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Abstract. Immunogene therapy can enhance the antitumor 
immune effect by introducing genes encoding co‑stimulation 
molecules, cytokines, chemokines and tumor‑associated 
antigens into treatment cells or human cells through genetic 
engineering techniques. Oncolytic viruses can specifically 
target tumor cells and replicate indefinitely until they kill 
tumor cells. If combined with immunogene therapy, oncolytic 
viruses can play a more powerful antitumor role. The high 
pressure, hypoxia and acidity in the tumor microenviron‑
ment (TME) provide suitable conditions for tumor cells 
to survive. To maximize the potency of oncolytic viruses, 
various methods are being developed to promote the reversal 
of the TME, thereby maximizing transmission of replication 
and immunogenicity. The aim of the present review was to 
discuss the basic mechanisms underlying the effects of onco‑
lytic adenoviruses on the TME, and suggest how to combine 
the modification of the adenovirus with the TME to further 
combat malignant tumors.
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1. Introduction

Solid tumors are a major cause of mortality in humans (1). 
Due to the advanced proliferative, invasive and migratory 
abilities of tumor cells, the prognosis for patients with cancer 
is extremely poor (2). Effective tumor therapy is disrupted 
immunosuppression of immune cells in the tumor microenvi‑
ronment (TME) and tumor specificity of stromal cells (3). For 
example, chemotherapy, while killing tumor cells, stimulates 
other cells in the TME to release signals that promote tumor 
growth, ultimately resulting in treatment tolerance (4). Drug 
development with specific targeting of tumor cells and the 
TME will be a promising approach to tumor therapy. Thus, 
several studies have focused on the transformation of oncolytic 
adenoviruses (5,6), which can specifically target tumor cells 
and retain the efficacy of the drug at the tumor site. Gene 
therapy is a novel approach to cancer treatment (7), which 
aimed to target any aspect of tumor occurrence (8). Thus, in 
terms of genetic modification, several strategies have been 
adopted to overcome obstacles and reverse the TME.

2. Oncolytic adenovirus

An adenovirus is a non‑enveloped double‑stranded DNA virus 
with a symmetrical icosahedral structure (9). The genome is 
~36 kb in length and can encode >40 gene products (10). These 
gene products are divided into three subtypes based on their tran‑
scription start time, including early, middle and late stages (11). 
Early gene products are predominantly responsible for coding 
gene regulation, including the E region, while late gene products 
are predominantly responsible for coding structural proteins, 
including the L region (12,13). Among adenovirus subtypes, 
adenovirus serotype 3 (Ad.3) and adenovirus serotype 5 (Ad.5) 
are the most commonly studied subtypes, and Ad.5 is the most 
commonly used subtype (14). Following infection, the onco‑
lytic adenovirus initially recognizes specific receptors on the 
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surface of tumor cells and triggers their internalization (15). 
Subsequently, it enters tumor cells, viral genomes migrate to 
the nucleus through microtubules, and early viral proteins in 
the E1 region immediately begin to be transcribed (16). The 
protein binds to Rb to release the transcription factor, E2F, 
which also activates the cell cycle, allowing oncolytic adeno‑
virus‑infected cells to enter the S phase (6,17). Concurrently, 
the E1A protein maintains p53 stability and inhibits tumor 
growth by relying on the p53 pathway (18). The release of E2F 
also triggers the coordinated activation of viral genes, which 
results in the production of new virions, the lysis of infected 
cells and the spread of viral offspring (19). The oncolytic 
adenovirus continuously replicates in tumor cells, eventually 
lysing tumor cells and infecting other tumor cells via the 
same mechanism of action (20‑23). Due to the large loading 
capacity of the oncolytic adenovirus vector, therapeutic genes 
are commonly inserted into the adenovirus vector (24,25). Due 
to the continuous replication and accumulation of adenoviruses 
in tumor cells, therapeutic genes are expressed and thus spread, 
playing a synergistic antitumor role (26).

3. TME of solid tumors

The TME is the internal environment for the growth of tumors, 
which includes tumor cells (27,28), stromal cells (tumor‑asso‑
ciated vascular endothelial cells and tumor‑associated 
fibroblasts), immune cells [T lymphocytes and B lymphocytes, 
tumor‑associated macrophages (TAMs), dendritic cells (DCs) 
and natural killer (NK) cells], the extracellular matrix (ECM) 
and signaling molecules such as IL‑4 and IL‑10 (29‑31). The 
ECM includes various proteins, glycoproteins, proteoglycans 
and other biochemical substances, which regulate vascular 
endothelial cells and fibroblasts, and promote tumor growth 
and cell migration (32) (Fig. 1). In the TME, tumor blood 
vessels are constantly supplying oxygen and nutrients to 
support tumor growth (28,32‑34). When the tumor is exposed 
to hypoxic conditions locally, tumor blood vessels receive 
signal stimulation and generate branches from existing blood 
vessels (35,36). However, the structure of these tumor vessels 
differs from that of normal vessels, with absence of basement 
membranes, uneven diameter and size of the tubes, and short 
circuit of arteries and veins, resulting in tumor interstitial 
hypertension (37,38). Under hypoxic conditions, tumor cells 
undergo glycolysis and produce more lactic acid, which lowers 
the pH of the TME (39). Proton transport channels exist in 
all parts of tumor tissues, which transfer the metabolized H+ 
out of tumor tissues and maintain the pH in the TME (40‑42). 
However, pH reduction in normal tissues results in necrosis, 
which is more conducive to tumor metastasis and growth (43). 
Among the myeloid progenitors cells located in the TME, 
myeloid‑derived suppressor cells (MDSCs), mast cells and 
most TAMs play key roles in promoting tumor develop‑
ment (44). MDSCs are immunosuppressive precursors of DCs, 
macrophages and granulocytes (35,45). MDSCs maintain 
a normal tissue dynamic balance in response to a variety of 
systemic infections and injuries (33). Several animal models 
have demonstrated that MDSCs can promote tumor angiogen‑
esis and disrupt the main mechanisms of immune surveillance 
by interfering with antigen presentation, T‑cell activation and 
NK cell killing of DCs (46,47). It has also been reported that 

mast cells are recruited into the tumor, where they release 
factors that promote endothelial cell proliferation to promote 
tumor angiogenesis (48‑50). Increasing evidence suggests that 
microenvironment‑mediated external stimulation plays a key 
role in tumor cell survival and drug resistance (28,51). The 
complexity of the TME makes it difficult for the traditional 
oncolytic virus to reverse the conditions set by the TME while 
targeting tumor cells (27,52). The traditional oncolytic virus 
can only inhibit the growth of tumor cells to a certain extent.

Owing to the constant improvement of genetic engineering 
techniques, it is getting easier to develop oncolytic adenovirus 
constructs with required properties. Preclinical trials involve 
wild‑type and recombinant oncolytic adenovirus (Table I), aimed 
to reverse the TME while suppressing tumor cells (6,53) (Fig. 2). 
Several oncolytic adenoviruses are currently undergoing clinical 
trials as antitumor agents, and notably some progress has been 
made in reversing the TME (Table II). An ongoing clinical trial 
is testing RGD (Delta‑24‑rgd), a genetically modified oncolytic 
adenovirus, as an agent against glioma. The first results obtained 
in the phase I trials indicate that 20% of patients showed durable 
responses and CD8+ T cells infiltrated the tumor in large quanti‑
ties (54). TILT‑123 in preclinical studies altered the cytokine 
balance in the TME towards Th1 and resulted in a significant 
increase of the survival rate in severe combined immunodefi‑
ciency (SCID) mice with human tumors (55,56). The currently 
ongoing phase I trial is recruiting patients with solid tumors to 
evaluate the safety.

4. Adenovirus modification combined with immune cells 
in the TME

DCs. DCs are derived from the bone marrow and play a key 
role in inducing and maintaining antitumor immunity (57,58). 
Infiltration of mature DCs into the tumor can enhance immune 
activation and increase the recruitment of antitumor immune 
effector cells and pathways (58,59). However, in the TME, 
the antigen‑presenting function of DCs may be lost or inef‑
ficient (60). Tumor cells can inhibit the function of DCs or 
change the TME by recruiting immunosuppressive DCs (61). 
CD40 is a member of the tumor necrosis factor receptor 
family and is expressed in DCs, which is a target for infil‑
trating T cells (62). CD40L is instantaneously expressed in 
T cells, which activates the maturation of DCs and triggers 
the immune response. Adenovirus delivery of CD40L induces 
DC activation, thereby inducing a Th1 immune response (63). 
The oncolytic virus restricts CD40L expression in cancer 
cells, thus decreasing systemic exposure and weakening 
the systemic immune response (64,65). Currently, there are 
already two phase I/II clinical trials involving LOAd703 that 
are recruiting patients. One of the studies is recruiting patients 
with pancreatic cancer to evaluate whether it supports the 
current treatment standards for pancreatic cancer and whether 
it can improve the survival rate of patients. Another study 
recruited patients with malignant melanoma and monitored 
their tumor response, immune response, virus shedding and 
survival rate. One of the major virulence factors of bacteria was 
Helicobacter pylori neutrophil‑activating protein (HP‑NAP), 
which is a TLR‑2 agonist capable of chemotaxis of neutro‑
phils, and monocytes and stimulates them to produce 
reactive oxygen species (66,67). HP‑NAP also induced 
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Th1‑polarized immune responses by stimulating the secretion 
of interleukin (IL)‑12 and IL‑23 and other pro‑inflammatory 
cytokines such as tumor necrosis factor (TNF)‑α and 
IL‑8 (68). Ag‑presenting‑HP‑NAP‑activated DCs effectively 
amplified Ag specific T cells, an important characteristic of 
mature DCs (69). HP‑NAP‑activated DCs resulted in Th1 
cytokine secretion, with high IL‑12 expression, relatively low 
IL‑10 secretion and migrated to CCL19 (69).

Macrophages. TAMs are divided into specific M1‑like macro‑
phage subsets and specific M2‑like macrophage subsets, and 
M1‑like macrophage subsets are activated by the classical 
pathway and exert notable antitumor effects (70,71). In the TME, 
specific M2‑like macrophage subsets are the most common, 
and their cytokines IL‑6, TNF, IL‑1 and IL‑23 promote tumor 
growth and metastasis and silence T‑cell function (72,73). 
Selective removal of specific M2‑like macrophage subsets 
has become a research hotspot. Granulocyte‑macrophage 
colony‑stimulating factor (GM‑CSF) can affect macrophages, 
promote their rapid differentiation to mature macrophages, 
prolong the life of mature macrophages, and enhance their 
cellular immune function (74). By inserting GM‑CSF into 
the Ad5 vector, ONCS‑102 induced notable antitumor immu‑
nity (75). ONCOS‑102 is currently being assessed in two phase I 
clinical trials in advanced peritoneal malignancies and malig‑
nant pleural mesothelioma. Ad‑CD‑GMCSF is an adenovirus 

carrying cytomegalovirus promoter cytosine deaminase (CD) 
and GM‑CSF (75). Adenovirus vectors expressing CD and 
GM‑CSF are well tolerated in refractory tumors (5). CD47 
is a cell surface transmembrane protein present in normal 
tissues (76). It is highly expressed in malignant tumor cells and 
binds to signaling regulatory protein‑α (SIRPα) expressed on 
macrophages to inhibit macrophage phagocytosis, resulting 
in immune escape. SIRPα‑FC fusion protein inserted into the 
oncolytic adenovirus vector blocks the binding of CD47 to 
macrophages, leading to a large increase in macrophage infiltra‑
tion in tumor tissues, thus enhancing the antitumor effect (77). 
MMAD‑IL13 loaded with IL13 demonstrated enhanced anti‑
tumor effects by inducing apoptosis in the TME in vivo, and 
decreased the percentage of specific M2‑like macrophages (78). 
Scott et al (79) constructed a set of bivalent and trivalent T‑cell 
adapters (BiTEs/TriTEs), which can specifically recognize 
CD3ε on T cells and the folate receptor or CD206 on specific 
M2‑like macrophages. T‑cell adapters were used to specifi‑
cally direct the cytotoxicity of endogenous T cells to M2‑like 
macrophages and deplete M2‑like macrophages in tumor 
tissues. There was a significant increase in specific M1‑like 
macrophage fraction among surviving macrophages, indicating 
a reversal of macrophage type in the TME (79).

NKs. NK cells have a notable antitumor effect in the initial stages 
of tumors, which can eliminate tumor cells (30). However, at the 

Figure 1. Schematic diagram of the tumor microenvironment.
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advanced tumor stage, NK cells gradually lose their antitumor 
ability and become dysfunctional (80). IL‑21 is involved in NK 
cell differentiation (81), and the oncolytic adenovirus equipped 
with IL‑21 exerts an obvious inhibitory effect on the prolifera‑
tion of tumor cells (82). Similarly, NK cells can be activated by 
IL‑15 (83), and oncolytic adenovirus (Ad‑E2F/IL15), which 
expresses IL‑15, can lyse tumor cells and coordinate with 
immune cells to enhance the antitumor response (84).

5. Adenovirus modification combined with stromal cells in 
the TME

Cancer‑associated fibroblasts (CAFs). CAFs are a major compo‑
nent of the tumor stroma, which regulate the TME and influence 
the behavior of tumor cells, and play crucial roles in the occur‑
rence, development, invasion and metastasis of tumors (85,86). 
Fibroblasts in the TME secrete growth factors such as hepato‑
cyte growth factor, fibroblast growth factor and CXCL12 (87), 
which promote the growth and survival of malignant cells, and 
act as chemokines to induce the migration of other cells into the 
TME (88,89). Concurrently, CAFs form a barrier in tumors and 
prevent the effective penetration and transmission of oncolytic 
virus, thus limiting its efficacy (90,91). By modifying oncolytic 
adenovirus, the effects of tumor cells and CAFs will be inhib‑
ited at the same time (92). Fibroblast activation protein‑α (FAP) 
is highly expressed in CAFs. The FAP single‑chain antibody is 

linked to an anti‑human CD3 single‑chain variable region (scFv) 
and loaded into oncolytic adenovirus. FAP scFv, while specifi‑
cally recognizing and targeting CAFs, activates T cells and 
enhances T‑cell‑mediated cytotoxic effects on tumor‑associated 
fibroblasts, thus weakening the cell barrier caused by CAFs and 
enhancing oncolytic activity (24,53).

Vascular endothelial cells. Blood vessels play a vital role in 
the development of tumors, providing nutrition and metastasis 
channels for tumor cells (93). The phenotype of vascular endo‑
thelial cells changes in the TME. Tumor cells secrete vascular 
endothelial growth factor (VEGF) and other endothelial growth 
factors to promote the generation of tumor neovasculariza‑
tion (94). Given that the downstream target gene of microRNA 
(miRNA/miR)‑126 is VEGF (95), miR‑126 is loaded into 
the oncolytic adenovirus, namely ADCEAP‑miR126/34A, 
which decreases the generation of tumor blood vessels (96). 
Concurrently, the VEGF promoter is inserted into the adeno‑
virus vector, targeting the tumor vascular endothelial cells 
via the same mechanism of action enhancing the oncolysis 
of adenovirus (97). IL‑24 is a tumor suppressor molecule 
with broad‑spectrum antitumor activity (98). It inhibits the 
growth of tumor cells by inhibiting tumor angiogenesis (99). 
A previous study has demonstrated that while expressing 
IL24, CRAd‑IL24 significantly increased the release of virus 
particles and enhanced their antitumor effect (6).

Table I. Partial oncolytic adenovirus trials to reverse the tumor microenvironment.

Oncolytic adenovirus Gene modification Target cells in TME Target tumor cells (Refs.)

Ad3‑hTERT‑CMV‑hCD40L CD40L DCs A549 (64)
LOAd703 CD40L DCs  A549 (65)
Ad5 [i/ppt‑sNAP] HP‑NAP DCs LNCaP (69)
ONCOS‑102 GM‑CSF Macrophages, CD8+ T cells AB12 (75)
Ad‑CD‑GMCSF GM‑CSF Macrophages, CD8+ T cells Colon cancer cell line (5)
SG635‑SF A signal regulatory Macrophages SK‑OV3, HO8910 (77)
 protein‑α (SIRPα)‑IgG1 
 Fc fusion gene
MMAD‑IL‑13 IL‑13 Macrophages Cal‑27, SCC‑4, Tca8113 (78)
EnAd BiTEs/TriTEs Macrophages DLD‑1 (79)
Ad‑CCL21‑IL21 CCL21 DCs PC‑3M, THP‑1, HeLa, Caco‑2 (82)
Ad‑CCL21‑IL21 IL‑21 NK cells PC‑3M, THP‑1, HeLa, Caco‑2 (82)
Ad‑E2F/IL15 IL‑15 NK cells, CD8+ T cells U87MG, BGC823, SW620,  (84)
   HCT116
ICO15K‑FBiTE FBiTE CAFs, T cells HT1080, A549 (53)
AdCEAp‑miR126/34a miR‑126, miR‑34a Vascular endothelial cells Pancreatic adenocarcinoma (96)
VEGF‑CRAd VEGF Vascular endothelial cells NCI‑H28, NCI‑H226,  (97)
   NCI‑H20, NCI‑H2452, 
   MSTO‑211H
SKL002 CTLA4 T cells HepG2, A549, Lovo, HeLa,  (106)
   HCT116, SW780
Ad5‑PC PD‑1 CD8+ T cells HCC‑LM3, H22, Hepa1‑6,  (105)
   A549, B16‑F10, LLC1

TME, tumor microenvironment; DCs, dendritic cells; NK, natural killer; CAFs, cancer‑associated fibroblasts.
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6. Adenovirus modification combined with immune 
checkpoints in the TME

Checkpoint molecules are regulatory molecules that play an 
inhibitory role in the immune system and are critical to maintain 
tolerance, prevent an autoimmune response and minimize tissue 
damage by controlling the timing and intensity of the immune 
response (100,101). The expression of immunological checkpoint 
molecules on immune cells suppresses the immune cell func‑
tion as the host fails to produce an effective antitumor immune 
response. There are numerous receptors on tumorigenic immune 
escape T cells, including co‑stimulatory signal receptors that can 
stimulate T‑cell proliferation, and co‑inhibitory signal receptors 
that can inhibit T‑cell proliferation (102). Immune checkpoint 
molecules are predominantly inhibitory molecules, in which the 
immune checkpoint on T cells suppresses the immune function 
of T cells, causing tumor escape (103). However, the clinical 
benefits of monotherapy with immune checkpoint inhibitors, 
such as anti‑programmed death‑1 antibody, are limited to 
small populations (104). Zhang et al (105) designed an adeno‑
virus (Ad5‑PC) to express a soluble fusion protein (programmed 
cell death protein 1/CD137L), which significantly increased the 
number of T lymphocytes in the TME and effectively improved 
the survival rate of tumor‑bearing mice (105). After loading 
anti‑cytotoxic T lymphocyte‑associated antigen‑4 (CTLA‑4) 
antibody into the adenovirus vector, tumor cells were infected. 

CTLA‑4 antibody was significantly expressed in tumor cells 
and its antitumor activity was significantly enhanced (106). 
Ad5/3‑Δ24aCTLA4 can express CTLA‑4 human intact mono‑
clonal antibody, and in the normal donors and patients with 
advanced solid tumors in the peripheral blood mononuclear 
cells that were tested (107). Ad5/3‑Δ24aCTLA4 significantly 
enhanced the immune response and activated the pro‑apoptotic 
effect of T cells (107).

7. Outlook

Recently, the transformation technology of oncolytic adeno‑
viruses has significantly progressed. However, increasing 
evidence suggest concerns about the tumor‑promoting effect 
of the TME. Thus, the transformation of oncolytic viruses 
into TME has become a research hot spot; however, the 
in vitro simulation of the TME does not accurately reflect 
the human microenvironment. Cytokines and growth factors 
were added to the cell culture, either co‑cultured with tumor 
cells and other cells, or with three‑dimensional scaffoldings 
to simulate the TME. However, due to the complexity of the 
TME, it remains difficult to completely simulate the human 
TME completely in vitro. Currently, xenotransplantation of 
immunodeficient mice is the most commonly used animal 
experimental method for studying human tumors. Briefly, 
human tumor cells are inserted into mice; however, this fails 

Figure 2. Oncolytic adenovirus mechanism of action. When the oncolytic adenovirus specifically infects tumor cells, it releases new virus particles and 
transmits them to other tumor cells. It also delivers cytokines, growth factors, fusion proteins and other substances that act on other corresponding cells in the 
tumor microenvironment.



WANG et al:  ONCOLYTIC ADENOVIRUSES REVERSE THE TUMOR MICROENVIRONMENT6

to fully reflect the human TME. Several factors affect the 
oncolytic effect of an oncolytic virus. The strong immune 
response and severe cytokine storm when the virus first enters 
the host may be fatal. Subsequent challenges arise at later 
stages during elimination of oncolytic virus by the immune 
system of the host. It is hypothesized that the selection of 
oncolytic viruses will be the focus of future research, and it 
will be individualized, with the intent that the oncolytic virus 
most suitable for each patient can be selected, based on the 
characteristics of the tumor cells and the TME.
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