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Abstract: Liverworts are rich in bibenzyls and related O-glycosides, which show antioxidant activ-
ity. However, glycosyltransferases that catalyze the glycosylation of bibenzyls have not yet been
characterized. Here, we identified two bibenzyl UDP-glucosyltransferases named MpUGT737B1
and MpUGT741A1 from the model liverwort Marchantia polymorpha. The in vitro enzymatic assay
revealed that MpUGT741A1 specifically accepted the bibenzyl lunularin as substrate. MpUGT737B1
could accept bibenzyls, dihydrochalcone and phenylpropanoids as substrates, and could convert
phloretin to phloretin-4-O-glucoside and phloridzin, which showed inhibitory activity against tyrosi-
nase and antioxidant activity. The results of sugar donor selectivity showed that MpUGT737B1 and
MpUGT741A1 could only accept UDP-glucose as a substrate. The expression levels of these MpUGTs
were considerably increased after UV irradiation, which generally caused oxidative damage. This
result indicates that MpUGT737B1 and MpUGT741A1 may play a role in plant stress adaption. Sub-
cellular localization indicates that MpUGT737B1 and MpUGT741A1 were expressed in the cytoplasm
and nucleus. These enzymes should provide candidate genes for the synthesis of bioactive bibenzyl
O-glucosides and the improvement of plant antioxidant capacity.

Keywords: Marchantia polymorpha; O-glucosyltransferase; bibenzyls; biosynthesis; enzymatic catalysis

1. Introduction

Liverworts belong to a sub-group of the non-vascular bryophytes and produce a variety
of natural metabolites including bibenzyls and flavonoids, which show excellent antioxi-
dant activity [1,2]. Flavonoids are widespread in nature, while bibenzyls are distributed
exclusively in liverworts [3] and some vascular plants such as Orchidaceae [4]. Flavonoids
contain a C6-C3-C6 backbone and have been classified into several subgroups, namely
flavanones, dihydroflavonols, flavones, flavonols, flavan-3,4-diols, flavan-3-ols and antho-
cyanins according to their oxidation status and substitution patterns of the core skeleton [5].
Bibenzyls contain a C6-C2-C6 skeleton. Both bibenzyls and flavonoids are derived from
the phenylpropanoids pathway and share several similar upstream steps [6]. Flavonoids
and bibenzyls not only play significant physiological roles in plants, but also have im-
portant medicinal properties, such as antioxidant, antibacterial and anti-inflammatory
activity [7–9]. Various modifications of these compounds, including glycosylation, acyla-
tion and methylation, make the structure of natural products more diversified. Glycosyla-
tion can significantly affect the solubility, stability and toxicity of the compounds [10] and
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is usually essential for the storage, transportation and maintaining metabolic homeostasis
of polyphenols [11].

In plants, the glycosylation of natural products is usually catalyzed by the uridine
diphosphate-dependent glycosyltransferases (UGTs). UGTs belong to the large glycosyl-
transferases 1 family (CAZy database) [12], which contain a Plant Secondary Product
Glycosyltransferase (PSPG) motif at the C-terminus. The PSPG domain comprises 44 con-
served amino acids and serves as a UDP-sugar binding site [13,14]. UDP-sugars, as the
supplier of glycosyl residues of various plant glycosides, mainly include UDP-glucose,
UDP-galactose, UDP-glucuronic acid, UDP-xylose and UDP-rhamnose.

Glycosylation of natural products in plants not only increases molecular diversity, but
also plays an important physiological role in plant growth. Studies have shown that the
overexpression of UGT79B2/B3 and UGT87A2 in Arabidopsis significantly enhances the
tolerance of plants to low temperature, drought and salt stress. Therefore, it was demon-
strated that the accumulation of glycosides confers significant abiotic stress tolerance in
plants [15,16]. In addition, many important small-molecule compounds in plants are usu-
ally toxic and unstable, so they rarely accumulate in plant as aglycones. Thus, glycosylation
in plants is also a way to reduce the toxicity of products. For example, phenylpropanes are
important biosynthetic precursors of lignin, and their aglycones are toxic to plants, so they
usually exist in the form of glycosides, which are often associated with plant resistance to
fungal infections and bacterial invasion [17,18].

During recent years, many flavonoid glycosyltransferases from various plants, in-
cluding Glycyrrhiza uralensis [19], Vitis vinifera [20], apple [21] and Camellia sinensis [22],
have been functionally characterized. Moreover, most of the identified flavonoid glyco-
syltransferases showed high catalytic activity for flavones and flavonols to form their
corresponding 7-O-glycosides or 3-O-glycosides. Phloretin belongs to dihydrochalcone,
which usually exists in plants in the form of glycosides including phloridzin and trilobatin.
Phloridzin showed antioxidant and anti-aging activities in Drosophila melanogaster [23].
Several plant phloretin glycosyltransferases, which catalyze the formation of phloridzin
and trilobatin, have been characterized [24,25]. However, specific and efficient phloretin-4-
O-glycosyltransferase is still lacking. Phloretin-4-O-glucoside as a new dihydrochalcone
glycoside, was firstly isolated from the stems of Homalium stenophyllum in 2017 and showed
inhibitory activity against tyrosinase and thus has antioxidant activity [26,27]. Bibenzyl glu-
cosides usually have the effect of anti-melanin production. For example, dihydroresveratrol-
4-O-glucoside showed inhibiting activity in B16F0 melanoma cells [28]. However, the UGTs
using bibenzyls as substrates have not yet been functionally characterized.

Liverworts are the first plant lineage to produce flavonoids and are rich in bibenzyls.
Therefore, it is of great significance to study the role of UDP-glycosyltransferase in the biosyn-
thesis of flavonoid and bibenzyl glycosides in liverworts. To date, only five flavonoid gluco-
syltransferases have been characterized in liverworts, which catalyze different flavonoids to
form their corresponding 7-O-glycosides or 3-O-glycosides [29,30]. Moreover, the flavonoid
or bibenzyl glucosyltransferases in the model liverwort Marchantia polymorpha have not
been characterized. In order to broaden our understanding of the enzymes responsible
for bibenzyls or flavonoids glycosylation in liverworts, in the present investigation, we
screened the M. polymorpha genomes and characterized two UGTs with different catalytic
characteristics and substrate selectivity in vitro. MpUGT741A1 was highly specific for the
bibenzyl lunularin. MpUGT737B1 accepted bibenzyls, phloretin and phenylpropanoids as
substrates and catalyzed phloretin to form the rare natural product phloretin-4-O-glucoside.
The bibenzyl glycosyltransferases, which can be used as candidate genes for the synthesis
of antioxidant compounds and improving plant antioxidant capacity, were identified from
liverworts for the first time.
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2. Materials and Methods
2.1. Plant Materials and Chemicals

Marchantia polyraorpha was collected in Leshan, Sichuan, China and tissue cultured in
the laboratory of Shandong University. The M. polymorpha and Nicotiana tabacum L. were
grown in the plant growth chamber at a temperature of 24 ◦C and a 16/8 h photoperiod.
The seven-week-old thallus of M. polymorpha were collected, immediately frozen in liquid
nitrogen, and stored at −80 ◦C for subsequent experiments.

Unless otherwise stated, chemical standards were purchased from Chengdu Must
Bio-technology (Chengdu, China). Caffeoyl aldehyde, 5-OH coniferyl alcohol and 5-OH
coniferaldehyde were all synthesized in the laboratory using existing methods [31]. UDP-
glucose, UDP-galactose and UDP-glucuronic acid were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Sequence Alignment and Phylogenetic Analysis

Using UDP-glycosyl transferase as the query words, combined with sequence align-
ment and blast, two putative UGTs were selected from the M. polymorpha genome data
(GenBank accession number: PRJNA53523). Their deduced polypeptide sequence was
aligned with the identified UDP-glucosyltransferase VvGT1 (Vitis vinifera GT, AAB81682)
and PaGT2 (Phytolacca americana GT, AB368371) using DNAMAN v7.0.2 software (Lynnon
Biosoft, Quebec, QC, Canada) and a phylogenetic analysis was performed using MEGA
v5.0.1 software (http://www.megasoftware.net, accessed on 26 February 2020), based on
the neighbor-joining method [32].

2.3. RNA Extraction and cDNA Cloning

Total RNA was extracted and purified from the thallus of M. polymorpha using the
cetyltrimethylammonium bromide (CTAB) method [33]. The extracted RNA was con-
verted to cDNA using a PrimerScriptRT Master Mix kit (including gDNA eraser) (Takara,
Kyoto, Japan) following the manufacturer’s instructions. The open reading frames (ORFs)
of the MpUGTs were amplified from the cDNA template using ApexHF HS DNA Polymerase
FS Master Mix (Accurate Biotechnology, Changsha, China). The amplified fragments were
digested with the corresponding restriction enzyme, and then inserted into pET32a.

2.4. Heterologous Expression and Purification of Recombinant UGT Proteins

The ORFs of M. polymorpha UGT genes were cloned into expression vector pET32a (+)
(Novagen, Malaysia) with a Trx-S-His tag at the N-terminus. The relevant primer sequences
are listed in Table S1. E. coli strain BL21 (DE3) competent cells (Novagen) were trans-
formed with recombinant plasmids pET32aMpUGT737B1 and pET32aMpUGT741A1 and
the empty pET32a plasmid. The expression and purification of the recombinant protein
were performed according to the previously reported procedure [34].

2.5. Enzyme Assay and Product Identification

To demonstrate the MpUGTs’ activity and identify their substrate selectivity, these
enzymes were reacted with various flavonoids, bibenzyls and phenylpropanoids. The total
150 µL reaction system included 200 mM Tris-HCl buffer (pH 7.5), 1 mM dithiothreitol
(DTT), 15 µg recombinant protein, 1 mM UDP-sugar donor (UDP-glucose or UDP-galactose
or UDP-glucuronic acid) and 100 µM of a series of sugar acceptors incubated at 30 ◦C
for 1 h. The reaction was generally extracted twice with 150 µL of ethyl acetate. After
centrifugation for 5 min, the organic phase was evaporated and the residue was dissolved in
100 µL methanol for high performance liquid chromatography (HPLC) analysis and LC-MS
analysis. When UDP-glucuronic acid or UDP-galactose was the sugar donor, the reactions
were terminated by adding an equal volume of methanol, followed by centrifugation at
12,000 rpm for 20 min. Then the supernatant was analyzed by HPLC. The negative control
incubations replaced the recombinant protein with the protein expressed by the empty
pET32a plasmid.

http://www.megasoftware.net
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To identify the enzymatic products of MpUGT737B1 using phloretin as a substrate,
a large-scale enzymatic assay was performed in which the MpUGT737B1 reaction was
scaled up to 150 mL and kept at 30 ◦C for 6 h. The products were extracted in 200 mL EtOAc,
and then the organic phase was evaporated. The residue was dissolved in methanol, and
separated by reversed-phase HPLC. Product structures were identified by combining mass
spectrometry (MS), nuclear magnetic analysis 1H NMR, heteronuclear singular quantum
correlation (HSQC) and 1H-1H correlation spectroscopy (1H-1H COSY).

To explore the effect of reaction temperature on enzyme activity, the reaction was
conducted across a 20–55 ◦C range with a pH value of 7.5. To test the pH sensitivity of
the reaction, 400 mM MES (pH 5.0–6.0), Tris-HCl (pH 6.5–8.0) or potassium phosphate
(pH 8.5–9.5) were used as buffers to perform the reaction at 30 ◦C. To test the effect of
divalent metal ions on enzyme activity, metal ions Mg2+, Ca2+, Mn2+, Ni2+, Fe2+ and Cu2+

with a final concentration of 5 mM were added to the reaction, respectively, and the activity
test was performed without metal ions or adding EDTA as a control.

For kinetic analysis of the recombinant MpUGT737B1 and MpUGT741A1 proteins,
the concentrations of the phloretin and lunularin substrates were constructed from 5 to
300 µM in reaction mixtures. The assays were performed in triplicate for 12 min at the
optimal pH and temperature. Then the reaction was terminated and the product was
analyzed as described above. Subsequently, the Vmax and Km values were calculated using
the GraphPad Prism 8.0.2 software (La Jolla, CA, USA).

2.6. In Vivo Functional Analysis of MpUGT737B1 in Escherichia coli

The recombinant E. coli MpUGT737B1 strain was inoculated into 4 mL of LB medium
containing 100 µg/mL ampicillin and grown at 37 ◦C for 16–18 h. The culture was inocu-
lated into 50 mL of the same medium and incubated under the same conditions until the
OD600 reached about 0.5. Then 0.5 mM IPTG was added to induce protein expression.
After culturing at 16 ◦C for about 5–6 h, each aliquot of 10 mL was fed with the correspond-
ing substrates (100 µM of phloretin or dihydroresveratrol). The metabolites were collected
by extracting twice with equal volumes of ethyl acetate from aliquots of 0.5 mL cultures
sampled regularly. The organic phase was evaporated under the pump and suspended in
100 µL methanol for HPLC analysis.

In order to optimize the feeding conditions, the LB was replaced with two different
media, M9 minimal and Terrific Broth (TB), to screen for the most suitable medium with
phloretin as the substrate. Subsequently, in the optimal medium, different final concentra-
tions of substrates in the range of 75–300 µM were used for feeding analysis. All samples
were taken 18 h after the addition of phloretin.

2.7. HPLC Analysis and LC-MS Analysis of the Product

In this study, the samples were analyzed by HPLC-MS at a flow rate of 0.5 mL/min
through Agilent Zorbax SB-C18 column (150 mm × 4.6 mm, 5 µm). Methanol (A) and
water containing 0.1% formic acid (B) were used as mobile phases. Method (a) was used
for flavonoids, Method (b) for bibenzyls and Method (c) for phenylpropanoids. Method
(a): 0–20 min, 35–65% A; 20.1–25 min, 100% A; 25.1–30 min, 35% A. Method (b): 0–10 min,
30–45% A; 10–20 min, 45–80% A; 20.1–25 min, 100% A; 25.1–30 min, 30% A. Method
(c): 0–20 min, 15–60% A; 20–21 min, 60–100% A; 21–25 min, 100% A; 25–27 min, 100–15% A;
27–30 min, 15% A. Samples were prepared by HPLC at a flow rate of 1.5 mL/min through
anEclipse XDB-C18 column (250 mm× 9.4 mm, 5 µm). The HPLC separation condition was
that 57% A and 43% B were eluted equivalently, and examined at 280 nm. The conversion
percentages were calculated based on the peak areas of glycosylated products and substrates
analyzed by HPLC.

2.8. Expression Patterns of the MpUGTs’ Response to UV Treatment

Seven-week-old thallus of M. polymorpha were exposed to ultraviolet light for 10 min.
Samples were taken after 6, 12, 24, 36, 48 and 60 h and immediately frozen in liquid nitrogen



Antioxidants 2022, 11, 735 5 of 15

and stored at −80 ◦C. The control group was the sample without UV treatment. Then,
based on these materials, expression analysis was performed by qRT-PCR with SYBR Green
Realtime PCR Master Mix (TOYOBO, Osaka, Japan) reagent following the manufacturer’s
instructions. The primer pairs used are shown in Table S2. Each sample analysis was
repeated three times.

2.9. Subcellular Localization of MpUGTs

The subcellular site of the MpUGTs was inferred from the fluorescence of the GFP
fusion plasmid in transiently transformed N. tabacum leaves. The MpUGTs ORF sequences
lacking their stop codon were amplified using the corresponding primer pair listed in
Table S3, and the amplicons were then introduced into pGWB5 (plant green fluorescent
overexpression vector with 35S as promoter to promote GFP signal) using the Gateway
cloning technique. The validated recombinant plasmids were transferred into Agrobac-
terium tumefaciens GV3101 using the freeze-thaw method [35]. The A. tumefaciens were
reactivated in YEP medium until OD600 reached 0.8. Then the bacteria were collected
and resuspended in a solution containing 10 mM MES-KOH (pH 5.7), 10 mM MgCl2 and
15 µM acetosyringone. Similarly, we also cultivated A. turnefaciens that contained the gene
encoding silencing suppressor protein p19 or an empty vector. The target gene (or empty
vector) and p19 gene were mixed 1:1 to infect tobacco epidermal leaf cells. GFP signals
were detected using a confocal laser scanning microscope (LSM700, Zeiss, White Plains, NY,
USA). The bandpass filters used were 495–570 nm (GFP) and 650–760 nm (chlorophyll).

2.10. Homology Modeling and Molecular Docking of MpUGTs

The three-dimensional structure models of MpUGT737B1 and MpUGT741A1 were
constructed using the crystal structure of PaGT2 (PDB code: 6jem) as a template with the
SWISS-MODEL server.

A molecular docking analysis of the MpUGTs with UDP-glucose as the sugar donor
and phloretin or lunularin as the acceptor was performed using Maestro software.
The localization of UDP-glucose in the MpUGT model was based on the position of UDP-2
fluoro-glucose co-crystallized with PaGT2 [36], followed by docking of different sugar
acceptors in the structure. Each complex model with the highest docking score was selected
for visualization analysis using PymolWin software.

3. Results
3.1. Selection and Phylogenetic Analysis of Candidate UGTs from M. polymorpha

Two putative flavonoid UGTs were identified from the genomes of M. polymorpha
and were named as MpUGT737B1 and MpUGT741A1 by the UGT Nomenclature Com-
mittee. The full length cDNAs encoding these MpUGTs were amplified using the cDNAs
derived from the thallus of M. polymorpha. The open reading frames (ORFs) of UGT737B1
(PTQ47498) and UGT741A1 (PTQ40596) were 1443 and 1392 bp, respectively. They encoded
polypeptides of 480 and 463 amino acid residues.

Phylogenetic analysis was performed using these MpUGTs and other flavonoid
glycosyltransferases (Figure 1A). The resulting tree was divided into clusters encoding
3-O, 5-O, 7-O glycosyltransferases and diglycoside/disaccharide chain glycosyltrans-
ferases. MpUGT737B1 and MpUGT741A1 were in a separate cluster at the root of the
7-O-glycosyltransferase cluster. The homology alignment showed about 30% identity of
amino acid sequences between MpUGT737B1 and MpUGT741A1, whereas their similarity
with Vitis vinifera GT was only about 20%. However, the sequence alignment with VvGT1
and PaGT2 showed that the MpUGTs have a conservative PSPG (plant secondary product
UGT consensus sequence) motif containing 44 amino acid residues in the C-terminal region
(Figure 1B). The last glutamine (Q) residue in the PSPG motif is considered to give the en-
zyme the specificity of UDP-glucose as the sugar donor. It is worth noting that two MpUGTs
possess this Q, suggesting that they probably use UDP-glucose as a sugar donor.
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Figure 1. Phylogenetic analysis and sequence alignment of M. polymorpha UGTs. (A) Phylogenetic tree
of MpUGTs. The sequences were aligned using the ClustalW algorithm, based on the neighbor-joining
method. (B) PSPG boxes of MpUGTs, PaGT2 and VvGT1.

3.2. In Vitro Functional Characterization of Recombinant MpUGTs

To test the biochemical function of the MpUGTs, the expressed recombinant proteins
were purified and analyzed using SDS-PAGE (Figure S1). Enzyme assays were carried
out with a range of flavonoids, bibenzyls and phenylpropanoids as sugar acceptors and
UDP-glucose as the sugar donor. The reaction products were analyzed by reversed-phase
HPLC and the conversion rates were calculated (Table 1).
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Table 1. Conversion rates of substrates catalyzed by MpUGTs with UDP-glucose as the sugar donor.

Substrate MpUGT737B1 MpUGT741A1

Flavones apigenin trace a ND b

luteolin ND trace
chrysoeriol trace ND

Flavonols quercetin ND ND
kaempferol ND ND

isorhamnetin ND ND
Flavanones naringenin trace 10.98 ± 0.56

hesperetin ND trace
liquiritigenin ND trace
pinocembrin trace trace

Chalcones isoliquiritigenin ND ND
Isoflavones genistein ND ND

Dihydrochalcone phloretin 95.29 ± 1.49 c ND
Bibenzyls lunularin 90.38 ± 2.32 99.66 ± 0.48

lunularic acid ND ND
dihydroresveratrol 98.84 ± 1.65 ND

Stilbenes resveratrol ND ND
Coumarins esculetin ND ND

Phenylpropyl caffeic acid ND ND
caffeoyl aldehyde 62.40 ± 1.19 trace
coniferaldehyde 70.37 ± 1.32 ND
coniferyl alcohol 74.45 ± 2.25 ND

5-OH coniferyl alcohol ND ND
5-OH coniferaldehyde 90.39 ± 0.36 ND

sinapaldehyde 14.78 ± 0.21 ND
sinapyl alcohol ND ND

a Minor peak that cannot be integrated. b No product detected. c Conversion rates (%) ± STDEV.

MpUGT737B1 showed high activity for dihydrochalcone phloretin and bibenzyls
dihydroresveratrol and lunularin (Figure 2A–C). However, MpUGT737B1 could not ac-
cept flavones, flavonols and flavanones as substrates (Table 1). MpUGT737B1 converted
phloretin to two products, and the minor peak was identified as phlorizin by comparing
the retention time with the standards (Figure 2A). However, the retention time of the
main product did not match the existing reference standards for trilobatin. In order to
identify the unknown peak, a preparative-scale reaction was performed to produce the
glycosylated product, and finally about 5.7 mg of product was obtained. The product was
identified as phloretin-4-O-β-D-glucoside by comparing NMR, HSQC and 1H-1H COZY
spectrum with reported data [37]. In addition, the carbon-hydrogen coupling constant
1JC-1,H-1 = 160~165 Hz of the terminal carbon in the HSQC spectrum also proves that the
product is β-D configuration (Figures S2–S4 and Table S4). Accordingly, we speculated
that when dihydroresveratrol and lunularin were used as substrates, MpUGT737B1 might
also catalyze the glycosylation of the para hydroxyl group in the aromatic ring to produce
the corresponding 4-O-glucosides (Figure 2B,C). Interestingly, the MpUGT737B1 was also
active against several phenylpropanoids, including 5-OH coniferaldehyde, coniferyl alco-
hol, caffeoyl aldehyde, coniferaldehyde. MpUGT737B1 could catalyze the production of
two glycosides using the substrates with two vicinal phenolic hydroxyl groups (Table 1,
Figures 2D and S5). The above results indicate that MpUGT737B1 could efficiently catalyze
the glycosylation of dihydrochalcone, bibenzyls and phenylpropanoids. MpUGT741A1
could catalyze the glycosylation of lunularin with UDP-glucose as the sugar donor in vitro
with a conversion rate close to 100% (Table 1, Figure 2C). In addition, MpUGT741A1 could
only accept flavonoids at very low levels (Table 1). These results indicate that MpUGT741A1
is a highly substrate-specific bibenzyl O-glycosyltransferase.
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Figure 2. In vitro assays of recombinant MpUGT737B1 and MpUGT741A1 using UDP-glucose as
the sugar donor. The HPLC analysis, product LC-MS analysis and catalytic reaction formula of the
enzyme catalyzed reaction of MpUGT737B1 with (A) phloretin, (B) dihydroresveratrol and (D) 5-OH
coniferaldehyde as the substrate. The HPLC analysis, product LC-MS analysis and catalytic reaction
formula of the enzyme catalyzed reaction of MpUGT737B1 and MpUGT741A1 with (C) lunularin as
the substrate.

To further explore the sugar donor promiscuity of the MpUGTs, MpUGT737B1 and
MpUGT741A1 were assayed with UDP-galactose and UDP-glucuronic acid as sugar donor,
respectively. The results indicate that MpUGT737B1 and MpUGT741A1 only accept these
two sugar donors as substrates at very low levels (Figure S6). Therefore, both enzymes display
sugar donor specificity for UDP-glucose, as predicted by the PSPG motif sequence alignment.
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3.3. Kinetic Analysis of MpUGT737B1 and MpUGT741A1

MpUGT737B1 exhibited maximum capacity at pH 7.0~7.5 (200 mM Tris-HCl) and 30 ◦C,
while MpUGT741A1 was most active at pH 7.0 (200 mM Tris-HCl) and 25~30 ◦C. The addition
of divalent metal ions did not significantly improve the enzyme activity (Figure S7).

Under the optimized conditions, the kinetic characteristics of MpUGT737B1 and
MpUGT741A1 were analyzed by using UDP-glucose as the sugar donor, phloretin or
lunularin as the acceptor substrate of MpUGT737B1 and lunularin as the acceptor sub-
strate of MpUGT742A1. The enzyme kinetic parameters associated with MpUGT737B1 and
MpUGT741A1 are summarized in Table 2. As suggested by the initial activity screening
(Table 1), MpUGT737B1 had significant activity against dihydrochalcone phloretin (kcat/Km
of 1244.2 M–1 s–1). MpUGT741A1 had a high catalytic efficiency for lunularin (kcat/Km of
1481.6 M–1 s–1) and was superior to that of MpUGT737A1 (kcat/Km of 846.2 M–1 s–1) (Table 2).

Table 2. Kinetic parameters of the recombinant MpUGT737B1 and MpUGT741A1.

Enzyme Substrate Km (µM)
Vmax kcat kcat/Km

(nmol mg−1 min−1) (s−1) (M−1 s−1)

Phloretin 50.2 ± 10.6 70.0 ± 5.5 0.062 ± 0.005 1244.2
MpUGT737B1 Dihydroresveratrol 45.6 ± 9.7 100.3 ± 6.9 0.089 ± 0.006 1960.4

Lunularin 39.3 ± 7.5 37.3 ± 2.2 0.033 ± 0.002 846.2
MpUGT741A1 Lunularin 89.2 ± 17.6 150.4 ± 12.3 0.124 ± 0.012 1504.6

3.4. Bioconversion of Dihydroresveratrol and Phloretin into Their 4-O-Glucosides in E. coli

Wild-type E. coli could synthesize endogenous UDP-glucose, which could be utilized
as the sugar donor source in the reaction, without addition of purified UDP-glucose. Bio-
conversion of substrates into their O-glucosides was examined using the recombinant
E. coli MpUGT737B1 strain with dihydroresveratrol and phloretin as the substrates. HPLC
analysis results showed that dihydroresveratrol could be completely converted to dihy-
droresveratrol 4-O-glucoside (Figure 3A). When phloretin was added to the medium, it
was converted into phloretin-4-O-glucoside as the main product, which reached a peak at
18 h, and trace phlorizin was also detected (Figure 3B).

The effects of the media and substrate concentration on production were determined
with phloretin as the substrate. The results indicated that M9 medium was the most
suit-able medium, and the yield was 42.8% higher than that of LB medium (Figure 3C).

To investigate the optimal substrate concentration, we added different concentra-
tions of phloretin (75–300 µM) into the medium for the biotransformation. The results
showed that the yield of phloretin-4-O-glucoside increased with the increase of phloretin
concentration. When the phloretin concentration was 200 µm, the maximum yield reached
122.6 ± 6.1 µmol/L, but the yield decreased rapidly under 300 µm substrate. It was suspected
that the substrate concentration was too high and inhibited bacterial growth (Figure 3D).

3.5. Analysis of Gene Expression Patterns after UV Treatment

In a previous investigation, the ultraviolet radiation could increase the gene expression
of several plant flavonoid UGTs [38]. In the present study, we analyzed the gene expres-
sion patterns of the MpUGTs after UV treatment. The results indicate that MpUGT737B1
transcripts in the M. polymorpha thallus were induced by UV irradiation with a more than
2.5-fold increase at 12 h and a sharp decrease at 48 h that reached control levels (Figure 4A).
The transcripts of MpUGT741A1 also peaked at 12 h, increased by more than 5.5-fold
compared with the control, and began to decline after 24 h (Figure 4A). The transcript levels
declined to their lowest at 60 h similar to control levels.

3.6. Subcellular Localization of MpUGTs

To investigate the MpUGTs subcellular localization, C-terminal green fluorescent pro-
tein (GFP) fusion constructs for MpUGT737B1 and MpUGT741A1 were expressed in the
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leaf epidermal cells of tobacco (N. tabacum) using Agrobacterium-mediated transforma-
tion. A GFP signal was detected in both the cytoplasm and the nucleus expression for
either MpUGT737B1 or MpUGT741A1 (Figure 4B). This indicates that MpUGT737B1 and
MpUGT741A1 mainly exist as soluble proteins in the nucleus and cytoplasm.
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Figure 3. Production of 4-O-glucosides by bioconversion using E. coli MpUGT737B1. HPLC analysis
of recombinant E. coli MpUGT737B1 strain to produce O-glucosides when fed with either (A) 100 µM
dihydroresveratrol or (B) 100 µM phloretin. (C) The effect of culture medium on the production of
phloretin-4-O-glucoside. (D) The effect of phloretin concentrations on the production of phloretin-4-
O-glucoside. Three replicates were carried out for each analysis and the error bars indicate the SD.

3.7. Homology Modeling and Docking Analysis

To explore the underlying molecular basis of MpUGTs specificity, we selected PaGT2
as the template for homology modeling and molecular docking (Figure S8A). Based on the
docking results of MpUGT737B1 and MpUGT741A1, we found that most of the residues that
form interactions with the sugar donor were conserved (Q357/W375/N376/E380/Q397 in
MpUGT737B1, Q342/W360/N361/E365/Q382 in MpUGT741A1 and Q346/W364/N365/
E369/Q386 in PaGT2) (Figure S9).

The sugar receptors were located in the C-terminal cavity of the protein in the MpUGTs.
In MpUGT737B1, the MMGBSA binding energy of phloretin were−50.30 kcal/mol, and the
4-OH of phloretin was closer to UDP-glucose, consistent with the feature that MpUGT737B1
preferentially catalyzed the formation of phloretin-4-O-glucoside (Figure S8A,B). Fur-
thermore, we compared substrate-binding pocket sizes by modeling both MpUGT737B1
and MpUGT741A1 with lunularin, and the binding energies were −39.03 kcal/mol and
−50.12 kcal/mol, respectively. Likewise, the 4-OH position of lunularin was closer to
UDP-glucose, further demonstrating the selectivity of MpUGT737B1 and MpUGT741A1 for
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the 4-position of lunularin. The difference was that in the structure of the MpUGT737B1
double-docking complex, the binding pocket around the sugar receptor was relatively wide
(Figures S8C and S9D). In MpUGT741A1, the active cavity was narrow and slender, and
mostly only small molecules such as lunularin could easily enter (Figures S8D and S9E). Fur-
thermore, we found that the F190, T147 and D396 amino acid positions in the substrate-binding
pocket of MpUGT737B1 correspond to Y202, C134 and E381 in MpUGT741A1, respectively, so
they might be key amino acids for the specificity of MpUGTs activity (Figure S9D,E).
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The results of docking MpUGTs with glycoside products showed that they all have high
binding free energies, as the MMGBSA binding energies of MpUGT737B1 with phloretin-4-
O-glucoside and lunularin-4-O-glucoside were −52.87 and −53.70 kcal/mol, respectively,
and the MpUGT741A1 with lunularin4-O-glucoside was −46.78 kcal/mol (Figure S10).

According to the docking results, the substrate molecules were in a flexible state
in the protein cavity, which is the characteristic of single-bond molecules. The double-
bond molecules could not easily enter the active cavity due to their rigid structure, just as
MpUGT737B1 and MpUGT741A1 had no catalytic activity for resveratrol (Table 1).
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4. Discussion

M. polymorpha is rich in flavonoids and bibenzyls and their glycosides. Flavonoid glyco-
syltransferases have been extensively investigated in plants, including five flavonoid UGTs
identified in liverworts [29,30]. However, the functions of bibenzyl glycosyltransferases
have not been characterized. In this study, we cloned and characterized two MpUGTs,
MpUGT737B1 and MpUGT741A1. Phylogenetic tree analysis showed that the MpUGTs
aggregated into a single cluster with two previously characterized liverworts flavonoid glu-
cosyltransferases MpalUGT1 and PaUGT2. MpalUGT1 from Marchantia paleacea is a highly
specific enzyme acting as a flavonol glucosyltransferase. PaUGT2 was identified from
Plagiochasma appendiculatum which can accept various flavonoids and flavonols as sub-
strates to generate the corresponding flavonoid 7-O-glycosides or flavonol 3-O-glycosides.
Additionally, it has weak catalytic activity for phloretin and catalyzes the formation of
phloridzin. This single cluster was located at the root of flavonoid 7-O-glycosyltransferase,
indicating that bibenzyl glycosyltransferases and flavonoid 7-O-glycosyltransferases have
common phylogeny (Figure 1A). Both MpUGTs contain a conserved PSPG motif, which is
the characteristic sequence of UGTs (Figure 1B).

In vitro enzymatic assays showed that both MpUGTs exhibited high activity towards
bibenzyls. MpUGT741A1 exhibited strict substrate selectivity and could completely convert
lunularin into the corresponding glycoside product. MpUGT737B1 accepted phloretin,
dihydroresveratrol, lunularin and a series of phenylpropanoids. Structural modeling and
docking results revealed that MpUGT737B1 exhibits a broader interspace in the substrate-
binding pocket, which may provide greater flexibility and variability for the substrate
(Figure S8). Therefore, MpUGT737B1 showed wider substrate selectivity and is active for
more substituted substrates such as phloretin and dihydroresveratrol (Figure 2).

Interestingly, MpUGT737B1 catalyzed phloretin to form phloretin-4-O-glucoside and
phloridzin, which exhibited inhibitory activity against tyrosinase and antioxidant activ-
ity [27]. Several previously characterized UGTs converted phloretin to form phloridzin
and trilobatin. For example, in Malus plants, MdUGT88F4 and MdUGT88F1 could reg-
ulate the conversion of phloretin to phloridzin [39], and MdPh-4′-OGT could efficiently
glycosylate phloretin into trilobatin in vitro [24]. Therefore, for the first time, MpUGT737B1
was demonstrated to specifically and effectively catalyze the production of phloretin-4-
O-glucoside. MpUGT737B1 exhibited substrate promiscuity; however, it could not accept
the common flavonoids (flavones and flavonols). MpUGT737B1 could convert phloretin to
phloretin-4-O-glucoside, which is probably due to the similar structure between phloretin
and bibenzyls. The modeling results indicated that MpUGT737B1 has the potential to
preferentially glycosylate the 4-OH position of the compound.

MpUGT737B1 could also catalyze the formation of phenylpropanoid glycosides.
In a previous investigation, glycosylated phenylpropanoids showed antifungal, anti-
inflammatory, and anti-melanin effects in vitro [40], and were also involved in the resistance
of plants to abiotic stress [17,18]. Arabidopsis plants produced the glycosylated coumarin
scopolin and monolignol coniferin when they were submitted to oxidative stress [40].
There were a few glycosyltransferases of phenylpropanoids that had been characterized
and reported. Two glycosyltransferases with catalytic activity for phenylpropanoids had
been identified in Arabidopsis thaliana. It was reported that UGT72E2 from A. thaliana could
glycosylate aldehydes, coniferyl and sinapyl alcohols, while UGT72E1 was specific for
sinapaldehyde and coniferaldehyde [41,42]. MpUGT737B1 characterized in liverworts in
the present investigation showed substrate promiscuity and could be used for enzyme
catalysis to prepare these glycosylated products.

As glycosylation plays an important role in plant defense and stress tolerance, we
analyzed the transcription level under UV irradiation. UV irradiation was considered
to cause oxidative damage [43]. The results indicate that the expression level of all the
MpUGTs increased considerably after UV treatment compared with the control. It was
also demonstrated that ultraviolet radiation can affect the expression of key genes in
the biosynthesis of glycoside products, and it is speculated that MpUGTs may respond
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to environmental stress and have an antioxidant effect on plant defense. In a previous
investigation, it was reported that O-glycosides play a positive role in plant UV-B protection.
OsUGT707A2 and OsUGT706D1 overexpression plants survived with green leaves, while
the wild-type plants became dramatically withered after UV-B irradiation [44].

5. Conclusions

This study identified and functionally characterized two MpUGTs from the basal
land plant M. polymorpha. MpUGT737B1 was demonstrated to glycosylate dihydrochal-
cone phloretin, bibenzyls (dihydroresveratrol and lunularin) and phenylpropanoids to
form glucosides with antioxidant activity. In particular, MpUGT737B1 could act at the
4-O position of phloretin to produce the phloretin-4-O-glucoside. MpUGT741A1 showed
substrate specificity to lunuralin, and the conversion rate was close to 100%. This is the
first characterization of bibenzyl glycosyltransferases, which will enrich the understanding
of the key enzymes in the biosynthesis of various glycosides and the structural diversi-
fication of bibenzyls in liverworts, promoting the progress of the in vitro biosynthesis of
glycoside products.
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