins B and E, bacitracins, and gramicidins (Mahlapuu et al.,
2016; Costa et al., 2019).

AMPs are low molecular weight compounds, ranging from 12 to 50 amino acid residues (Forde
and Devocelle, 2015). They can be naturally occurring, usually cationic and hydrophobic (Haney
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et al., 2019), are encoded by genes that remain conserved in the
genome during evolution, and can be isolated from virtually all
forms of living organisms (Mahlapuu et al., 2016).

Currently, AMPs can be produced on a large scale by
chemical synthesis or by biotechnological methods such as
recombinant expression in bacteria, yeast, plants, and others
(Boto et al., 2018). The AMP production costs vary according to
molecular size and complexity. Thus, biotechnological methods,
as already mentioned, are being increasingly well developed,
allowing greater production cost reduction when compared to
chemical methods (Bommarius et al., 2010; Pachón-Ibáñez
et al., 2017).

AMPs also have a broad spectrum of action, sometimes
showing synergistic effects for their multiple modes of action
(Boto et al., 2018). However, despite the great advantages, these
interesting molecules could be relatively unstable, may have low
specificity, with short plasma half-lives because of proteolytic
degradation and, consequently, may have low solubility and oral
bioavailability (Boto et al., 2018; Lau and Dunn, 2018). In
addition, studies have shown that some Escherichia coli strains
are already resistant to AMPs (Maria-Neto et al., 2012; Cardoso
et al., 2017). Due to these disadvantages, researchers are
increasingly striving to reach peptide optimization in order to
increase their effectiveness. Even so, AMPs remain promising
alternatives to conventional antibiotics (Mishra et al., 2017).

Some AMPs exhibit cytotoxicity against cancer cells and may
also present immunomodulatory activity, acting indirectly in
pathogen clearance (Yeung et al., 2011; Mahlapuu et al., 2016).
This range of biological activities gives AMPs a high therapeutic
potential, and this may be related to the fact that they exhibit
different molecular structures (Mahlapuu et al., 2016). Diverse
natural AMPs have many cysteine residues in their primary
sequence, which favor stability for the formation of disulfide
bonds (Salas et al., 2015).

The focus of this review is a class of cationic antimicrobial
defense peptides, the cathelicidins, which are found in
vertebrates and are encoded by innate immunity genes (Wei
et al., 2015). Cathelicidins are phylogenetically old molecules,
dating back at least 400 million years (Falcao et al., 2014). The
first identification of cathelicidins was reported in mammalian
bone marrow myeloid cells; therefore, these molecules were also
named myeloid AMPs (Kościuczuk et al., 2012). Later, they were
also found in bovine epithelial cells and neutrophils, including
humans (Kościuczuk et al., 2012).

Cathelicidins can be found in the most diverse animal species,
including mammals, fish, birds, amphibians, and reptiles (Wang
et al., 2008). The snake venom comprises a rich biochemical
source of bioactive molecules with varied structures and functions
(Almeida et al., 2019), which provides a range of therapeutic
effects with pharmacological and biotechnological applications
(Almeida et al., 2018). Thus, snake venoms are explored in the
search for natural molecules, such as the venom cathelicidin-
related antimicrobial peptides (CRAMPs) of snakes. These
molecules have high relevance at bacterial infections scenario,
serving as a model for the design of new pharmaceuticals (Samy
et al., 2011; Almeida et al., 2018; Almeida et al., 2019).
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Cathelicidins from snake venom have been widely studied,
mainly in the Elapidae and Viperidae families, a process that was
greatly facilitated by the sequencing of the complete genome
of these animals, enabling the identification of cathelicidins (van
Hoek et al., 2014). Cathelicidins are multifunctional bioactive
molecules derived from proteolytic cleavage. They were
characterized by a gene-encoded signal peptide in the N-
terminal segment and a highly conserved cathelin (pro-peptide)
domain derived from the cathepsin L Inhibitor, followed by a
structurally diverse C-terminal antimicrobial domain (mature
peptide) (Zanetti et al., 1995; Gao et al., 2015). The amphipathic
a-helical conformation is prevalent in cathelicidins, despite
having hypervariable active peptide sequences among different
species (Xhindoli et al., 2016).

In this context, this review provides information on snake
venom AMPs, including their characterization, biological
activities (with a core focus on the antibacterial and antibiofilm
effects), modes of action, and structural profile.

Snake Venom Cathelicidin-Related
Antimicrobial Peptides
In the Reptilia class, the cathelicidin-related antimicrobial peptides
(CRAMPs) from natural snake venom (Table 1) constitute an
important family involved in the immune system defense,
presenting not only antibacterial but also immunomodulatory
properties (Bals et al., 2003; Kościuczuk et al., 2012; Mansour et al.,
2014; Coorens et al., 2015; van Harten et al., 2018).

The first discovery of reptile CRAMPs was reported in 2008
(Zhao et al., 2008). These authors described peptides isolated
from venom and tissues of the three Asian elapid species
(Table 1). The NA-CATH peptide was identified from Naja
atra (Chinese cobra), OH-CATH from Ophiophagus hannah
(king cobra), and BF-CATH (Zhao et al., 2008) and cathelicidin-
BF (Wang et al., 2008) from Bungarus fasciatus (Banded krait),
all from constructed snake venom gland cDNA libraries. The
precursor peptide of BF-CATH and cathelicidin-BF is composed
of 191 amino acid residues with a conserved cathelin domain
that, by proteolytic cleavage, results in two 34- and 30-amino-
acid active peptides, respectively (Wang et al., 2008; Zhao et al.,
2008). Falcao et al. (2014) identified two cathelicidin peptide
precursors from venom gland cDNA libraries of an elapid snake,
Pseudonaja textilis (Eastern brown snake), named Pt_CRAMP1
and Pt_CRAMP2. In addition, other CRAMPs from snake
venom have been identified and characterized by Falcao et al.
(2014) (Table 1). These peptides were isolated from four
different species of South American pit-vipers (rattlesnakes and
jararacas), including Crotalus durissus terrificus [crotalicidin
(Ctn)], Bothrops atrox [batroxicidin (BatxC)], Bothrops lutzi
(lutzicidin), and Lachesis muta rhombeata (lachesicidin). All
these molecules are classified as vipericidins (Falcao et al., 2014).

An elapidic cathelicidin was identified by Wei et al. (2015)
and named Hc-CATH (Table 1). The authors isolated this
molecule from the sea snake Hydrophis cyanocinctus (Blue-
banded sea snake). Furthermore, the expression of the native
peptide was confirmed in the animal venom gland, spleen, lung,
and skin, the last one with the lowest level of expression (Wei
November 2019 | Volume 10 | Article 1415
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et al., 2015). Lastly, one more cathelicidin, CATHPb1, was
reported by Cai et al. (2018), isolated from the Burmese
python Python bivittatus, native to southeast and southwest
Asia and depicted as among the five largest snake species in
the world (Cai et al., 2018).

Overall, in both groups of vipericidins and elapids, the
common physicochemical features are extremely preserved
sequences among the vertebrate cathelicidin precursors. These
molecules present a mature or active peptide with 30- to 34-
amino acid residues and an amphipathic a-helical structural
profile. Additionally, techniques such as circular dichroism (CD)
(Falcao et al., 2015; Wei et al., 2015; Cai et al., 2018) and nuclear
magnetic resonance (NMR) (Du et al., 2015) spectroscopies have
been used to elucidate and confirm the predicted secondary
structures, as specified in Table 1 (Wang et al., 2008).

Recently, Wang et al. (2019) reported a new cathelicidin (SA-
CATH), identified, and characterized for the first time, from the
Frontiers in Pharmacology | www.frontiersin.org 3
Chinese snake Sinonatrix annularis, which belongs to the
Colubridae family (Table 1). SA-CATH is composed of 30
amino acid residues, and presents high sequence similarity
with other cathelicidins from the Elapidae and Viperidae snake
families (Wang et al., 2019).

Besides the natural peptides described herein, it is important
to note that computational strategies, an attractive model for
designing novel AMPs, have been developed to generate
increasingly specific analogs with improved physicochemical
characteristics (Chen et al., 2011; Blower et al., 2015; Kim
et al., 2017; Júnior et al., 2018).

Apart from the snake venom-derived cathelicidins cited above,
recent studies have also reported cathelicidin-like peptides in
turtles (Qiao et al., 2019; Shi et al., 2019) and crocodiles
(Barksdale et al., 2017; Chen et al., 2017) (Supplementary
Table 1). Overall, only a few reptilian cathelicidins have been
identified so far, with a higher prevalence of snakes venoms.
TABLE 1 | Snake venom CRAMPs deposited in the Antimicrobial Peptide Database (APD), access to mature peptide and UniProtKB for precursor peptide.

ID Peptide
name

Source
organism

Active peptide
sequence

Number
of residues (aa)

Activity* Secondary
structure/
method

Reference

Prepro Mature

AP00897/
B6S2X0

NA-CATH Chinese cobra
Naja atra

KRFKKFFKKLKNSVKKR
AKKFFKKPKVIGVTFPF

191 34 Antibacterial (G+ and G‑),
antibiofilm

a-helix/NMR (Zhao et al., 2008)
(Du et al., 2015)

AP00896/
B6D434

BF-CATH Banded krait
Bungarus fasciatus

KRFKKFFRKLKKSVKKR
AKEFFKKPRVIGVSIPF

191 34 Antibacterial (G+ and G‑) a-helix/NMR (Zhao et al., 2008)

AP00895/
B6S2X2

OH-CATH King cobra
Ophiophagus hannah

KRFKKFFKKLKNSVKKR
AKKFFKKPRVIGVSIPF

191 34 Antibacterial (G+ and G‑),
enzyme inhibitor

a-helix/NMR (Zhao et al., 2008)

AP01239/
B6D434

Cathelicidin-
BF

Banded krait
B. fasciatus

KFFRKLKKSVKKRAKEF
FKKPRVIGVSIPF

191 30 Antibacterial (G+ and G‑),
enzyme inhibitor antifungal,
antitumor

a-helix/NMR (Wang et al., 2008)

Not available/
U5KJJ1

Pt_CRAMP1 Eastern-brown-snake
Pseudonaja textilis

KRFKKFFMKLKKSVKK
RVMKFFKKPMVIGVTFPF

184 34 Antibacterial (G+ and G‑) a-helix/NMR (Falcao et al., 2014)

Not available/
U5KJM6

Pt_CRAMP2 Eastern-brown-snake
P. textilis

KRFKKFFRKLKKSVKKR
VKKFFKKPRVIGVTIPF

184 34 Antibacterial (G+ and G‑) a-helix/NMR (Falcao et al., 2014)

AP02424/
U5KJM4

Crotalicidin
(Ctn)

South American
rattlesnake
Crotalus durissus
terrificus

KRFKKFFKKVKKSVKKR
LKKIFKKPMVIGVTIPF

194 34 Antibacterial (G+ and G‑),
antifungal, antitumor

a-helix/NMR (Falcao et al., 2014)
(Falcao et al., 2015)

AP02423/
U5KJC9

Batroxicidin
(BatxC)

South American pit
vipers
Bothrops atrox

KRFKKFFKKLKNSVKKR
VKKFFRKPRVIGVTFPF

189 34 Antibacterial (G+ and G‑),
antiparasitic

Unknown (Falcao et al., 2014)

Associated with
crotalicidin/
U5KJT7

Lutzicidin South American pit
vipers
Bothrops lutzi

KRFKKFFKKLKNNVKK
RVKKFFRKPRVIGVTIPF

189 34 Antibacterial (G+ and G‑) Unknown (Falcao et al., 2014)

Associated with
crotalicidin/
U5KJZ2

Lachesicidin South American pit
vipers
Lachesis muta
rhombeata

KRFKKFFKKVKKSVKKR
LKKIFKKPMVIGVTFPF

194 34 Antibacterial (G+ and G‑) Unknown (Falcao et al., 2014)

AP02569/
A0A0G3DRW6

Hc-CATH Blue-banded sea
snake

KFFKRLLKSVRRAVKK
FRKKPRLIGLSTLL

187 30 Antibacterial (G+ and G‑),
antifungal

a-helix/CD (Wei et al., 2015)

Hydrophis
cyanocinctus

AP02964/
A0A2P1AGD5

CATHPb1 Burmese python
Python bivittatus

KRFKKFFRKIKKGFRKIF
KKTKIFIGGTIPI

175 31 Antibacterial (G+ and G‑),
anti-MRSA and VRSA,
antibiofilm, antifungal

a-helix/CD (Cai et al., 2018)

AP03077/
A0A4D6DT23

SA-CATH Chinese snake
Sinonatrix annularis

KFFKKLKKSVKKHVKK
FFKKPKVIGVSIPF

191 30 Antibacterial (G+ and G‑),
antibiofilm, antifungal,
anti-inflammatory

Unknown (Wang et al., 2019)
November 2
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Antibacterial and Antibiofilm Activity of
Snake Venom Cathelicidins
As previously mentioned, bacterial resistance to antibiotics
has become a worldwide public health problem (Sultan et al.,
2018). Another critical problem is pictured by bacterial biofilms,
which represent an adaptive resistance that difficult bacteria-
related diseases treatment (Ciofu and Tolker-Nielsen, 2019). In
addition, the clinical relevance of biofilms has been constantly
emphasized, as they account for ~65% of all human infections
(Haney et al., 2018). Thus, cathelicidins derived from snake
venoms are interesting alternatives to counter bacterial
pathogens. As shown in Table 1, 11 natural cathelicidins have
had their antibacterial activity reported against Gram-positive
and -negative bacteria. Regarding the antibiofilm activity, only
two natural cathelicidins were explored.

Studies performed by Dean et al. (2011); Blower et al. (2015),
and Du et al. (2015) reported the antibacterial and antibiofilm
potential of cathelicidin NA-CATH. Dean et al. (2011) reviewed
the antibacterial and antibiofilm effect of NA-CATH against
Staphylococcus aureus (Table 2). No hemolytic activity of this
peptide against horse erythrocytes was observed (Table 2) (Dean
et al., 2011). Later, Blower et al. (2015) also examined the
antibacterial and antibiofilm activity of this same molecule, but
against Burkholderia thailandensis (Table 2). The ability of NA-
CATH to eradicate preformed biofilms of B. thailandensis was
also assessed; however, the peptide showed no such effect
(Blower et al., 2015). Still exploring the NA-CATH peptide, Du
et al. (2015) evaluated the determinants for antibacterial activity
through solution NMR experiments using lipid vesicles
(liposomes) and fluorescence quenching, mimicking the
activity on the bacterial membrane.

According to Zhao et al. (2008), the BF-CATH peptide
showed antibacterial activity against Gram-positive and
-negative strains, as predicted in relation to the described
activity of the OH-CATH peptide; however, further studies
remain necessary to confirm this potential. In the same year,
Wang et al. (2008) reported the antimicrobial activity of
cathelicidin-BF against 40 standard strains and clinical isolates,
including multidrug-resistant strains of microorganisms,
compared to antibiotics for therapeutic use. Cathelicidin-BF
was capable of effectively inhibiting and killing bacteria,
especially Gram-negative strains (Table 2) and also showed
inhibitory activity against some fungal species, including
saprophytic ones. In addition, Wang et al. (2008) demonstrated
that the presence of salts such as phosphate buffer and sodium
chloride in solutions can improve the antibacterial activity of
cathelicidin-BF compared to the water environment, against
standard strains. Furthermore, hemolytic and cytotoxic
properties were not reported in human erythrocytes and
murine macrophages (RAW 264.7) and human hepatic tumor
cells (HepG2), respectively, at the highest concentration tested
(Table 2). Moreover, this peptide showed high serum stability for
approximately 2 h in mice blood plasma (Wang et al., 2008).

For the Asian snake-derived cathelicidin OH-CATH, Zhao
et al. (2008) and Zhang et al. (2010) have reported potent
antibacterial activities. Zhao et al. (2008) tested OH-CATH
Frontiers in Pharmacology | www.frontiersin.org 4
peptide in the presence of 1% NaCl against eight bacterial
strains (Table 2), inhibiting all strains and showing better results
for a Enterobacter cloacae multidrug-resistant clinical isolate
strain. However, in the study conducted by Zhang et al. (2010),
the efficacy of the same molecule was evaluated and confirmed
against the 11 standard and clinical isolates of bacterial strains
(Table 2). The hemolytic activity has not been observed for OH-
CATH in either of the studies described (Table 2).

The antimicrobial activity of peptides Pt_CRAMP1, Ctn,
and BatxC and OH-CATH (used as the control) was analyzed
by Falcao et al. (2014) against Gram-negative and -positive
bacteria, presenting a better inhibition toward standard and
clinical isolate strains of Gram-negative bacteria (Table 2).
Therefore, Ctn and BatxC inhibited the clinical isolates of
Klebsiella pneumoniae, resulting in similar data obtained for
OH-CATH used in this same study as the reference. For these
same strains, the elapid peptide Pt_CRAMP1 was less potent
than the two vipericidins (Ctn and BatxC) and OH-CATH,
although it presented minimal inhibitory concentrations
(MICs) similar to other Gram-negative and -positive bacterial
strains (Table 2). Furthermore, in comparison with these
peptides mentioned, Pt_CRAMP1 showed the highest
hemolytic activity, making it less selective (Falcao et al., 2014).

According to the antibacterial assays reported by Oliveira-
Junior et al. (2018), both vipericidins (Ctn and BatxC) show
activity toward standard and multidrug-resistant bacterial
strains, having selectivity for clinically isolated Gram-negative
bacterial strains (Table 2) without presenting hemolytic or
cytotoxic effects (Oliveira-Júnior et al., 2018).

Addressing the antimicrobial potential of Ctn, Pérez-Peinado
et al. (2018) reported the activity of Ctn against standard strains
of E. coli and Pseudomonas aeruginosa (Table 2). In addition,
this peptide showed a bactericidal effect against the same strains
but at slightly higher concentrations (Table 2) (Pérez-Peinado
et al., 2018).

Similarly to the in vitro studies described above, Wei et al.
(2015) also reported the efficacy of a natural cathelicidin,
derived from sea snake venom, Hc-CATH. In this study, the
antimicrobial effect of this peptide was evaluated against human
and marine pathogenic bacteria, besides fungal strains. Overall,
the peptide showed potent inhibition toward standard and
clinical isolates strains of Gram-negative and -positive bacteria.
Moreover, Hc-CATH exhibited better MICs against Shigella
dysenteriae followed by E. coli strains, among the 38 bacterial
strains tested (Table 2). Furthermore, this peptide did not
present hemolysis and cytotoxicity effects at the highest
concentration tested, as shown in Table 2 (Wei et al., 2015).

Cai et al. (2018) demonstrated that the CATHPb1 peptide has
broad-spectrum antimicrobial activity in vitro against various
microorganisms, including drug-resistant strains. When
compared to antibiotics commonly used in the clinic, this
showed more effectiveness and an excellent bactericidal potential
in killing kinetic assays. According to Cai et al. (2018), CATHPb1
was also capable of inhibiting the formation of biofilms and
eradicating preformed or mature biofilms (E. coli, P. aeruginosa,
Klebsiella oxytoca, and S. aureus) (Table 2), and fungal strains
November 2019 | Volume 10 | Article 1415
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TABLE 2 | Antibacterial, antibiofilm, and cytotoxic activity of snake venom cathelicidins against standard and clinical isolate bacterial strains, including multidrug-
resistant Gram-positive and -negative bacteria.

Peptide name Bacterial strains Activity (µg.mL-1) Reference

Antibacterial Antibiofilm Cytotoxic

NA-CATH Burkholderia thailandensis 3.6** >3.6** NT (Blower et al., 2015)
Staphylococcus aureus 2.9** 10** >100 (horse erythrocytes) (Dean et al., 2011)

Cathelicidin-BF Acinetobacter calcoaceticus 2.3* NT >400 (murine macrophages RAW 264.7 and
human hepatic tumor cells HepG2; human
erythrocytes)

(Wang et al., 2008)

Bacillus cereus 1.2*
Bacillus pumilus 9.4*
Bacillus subtilis 9.4*
Enterococcus faecium 150*
Escherichia coli 0.6–2.3*
Klebsiella pneumoniae 0.3–9.4*
Pseudomonas aeruginosa 1.2–18.7*
Pseudomonas luteola 1.2*
Salmonella typhi 1.2*
Sacharibacillus kuerlensis 4.7*
Serratia marcescens >400*
Sphingobacterium siyangense 9.4*
S. aureus 4.7– > 400*

OH-CATH Acinetobacter baumannii 16* NT >415 (human erythrocytes) (Zhao et al., 2008)
(Zhang et al., 2010)
(Falcao et al., 2014)

E. coli 0.25–20*
Enterobacter aerogenes 2–4*
Enterobacter cloacae 1–8*
Enterococcus faecalis 64– > 128*
K. pneumoniae 8*
P. aeruginosa 0.5–16*
S. aureus 4–64*

Pt_CRAMP1 A. baumannii 16* NT 210 (human erythrocytes) (Falcao et al., 2014)
E. faecalis 32–64*
E. coli 2–16*
K. pneumoniae 32*
P. aeruginosa 8–32*
S. aureus 32–64*
Streptococcus pyogenes 16*

Crotalicidin (Ctn) A. baumannii 16* NT >415 (erythrocytes; macrophages RAW
264.7)

(Falcao et al., 2014)
(Oliveira-Júnior et al., 2018)
(Pérez-Peinado et al.,
2018)

E. faecalis 32–128*
E. coli 0.25–16*
K. pneumoniae 4–16*
P. aeruginosa 1–16*
S. aureus 32*
S. pyogenes 16*

Batroxicidin (BatxC) A. baumannii 16* NT >425 (erythrocytes; macrophages RAW
264.7)

(Falcao et al., 2014)
(Oliveira-Júnior et al., 2018)

E. faecalis 32–128*
E. coli 0.25–16*
K. pneumoniae 8–16*
P. aeruginosa 1–16*
S. aureus 32*
S. pyogenes 16*

Hc-CATH A. baumannii >200* NT >200 (mouse macrophages of the normal cell
line (L929), human liver tumor cells (HepG2),
prostate cancer cells (PC3), and human
erythrocytes)

(Wei et al., 2015)

B. cereus 9.4*
B. subtilis 75*
E. faecalis >200*

(Continued)
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(Candida albicans and Candida glabrata). Moreover, this potent
peptide protected mice against the skin and systemic infection
caused by methicillin-resistant and vancomycin-resistant
S. aureus. In the in vivo model, this peptide increased the
survival of mice with bacterial burden, without leading to the
hemolysis of human erythrocytes (Table 2) (Cai et al., 2018).

Recently, Wang et al. (2019) evaluated the antimicrobial
effects of SA-CATH against thirteen bacterial strains, including
Gram-positive and -negative standard and clinical isolates
(Table 2), as well as fungal strains, compared to antibiotics of
clinical use. The best SA-CATH results were observed against
Bacillus cereus, followed by E. coli. This peptide could completely
inhibit and kill both bacterial strains within 30 min of peptide
exposure. According to Wang et al. (2019), this peptide was also
capable of inhibiting E. coli biofilm formation. Furthermore,
Frontiers in Pharmacology | www.frontiersin.org 6
hemolytic and cytotoxic activities were not reported against
human erythrocytes and other mammalian cells, at the highest
concentration tested (Table 2) (Wang et al., 2019). Considering
the promising antibacterial and antibiofilm activities of
cathelicidin peptides presented in this section, we can maintain
the hypothesis that natural peptides from snake venoms are very
rich sources of therapeutic agents that may be used for the
treatment of multiresistant infectious diseases. However, further
studies are still required to better evaluate the potential
antibiofilm activity and the potential for the eradication of
preformed biofilms of several of the cathelicidins described
herein. Despite the scarce number of studies, we observed that
the group of snakes is more explored than other reptiles.
Antimicrobial properties of turtles and alligators cathelicidins
have been reported (Barksdale et al., 2017; Chen et al., 2017; Qiao
TABLE 2 | Continued

Peptide name Bacterial strains Activity (µg.mL-1) Reference

Antibacterial Antibiofilm Cytotoxic

E. faecium 37.5*
E. coli 2.3–9.4*
Klebsiella oxytoca 4.7*
K. pneumoniae 4.7–75*
Proteus mirabilis 4.7*
Proteus vulgaris >200*
P. aeruginosa 18.7– >200*
Salmonella paratyphi 4.7*
S. marcescens >200*
Shigella dysenteriae 0.6*
Stenotrophomonas maltophilia 9.4– > 200*
S. aureus 4.7– > 200*
Staphylococcus epidermidis >200*

CATHPb1 B. cereus 1.17* NT >100 (human erythrocytes; normal human
liver cells HL-7702 and mouse peritoneal
macrophages MPMs).

(Cai et al., 2018)

Dysentery bacillus 1.17*
E. faecalis 75*
E. faecium 9.38*
E. coli 9.38* 2.5** and 37.5***
K. oxytoca 75* 6.25** and 25***
K. pneumoniae 18.75* NT
Nocardia asteroids 9.38*
P. aeruginosa 9.38–37.5* 6.25** and 44***
S. paratyphi 18.75* NT
S. aureus 4.69–37.5* 7–11.8** and

30.5–55.3***
S. epidermidis 18.75* NT
S. maltophilia 4.69*

SA-CATH B. cereus 4.69* NT >200 (human erythrocytes; human
keratinocyte cell line HaCaT and mouse
peritoneal macrophages MPMs)

(Wang et al., 2019)

B. subtilis 18.75*
E. faecium 37.5*
E. coli 18.75–75* 40**
K. pneumoniae 37.5* NT
N. asteroids 37.5*
P. aeruginosa 37.5*
Shigella dysenteriae 37.5*
S. aureus 75*
November 2019
*MIC, minimal inhibitory concentration; **IC50, minimal concentrations resulting in 50% of inhibition; and ***EC50, minimal concentrations resulting in 50% of eradicated preformed biofilms;
NT, not tested.
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et al., 2019; Shi et al., 2019) (Supplementary Table 1). However,
much information about cathelicidins reptile is scarce. Given
this, further studies are needed to evaluate the antimicrobial
potential of the various cathelicidins described here.

Mechanisms of Antibacterial Activity of
Snake Venom Cathelicidins
Themechanism of action of AMPs shows significant differences in
the way it operates when compared to antibiotics. This is because
they affect multiple targets, making it difficult to experience
microbial resistance, unlike conventional antibiotics, which
attack one specific target (Singh and Abraham, 2014; Mishra
et al., 2018). One of the main mechanisms triggered by AMPs and
cathelicidins is their binding to the target membrane, followed by
its permeabilization and/or disruption, thus causing bacterial
death (Mahlapuu et al., 2016). This membrane interaction may
be receptor-mediated or not, where most vertebrate AMPs,
including cathelicidins, do not specifically interact with
receptors (Kumar et al., 2018). Thus, it can be seen that the
mechanisms of action performed by the cathelicidins are the same
as those exerted by most cationic AMPs, namely, the three main
and best described bacterial membrane interaction models: carpet
model, barrel model, and toroidal pore model (Agier et al., 2015).

It is known that the cathelicidins are prone to be linear
(Findlay et al., 2016) and form amphipathic a-helices upon
coming into contact with bacterial membranes (Figure 1A).
This feature plays an essential role in their activity (Blower
Frontiers in Pharmacology | www.frontiersin.org 7
et al., 2015), as the main broad-spectrum antimicrobial
property of the cathelicidins is the interaction with the
bacterial membrane (Pérez-Peinado et al., 2018). Studies
conducted by Wang et al. (2011) and Wei et al. (2015) have
already proven that cathelicidins are capable of causing the
rupture of bacterial cell membrane, leading to the leakage of
cytoplasmic content (Figure 1B) and, consequently, kill the
bacteria. Wang et al. (2011) imaged by scanning electron
microscopy (SEM) the bacterium Propionibacterium acnes
treated with cathelicidin-BF and observed membrane rupture
and cell disruption in 30 min. In that same year, Zhou et al.
(2011) also evaluated cathelicidin-BF (or BF-30) by transmission
electron microscopy. In that study, P. aeruginosa and S. aureus
treated with BF-30 for 2 h had partial membrane rupture and
intracellular content leakage (Zhou et al., 2011). In the study
conducted byWei et al. (2015), the interaction of Hc-CATH with
E. coli and S. aureus was analyzed by flow cytometry, which
showed a rapid binding of peptide to the bacterial cells, in about
5 min. In the same study, the deformation and rupture of the
bacterial cells in 30 min was also shown, through SEM, with
extravasation of the intracellular content (Wei et al., 2015). These
data reported here suggest that cathelicidin-BF and Hc-CATH
are potent peptides that act on bacterial membrane destruction,
of both Gram-negative and -positive bacteria (Wang et al., 2011;
Wei et al., 2015).

In addition to membrane targets, cathelicidins may also act
intracellularly, binding or degrading molecules, including DNA,
FIGURE 1 | Cathelicidins' mechanisms of action. (A), Cathelicidin structural modification by electrostatic interaction with Gram-negative bacterial membrane.
(B), Bacterial membrane disruption caused by cathelicidins. (C), Inhibition of ATP synthesis/hydrolysis caused through cathelicidins binding to ATP synthase.
Created with BioRender.com.
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RNA, and proteins. They can interfere with DNA and RNA
synthesis and impair the functions of enzymes and other
proteins, which are crucial molecules for cell survival (Agier
et al., 2015; van Harten et al., 2018). Still in the context of
intracellular targets, it was observed that cathelicidins are capable
of inhibiting ATP synthase (Azim et al., 2016), the biological
nanomotor that generates about 95% energy of the ATP for the
cells (Laughlin and Ahmad, 2010). The inhibition of this
mechanism deprives cells of ATP, affecting cell development,
which results in cell death (Azim et al., 2016).

To identify potential ATP synthase inhibitors (Figure 1C),
Azim et al. (2016) tested the cathelicidin OH-CATH and other
peptides on E. coli. The authors found that OH-CATH was
capable of inhibiting approximately 90% of ATP synthase
activity through a reversible non-covalent interaction. Studies
by Laughlin and Ahmad (2010) and Ahmad et al. (2015) also
investigated the inhibition of ATP synthase in E. coli, but with
peptides from other classes (Laughlin and Ahmad, 2010; Ahmad
et al., 2015; Azim et al., 2016). In view of this, we observed that
there are few studies on the intracellular targets of cathelicidins,
although a range of mechanisms has already been identified.
Therefore, we emphasize the importance of investing in and
deepening studies on cathelicidin molecular targets, since they
are promising for the development of new drugs.

Immune Modulation Triggered by Snake
Venom CRAMPs
Cathelicidins were described mainly in the context of their
antimicrobial activity; however, over the years, other biological
functions have been uncovered and appreciated (Zanetti, 2005). In
addition to direct bactericidal properties, cathelicidins can trigger
specific defense responses, including immunomodulatory activities,
as well as modulation of chemokine expression in pro- and anti-
inflammatory responses. Furthermore, the promotion of wound
healing and the inhibition of cellular apoptosis have also been
proposed (Mansour et al., 2014; Coorens et al., 2015). These
peptides are often stored in neutrophil and macrophage secretory
granules and can be released extracellularly by leukocytes upon
activation. In addition, their expression was also reported in
keratinocytes or epithelial cells (Boman, 1995; Zanetti, 2005;
Kościuczuk et al., 2012). Therefore, several actions of these host
defense peptides (HDPs) or natural antibiotics are promoted by their
direct interaction with other cells of the innate immune system,
including monocytes and dendritic, epithelial, and T cells (Mansour
et al., 2014), besides the activation of specific receptors (Gupta
et al., 2015).

The sea snake cathelicidin Hc-CATH exhibits potent
antimicrobial and anti-inflammatory activity, inhibiting pro-
inflammatory cytokines like tumor necrosis factor a (TNF-a),
interleukins (IL-1 and IL-6), and nitric oxide (NO) production
induced by lipopolysaccharide (LPS). Hc-CATH is capable of
neutralizing LPS toxicity by direct binding to LPS molecule and
Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2
(MD2), which in turn inhibits LPS-induced inflammatory
response pathways when bound to the TLR4/MD2 receptor
complex, as shown in Figure 2 (Wei et al., 2015).
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Moreover, the peptide CATHPb1 also shows immuno-
modulatory activity in vivo (Cai et al., 2018). This peptide can
rapidly modulate and direct defense cells, like macrophages and
neutrophils, to the site of infection with intense cell proliferation
(Figure 2), thereby enhancing their bactericidal functions (Cai
et al., 2018). Increased apoptosis of neutrophil-mediated bacteria
was clearly observed by Cai et al. (2018), with CATHPb1 acting
in synergy with cytokines or b-defensins. Besides, CATHPb1
promotes an improvement in chemokine levels and decreases the
production of pro-inflammatory cytokines (Figure 2), without
undesirable cytotoxicity (Agier et al., 2015).

Cathelicidin SA-CATH exhibited potent anti-inflammatory
activity by inhibiting the production of LPS-induced
proinflammatory cytokines (NO, TNF-a, and IL-6) in mouse
peritoneal macrophage cells (MPMs) (Wang et al., 2019).

Finally, in the study byCoorens et al. (2017), itwas observed that
different cathelicidins predominantly show immunomodulatory
functions by neutralizing LPS and lipoteichoic acid (LTA), as well
as inhibiting macrophage activation. Besides, several cathelicidins
increased chemokine expression by RAW 264.7 murine cells
(Coorens et al., 2017). However, these authors confirm that these
intrinsic propertiesmaydiffer between the various cathelicidins and
interspecies (Coorens et al., 2017).

Snake Venom CRAMPs Structural Profile
Several natural AMPs have been isolated over the years and,
according to their efficacy in inhibiting/killing pathogenic
microorganisms, further studies have been performed to draw a
structure/function relationship for these molecules (Cardoso
et al., 2018b). For instance, extensive structural works have been
performed with well-known natural AMPs, including magainin
(Bechinger et al., 1993), indolicidin (Ladokhin et al., 1997), and
LL-37 (Oren et al., 1999), among others. These studies have
provided crucial information on AMP aggregation (Jean-
Francois et al., 2008), pore formation (Hasan et al., 2018),
membrane disruption and/or translocation (Ulmschneider,
2017), as well as possible interaction with intracellular targets
(Zahn et al., 2014). Moreover, the understanding of natural AMP
structure has enabled the structure-guided design of improved
variants, which currently represents a large field of research in
terms of antimicrobial agents (Torres et al., 2018). In the case of
natural CRAMPs derived from snake venom, a few studies have
reported how these peptides are organized at the structural level.
Therefore, this section will focus on the main findings regarding
the structural arrangements adopted by snake venom CRAMPs
and how this has been related to their antimicrobial properties.

One of the first studies to investigate the secondary structure of
snake venom CRAMPs was performed by Wang et al. (2008).
These authors isolated a potent cathelicidin-like AMP
(cathelicidin-BF) from snake venoms of B. fasciatus and, by
means of biophysical studies (CD and NMR), characterized this
peptide's structure. Initially, CD spectra were recorded in
hydrophilic, hydrophobic, and anionic environments, suggesting
a coil-to-helix transition from water to 2,2,2-trifluroethanol (TFE)
and from water to sodium docecyl sulfate micelles. Although CD
provides useful information on peptides' and proteins' secondary
November 2019 | Volume 10 | Article 1415
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structure, it does not indicate which residues participate or not in
secondary structure stabilization. Therefore, in addition to the CD
data for cathelicidin-BF, those authors also performed 2D-NMR
experiments, revealing that, in TFE/water mixtures, the a-helical
segment in cathelicidin-BF is continuous from Phe2 to Phe18.
However, the extension of this segment is interrupted from Lys19

to Phe30, which may be explained by the presence of a proline
residue at position 21 (Wang et al., 2008). Similar findings were
observed for the first CRAMP isolated from sea snakes, named
Hc-CATH, which was structurally characterized in silico and in
vitro (Wei et al., 2015). Proline is commonly associated with the
limitation of a-helix formation in AMPs, both in aqueous
solution and membrane-like conditions, rendering proline-
containing AMPs more flexible than proline-free AMPs (Yang
et al., 2006). Therefore, cathelicidin-BF was characterized as an a-
helical peptide with a flexible C-terminal tail (Wang et al., 2008).
Finally, this structural profile (helix-Pro-coil) seems to play a
crucial role for the potent antibacterial property of cathelicidin-
BF, as its truncated analog (cathelicidin-BF15) did not display
promising activities against a range of bacteria (Wang et al., 2008;
Chen et al., 2011).

Similarly, de Latour et al. (2010) and Dean et al. (2011) have
characterized the secondary structure of NA-CATH, a N. atra
cathelicidin, through CD experiments in different conditions. As
Frontiers in Pharmacology | www.frontiersin.org 9
for cathelicidin-BF, NA-CATH has a proline residue at the C-
terminal region (position 25). Due to this helix-breaker residue,
NA-CATH has shown weaker helical CD signatures than other
cathelicidin-like peptides designed based on the 11-residue
pattern (KR(F/A)KKFFKK(L/P)K), which is derived from the
natural NA-CATH (de Latour et al., 2010). Moreover, these
studies have correlated the higher helical propensity of NA-
CATH short analogs to their higher antibacterial and antibiofilm
activities, when compared to the natural NA-CATH (Dean et al.,
2011). These data, along with those for cathelicidin-BF, raise the
question of whether the a-helical extension in the natural
peptides would lead to improved antimicrobial potential or not,
thus shedding some light on the role of C-terminal flexibility in
these natural CRAMPs.

More recently, the tridimensional structure of NA-CATH has
been determined using NMR (Du et al., 2015). Du et al. (2015)
reported that, in the presence of 30% TFE in phosphate-buffered
saline, NA-CATH presents a defined a-helix from Phe3 to Lys23,
whereas a random coil conformation is observed due to the
presence of Pro25. Previous works have shown that NA-CATH
causes complete lysis of anionic liposomes and rapidly induces
bacterial membrane disruption (Juba et al., 2015). Therefore,
NMR and fluorescence re-quenching experiments have been
carried out to evaluate the behavior of this peptide in the
FIGURE 2 | Immunomodulatory response of cathelicidins toward bacterial LPS mediated by TLR4-MD2 complex receptor signaling. Lipopolysaccharide (LPS), the
main component of the outer membrane of Gram-negative bacteria, is recognized and activated by immune defense cells, and can bind to membrane receptors of
variable specificity and induce the synthesis of inflammatory mediators. LPS is recognized by LBP (LPS-binding proteins) and the LPS-LBP complex binds to the
CD14 receptor, a leukocyte membrane-expressed glycoprotein. In turn, LPS is presented to the TLR4-MD2 complex (Toll-like receptor 4 and myeloid differentiation
factor 2), activating the transcription factors NF-kB (nuclear factor-kB) and IRF (interferon regulatory factors), consequently inducing the production of pro-
inflammatory cytokines, chemokines, and nitric oxide (NO). The direct interaction of cathelicidin with bacterial LPS, the CD14 co-receptor or TLR4, allows modulation
of the immune response, reducing its pro-inflammatory effects. Created with BioRender.com
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presence of liposomes (Du et al., 2015). NMR analyses revealed
fast exchange in the peptide/liposome complexes, along with
signal broadening for aromatic residues, thus indicating their
interaction with the liposomes. From these analyses, the authors
also concluded that a significant portion of NA-CATH is in
solution, which may suggest a compromised liposome bilayer.
Furthermore, the C-terminal flexible region of NA-CATH, which
is also recurrent in other natural snake venom CRAMPs, is more
stable (less mobile) in the presence of liposomes. Finally, Du et al.
(2015) also observed that fluorophore leakage suggests that NA-
CATH acts on bacteria by either membrane thinning or transient
pore formation, corroborating the NMR data (Du et al., 2015).

As mentioned above, the structure-function relationship in
natural snake venom CRAMPs that adopt a helix-Pro-coil
structural profile (Figure 3) is still under investigation. Bearing
this in mind, Falcao et al. (2015) performed the in silico
dissection of the natural CRAMP Ctn, resulting in two
fragments, Ctn [1–14] and Ctn [15–34]. In parallel to what has
been described for cathelicidin-BF and Na-CATH, the full-
length Ctn adopts a helix-Pro-coil structure in the membrane-
like environment (dodecylphosphocholine micelles). NMR
studies also showed that Ctn [1–14] adopts a well-defined
Frontiers in Pharmacology | www.frontiersin.org 10
amphipathic a-helix, whereas Ctn [15–34] remains
unstructured. Interestingly, however, the antibacterial and
anticancer properties of natural Ctn were retained solely in the
unstructured fragment, Ctn [15–34]. These findings, along with
the current literature on AMPs, support the hypothesis that
structural flexibility may play a key role in the function of these
molecules (Amos et al., 2016; Cardoso et al., 2018a).

Conclusions and Prospects
Although few or no new classes of antibiotics have reached the
pharmaceutical industry for some years, there is a relentless
interest in the development of novel antibacterial agents
from AMPs for therapeutic uses. Facing this scenario, many
studies have been carried out with the purpose of characterizing
new bioactive molecules, as well as their mechanisms of action
on the target of clinical interest, here potentially found in
reptilian peptides.

As reported in this review, CRAMPs derived from snake
venoms have been investigated in respect to structure and
mechanism of action, relating with their bactericidal and
immunomodulatory activity, as promising molecules that could
be developed into future antibiotics in clinical therapy. In
FIGURE 3 | Representation of the helix-Pro-coil structural profile that has been described for snake venom CRAMPs. (A), Sequence alignment highlighting a
conserved proline residue at the C-terminus region of all snake venom CRAMPs here described. *Indicates conserved residues between all sequences. (B), Lowest
free energy structure obtained by solution NMR for crotalicidin (PDB entry: 2mwt) (Falcao et al., 2015). Although the two lysine residues that precede the proline
appear unstructured, they are structurally stable among the 20 lowest free energy structures deposited for crotalicidin. In contrast, the residues after the proline are
highly flexible. The proline residue is represented as yellow sticks.
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general, these cathelicidins have demonstrated potent in vitro
and in vivo antimicrobial activity, including against some
multidrug-resistant strains. However, more targets can be
exploited in view of the wide range of biological functions that
natural cathelicidins isolated from snake venom may present.

Moreover, strategies for developing cathelicidin-based
antibiotics have been employed to overcome some obstacles
regarding AMP translation to the clinic, including particularly
low structural stability, biocompatibility, oral bioavailability, size,
and cytotoxicity (Mahlapuu et al., 2016; Costa et al., 2019).
Thereby, computational studies like the rational design of
molecules based on three-dimensional structures have been
widely applied to optimize or improve their activity, as well as
reducing the costs of production of new drugs (Mishra et al.,
2017). Some of the most successful modifications include
substitutions, insertions, or deletions of amino acid residues in
the primary sequence of natural peptides, which may change
their hydrophobicity and hydrophilicity, reduce their cytotoxic
effect and/or render them less susceptible to proteolytic
degradation (Fjell et al., 2012; Cardoso et al., 2018a; Costa
et al., 2019). Furthermore, these modifications allow the design
of peptide analogs with a reduced number of amino acid residues,
while preserving the biological properties of the parent peptide.

These molecules present a high applicability degree as
antimicrobial drugs, especially for multidrug-resistant bacterial
infections treatment, one of the major health threats of the 21st
century. Although cathelicidins size remains as a restriction for
their large-scale production (chemical synthesis), this class of
Frontiers in Pharmacology | www.frontiersin.org 11
natural peptides has shown great biotechnological and
pharmacological potential, thus highlighting their importance
as model molecules for future peptide-based therapies (Cardoso
et al., 2018a; Costa et al., 2019).
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