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The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT)
plays a central role in the control of cell survival, growth, and proliferation throughout the
body. With regard to bone, and particularly in osteoblasts, there is an increasing amount
of evidence that the many signaling molecules exert some of their bone-specific effects
in part via selectively activating some of the generic effects of the PI3K/AKT pathway
in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to
specifically cross-talk with other signaling pathways and transcriptional networks control-
ling bone cells’ development in order to fine-tune the osteoblast phenotype. There is also
evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain
bone pathologies. In this review, we discuss some of these findings and suggest that the
PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling
pathways that control the osteoblast.
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INTRODUCTION
A fine balance between the bone forming activities of osteoblasts
and the bone resorptive effects of osteoclasts, substantially influ-
enced by osteocytes (Bonewald, 2011; Long, 2012) provides the
skeleton with the correct architecture and strength to support
everyday loads without fracture. Osteoblasts are derived from a
pool of multipotent mesenchymal stem cells (MSCs) which are
able to form bone, cartilage, muscle, adipose, and connective
tissue via activation of distinct differentiation programs (Long,
2012). Thus, the phenotype of a mature osteoblast reflects its
molecular history in terms of signaling molecule exposure, sig-
nal transduction pathway activation, and changes engendered in
transcriptional networks, as well as epigenetic modifications. It
is a reflection of this cellular context that a panoply of seem-
ingly ubiquitous signaling molecules is capable of producing such
a uniquely specific outcome, i.e., the transition from an MSC
to a mature osteoblast. In this review, we will highlight the
role of one pathway, the phosphoinositide 3-kinase and AKT
signaling pathway (PI3K/AKT), in osteoblast differentiation and
homeostasis.

THE PHOSPHOINOSITIDE 3-KINASE AND AKT
SIGNALING PATHWAY
The PI3K pathway is activated through the receptor tyrosine kinase
(RTK) class of receptors which include fibroblast growth factor
receptors (FGFRs), insulin-like growth factor receptors (IGFRs),
and insulin receptor (Figure 1). Engagement of the ligand with
the RTK causes autophosphorylation of tyrosine residues in the
cytoplasmic domain. These phosphorylated tyrosine residues then

recruit docking proteins, most notably IRS1, which in turn recruits
the p85 subunit of PI3K. PI3K itself consists of a regulatory p85
subunit and a catalytic p110 subunit. Recruitment of the PI3K
complex to the inner surface of the plasma membrane juxtaposes
it with its substrate phosphatidylinositol-4,5 diphosphate (PIP2)
located in the inner lamina of the cell membrane. PIP2 is then
phosphorylated by the p110 subunit to form phosphatidylinositol-
3,4,5 trisphosphate (PIP3). The conversion of PIP3 to PIP2,
and the subsequent inactivation of PI3K downstream signal-
ing, is facilitated by the tumor suppressor and phosphatase;
phosphatase and tensin homolog deleted on chromosome ten
(PTEN) (Cantley and Neel, 1999).

Phosphatidylinositol-3,4,5 trisphosphate then acts as a sec-
ondary messenger within the membrane, recruiting the binding
of proteins containing pleckstrin homology (PH) domains to the
inner surface of the cell membrane. Most notable amongst the
PH domain containing proteins are AKT (also known as protein
kinase B, PKB) and PDK1. The AKT/PKB family is comprised of
three separate genes (AKT1–3) and all encode serine/threonine
protein kinases. Upon translocation to the cell membrane, AKT
is phosphorylated by PDK1, and the mTORC2/Rictor complex,
which provides full activation of AKT (Cantley and Neel, 1999).

Whilst RTKs activate AKT via PI3K, they can also activate
mitogen-activated protein kinases (MAPKs) such as ERK1/2 via
the Ras/Raf pathway (Ramos, 2008).

AKT TARGETS
AKT activation is generally associated with the processes of cell
survival, growth, and proliferation (Manning and Cantley, 2007).
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FIGURE 1 | A model depicting PI3K signaling. Binding of the receptor
tyrosine kinase ligand activates receptor auto-phosphorylation, leading to
recruitment of substrate proteins such as IRS-1. This leads to recruitment of
the regulatory (p85) and catalytic (p110) subunits of class 1a PI3K. PI3K
phosphorylation of PIP2 to PIP3 allows PIP3 to act as a secondary
messenger within the inner surface of the cell membrane. AKT and PDK1
bind to PIP3, and PDK1 and mTOR/Rictor activate AKT via phosphorylation.
Active AKT is then able to promote cell survival, growth, and proliferation by
phosphorylation of key substrates. Also shown is the alternative Ras
pathway which can also be stimulated by receptor tyrosine kinases to
activate MAPKs.

Cell survival is chiefly regulated by inhibitory phosphorylation
of the FoxO family of transcription factors by AKT, and thus
attenuation of their pro-apoptotic target gene Bim (Dijkers et al.,
2002; Sunters et al., 2003), as well as by direct inactivation by
phosphorylation of Bad (Datta et al., 2002). In contrast, cell
growth is regulated by activation of mTOR (mammalian Target of
Rapamycin) thereby promoting protein synthesis (Wullschleger
et al., 2006). Proliferation is stimulated via a number of mech-
anisms including inhibition of the FoxO-mediated transcrip-
tion of the cyclin-dependent kinase inhibitor p27Kip1 (Dijkers
et al., 2000; Ho et al., 2008). AKT also inhibits both p27Kip1

and p21Cip1 function by phosphorylation (Zhou et al., 2001;
Liang et al., 2002), as well as by regulating D-type cyclins
(Liang and Slingerland, 2003).

OSTEOBLAST DIFFERENTIATION
Osteoblast differentiation begins with MSC commitment to the
osteoblast lineage by expression of the osteoblast-specific tran-
scription factor Runx2 (Otto et al., 1997). New osteoprogenitors
proliferate then express the matrix promoting proteins: collagen 1a
(Col-1a; Bellows et al., 1986; Lee et al., 2000), osteopontin (OPN;
Hay et al., 1999; El-Tanani et al., 2004), alkaline phosphatase (ALP;
Aronow et al., 1990), and bone morphogenic proteins (BMPs;
van der Horst et al., 2002; Rosen, 2006). Integrin activation by
the newly synthesized matrix promotes maturation into pre-
osteoblasts, which express the transcription factor Osterix (Osx;
Xiao et al., 1998; Meyers et al., 2004). As pre-osteoblasts mature,
Runx2 and Col-1a expression declines, whilst Bone Sialopro-
tein (Chen et al., 1997; Lai and Cheng, 2005) and Osteocalcin
expression increases (Hay et al., 1999).

TOO MUCH PI3K/AKT – “JUST BIG BONED?”
One of the problems in delineating a truly osteoblastic role for
PI3K/AKT signaling in bone biology is the dissection of the
generic effects (survival, proliferation, and growth) from those
that are limited to osteoblasts. However, genetic studies using
transgenic and knockout mice targeting the PI3K/AKT path-
way have yielded informative results. Original global deletions
of the PTEN tumor suppressor resulted in cells with elevated
PI3K/AKT signaling, but embryonic lethality (Di Cristofano
et al., 1998; Suzuki et al., 1998). However, when mice con-
taining Cre under the control of the Col2a1 promoter were
crossed with mice containing a floxed PTEN allele, PTEN was
knocked out in osteo-chondroprogenitor cells (Ford-Hutchinson
et al., 2007). These mice exhibited a disorganized growth plate,
excessive matrix production, and elevated AKT and S6K activa-
tion in growth plate chondrocytes and osteoblasts of the primary
spongiosa (Ford-Hutchinson et al., 2007). The mice developed
elongated long bones containing extensive trabeculation and
increased cortical thickness, but interestingly no increase in chon-
drocyte proliferation (Ford-Hutchinson et al., 2007). Guntur et al.
(2011) generated mice in which PTEN was ablated solely in osteo-
progenitors. The osteoprogenitors in these mice had increased
proliferation and survival, and this expanded pool of progenitors
differentiated rapidly. However, accelerated osteoblast differen-
tiation caused precocious osteoid deposition in the developing
perichondrium, which was uncoupled from interaction with
chondrocytes, resulting in shorter but broader bones (Guntur
et al., 2011). Late stage osteoblast-specific PTEN knockout mice
were obtained by crossing osteocalcin-Cre with floxed PTEN mice.
These mice were of usual size, but exhibited increased bone
formation throughout life due to elevated AKT-mediated cell sur-
vival (Liu et al., 2007). Whilst the PTEN knockout mice have
hinted the consequence of elevated PI3K signaling to AKT, it
is only recent studies using AKT knockout mice that have pro-
vided more detailed information regarding isoform specificity in
osteoblast biology.

NOT ENOUGH PI3K/AKT – “SMALL FRY”
Global AKT-1 knockout mice are small with reduced bone
mineral density, suggesting a potential osteoblast-specific effect
(Kawamura et al., 2007). However, this may be a more generic
effect, and indeed was attributed to an increase in apoptosis rates
mediated by a failure of AKT1 to repress FoxO3a transcription
of Bim (Kawamura et al., 2007). More specifically a reduction in
Runx2 target gene expression was observed, including RANKL,
which resulted in decreased osteoblast induced osteoclastogenesis
and slow bone remodeling (Kawamura et al., 2007). Global AKT-2
knockouts develop severe diabetes, but skeletally they only dis-
play a very mild decrease in weight and length (Garofalo et al.,
2003). AKT-1/AKT-2 double knockouts die shortly after birth and
exhibit dwarfism (Peng et al., 2003). The osteoblastic phenotype is
extreme, with embryos having negligible ossification (Peng et al.,
2003) suggesting some functional redundancy between AKT1
and 2. AKT3 knockout mice are viable, have reduced brain size,
but no discernable skeletal phenotype (Easton et al., 2005). Taken
together, these genetic models suggest a specific role in bone is
confined to AKT1 and/or 2, and occurs both in an osteoblast cell
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autonomous manner and via their interactions with chondrocytes
and osteoclasts.

STIMULATING PI3K/AKT IN BONE
The AKT and PTEN knockouts indicate that skeletal development
and functional integrity rely on fine-tuning of the AKT signaling
pathway, itself controlled by other signaling molecules, the most
important of which are fibroblast growth factor (FGF) and insulin-
like growth factor (IGF).

The FGF family consists of at least 22 members coupled
with at least 5 receptors (FGFRs) (Bottcher and Niehrs, 2005;
Coutu and Galipeau, 2011). During endochondral ossification
FGFR3 is the predominant receptor expressed by condensing
mesenchymal chondrocytes and proliferating chondrocytes in
the growth plate, whilst FGFR1 is expressed by hypertrophic
chondrocytes, and thought to play a role in blocking pro-
liferation. In osteoblasts FGFR-1 and -2 are both expressed,
and FGF2 stimulates the proliferation of osteoblast precursors
(Yu et al., 2003).

IGF-1 plays a crucial role in postnatal bone growth, espe-
cially during puberty. The majority of circulating IGF-1 is
produced by the liver (DiGirolamo et al., 2007; Yakar et al., 2010),
and mice with a conditional IGF-1 knockout in the liver are
essentially normal, but have reduced circulating IGF-1 and a
reduction in cortical bone deposition (Yakar et al., 2009). How-
ever, mice with a targeted IGF-1R deletion in osteoblasts exhibited
a time lag between osteoid deposition and mineralization, and
thus make poor quality bone (Zhang et al., 2002). Conversely,
osteoblast-specific IGF-1 overexpression in mice increased tra-
becular bone volume without any associated hyperplasia (Zhao
et al., 2000). These findings demonstrate that local IGF-1 signal-
ing also influences bone architecture and mineralization. Insulin,
like IGF-1, has been shown to be anabolic in bone, and induces
osteocalcin expression, but lacks the mitogenic effects of IGF-1
(Zhang et al., 2012).

Whilst IGF and FGF signaling activates AKT via PI3K, they also
have the ability to activate MAPKs (Ramos, 2008), and the relative
contributions of these two pathways to osteoblast function remain
unclear. Whilst the osteopenia observed in osteoblast-specific
Gab1 knockout mice has been linked to impaired IGF-1/insulin
signaling via both PI3K and Ras pathways (Weng et al., 2010),
recent data suggests the mitogenic effect of IGF-1 requires both
pathways, whilst differentiation relies on PI3K/AKT signaling
(Raucci et al., 2008).

INTERACTION BETWEEN PI3K/AKT AND
OSTEOGENIC FACTORS
Recent evidence suggests that Runx2 functions more as a promoter
organizer rather than a transcription factor, acting as a central hub
to recruit transcriptional co-activators such as CBP (Schroeder
et al., 2005) or inhibitors such as Sin3/histone deacetylases (Wes-
tendorf, 2006). Furthermore, Runx2 interacts with other tran-
scription factors such as AP-1 and estrogen receptor alpha (ERα)
(Westendorf, 2006; Khalid et al., 2008; Chen et al., 2012). The
ability of Runx2 to function as a transcriptional activator or repres-
sor is fine-tuned by phosphorylation, for example, ERK1/2 and
p38-MAPK phosphorylation promote osteoblast differentiation

(Xiao et al., 2002; Greenblatt et al., 2010). In contrast, JNK1 phos-
phorylation of Runx2 is inhibitory, blocking the early stages of
differentiation (Huang et al., 2012), however, since JNK activity
is associated with the terminal stages of differentiation, this inhi-
bition of Runx2 might correlate with reduced Runx2 function in
mature osteoblasts (Matsuguchi et al., 2009).

Although Runx2 target gene expression is reduced in AKT-1
knockout mice, Runx2–PI3K/AKT interactions are unlikely to
occur via direct phosphorylation because Runx2 lacks an AKT
consensus phosphorylation site (Kawamura et al., 2007). Notwith-
standing, direct phosphorylation by AKT blocks the ability of
GSK3β to inhibit Runx2 DNA binding (Kugimiya et al., 2007)
and of FoxO1 to represses Runx2-dependent osteocalcin tran-
scription (Yang et al., 2010; Zhang et al., 2011). A potential
feed-forward loop between Runx2 and PI3K/AKT may also exist
as Runx2 activates p85 and p110β PI3K subunit transcription
(Fujita et al., 2004).

Osterix is a Runx2 target gene that stimulates osteoblast lineage
commitment and promotes osteoblast maturation (Komori, 2006;
Nishio et al., 2006; Zhou et al., 2010). Apart from the effects of
PI3K/AKT on Runx2, there is little evidence of direct phosphory-
lation of Osx by AKT (Choi et al., 2011), but PI3K/AKT is required
for BMP-induced Osx transcriptional activity (Mandal et al., 2010;
Choi et al., 2011).

OSTEOGENIC SIGNALING PATHWAYS
CANONICAL Wnt SIGNALING
During absence of Wnt ligands, the kinase GSK3β phosphory-
lates the transcriptional co-activator β-catenin, thereby targeting
it for proteosomal degradation. Engagement of Wnt ligands
with the Frizzled/Lrp5 or -6 co-receptor inhibits GSK3β, leading
to the accumulation of hypo-phosphorylated β-catenin, which
translocates to the nucleus in order to stimulate Lef/TCF tar-
get gene expression. Wnt signaling functions during skeletal
development partly by promoting osteoblastic commitment (Hill
et al., 2005). Humans with inactivating or activating mutations
in Lrp5 exhibit low or high bone mass, respectively, implicat-
ing Wnt in postnatal bone homeostasis (Whyte et al., 2004; Ai
et al., 2005; Ferrari et al., 2005). Inhibitory phosphorylation of
GSK3β by AKT results in the activation of β-catenin (Smith and
Frenkel, 2005; Sunters et al., 2010). Furthermore, direct phos-
phorylation of β-catenin by AKT has been shown to increase
its capacity for transcriptional activation of Lef/TCF target genes
(Fang et al., 2007).

BMP SIGNALING
Bone morphogenic proteins are members of the TGFβ family and
bind to tetrameric type I and II receptors on the cell surface which
phosphorylate members of the SMAD family (SMAD 1, 5, and 8).
Phospho-SMADs bind to SMAD4 and translocate to the nucleus
to regulate gene expression. Blocking BMP signaling with the BMP
antagonist Noggin reduces osteoblast differentiation, and results
in mice with severe osteoporosis (Wu et al., 2003). Repression
of BMP signaling by Twist 1/2 prevents osteoblast commitment
by mesenchymal precursors by silencing Runx2, AP, and OPN
transcription (Bialek et al., 2004; Hayashi et al., 2007). Mice lacking
BMP2 and -4 in limb bud mesenchyme have impaired osteogenesis
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(Bandyopadhyay et al., 2006), and whilst BMP2 knockout mice do
make bone, they exhibit a mineralization deficit making them
susceptible to fractures (Tsuji et al., 2006). BMP3 is produced by
mature osteoblasts and osteocytes to prevent osteoblast differen-
tiation, providing a negative feedback loop to control osteoblast
numbers (Kokabu et al., 2012). PI3K/AKT is required for BMP-
induced Osx activation (Osyczka and Leboy, 2005; Mukherjee
and Rotwein, 2009; Mandal et al., 2010; Choi et al., 2011), this
dependency would also appear to be isoform specific, since recent
work by Mukherjee et al. (2010) demonstrated that a unique
function of AKT2 is required for BMP2-mediated osteoblast
differentiation.

AKT has been also shown to be activated by BMPs via a mech-
anism that is not fully understood (Osyczka and Leboy, 2005;
Mukherjee and Rotwein, 2009; Mukherjee et al., 2010). Intrigu-
ingly, osteogenic BMP targets include the Id family of genes which
can inhibit the Twist blockade of BMP-induced transcription, and
thus osteogenesis (Ogata et al., 1993; Miyazono and Miyazawa,
2002; Ying et al., 2003; Peng et al., 2004; Nakashima et al., 2005).
Id1 transcription is repressed by FoxOs (Birkenkamp et al., 2007),
and it is possible that PI3K/AKT inactivation of FoxOs could
cooperate with SMADs in the BMP-mediated activation of Id1.
Furthermore, BMP and Id1 can activate AKT via PTEN repression
(Beck and Carethers,2007; Chow et al.,2007,2008; Lee et al.,2009),
however, this is unlikely to be the only mechanism responsible. It
is attractive to speculate that these findings may represent recip-
rocal activation between PI3K/AKT and BMP signaling – which
could potentially amplify osteogenic responses to BMP, IGF-1,
and FGFs.

PATHOLOGIES INVOLVING PI3K/AKT
The PI3K/AKT signaling pathway in osteoblasts is clearly impor-
tant for normal skeletal development and homeostasis, however,
it is also implicated in various pathological conditions.

OSTEOPOROSIS AND MECHANICAL STRAIN
Bone loss and fracture susceptibility that characterize osteoporo-
sis are often thought of as symptomatic of an attenuation of
resident bone cells’ ability to use the mechanical strain engen-
dered by normal load bearing activity as a stimulus to remodel
both bone mass and architecture (Lanyon, 2008; Price et al.,
2010). The initial detection of strain is thought to occur in
osteocytes (Bonewald, 2007), but does also occur in osteoblasts,
and involves signaling via ERα (Jessop et al., 2002; Lee et al.,
2003; Zaman et al., 2010), production of prostaglandins (Zaman
et al., 1997), nitric oxide (Pitsillides et al., 1995), ATP (Rumney
et al., 2012), canonical Wnt signaling (Lau et al., 2006; Arm-
strong et al., 2007), IGFs (Zaman et al., 1997; Cheng et al., 1999),
and the suppression of the soluble Wnt antagonist sclerostin
(Galea et al., 2011). With regard to PI3K/AKT signaling, acti-
vation of β-catenin by strain requires AKT-mediated inhibition
of GSK3β (Case et al., 2008; Sunters et al., 2010), which also
occurs in osteocytes (Kitase et al., 2010). AKT activation occurs
via PI3K and is Wnt independent, but depends on the forma-
tion of a complex between ERα and IGF-1R which increased
the responsiveness of IGF-1R to ambient levels of IGF-1 (Sun-
ters et al., 2010). Whilst administration of IGF-1 to osteoporosis

patients has little positive effect on bone density (Friedlan-
der et al., 2001), osteoblasts isolated from osteoporotic donors
have an attenuated PI3K/AKT response to IGF-1, suggesting
that IGF-1R responsiveness may play a role in osteoporosis
(Perrini et al., 2008).

OSTEOSARCOMA
Osteosarcoma is the most common malignancy affecting the skele-
ton, and although relatively rare in humans (Broadhead et al.,
2011), is much more common in dogs, especially large and giant
breeds (Tjalma, 1966; Chun and de Lorimier, 2003; Chun, 2005).
Since susceptible large breed dogs have higher IGF-1 levels (Bur-
row et al., 1998), and IGF-1R is often overexpressed in canine
osteosarcomas (Eigenmann et al., 1984; Sutter et al., 2007), a link
between IGF-1 signaling and osteosarcoma has been proposed. In
support of this, PTEN is commonly down regulated, mutated, or
deleted in many canine and human osteosarcomas (Levine et al.,
2002; MacEwen et al., 2004) and is associated with elevated AKT
activation, suggesting that PI3K/AKT may play a causative role in
osteosarcoma formation.

It is possible that other conditions associated with increased
or decreased bone formation may have perturbed PI3K/AKT
function as a common event. For example, the PTEN bone-
specific knockout mouse, which results in an increase in AKT
signaling, has increased bone formation, leading to osteopetro-
sis (Liu et al., 2007). Moreover, mutations in Irs1 resulting in
reduced AKT phosphorylation lead to reduced bone formation
(DeMambro et al., 2010). However, effects need not be mani-
fest globally in the whole skeleton as demonstrated by the Twist
haploinsufficiency model, where down regulation of the ubiq-
uitin ligase Cbl promotes AKT signaling through a reduction
in PI3K degradation. The result is increased bone formation
specifically in the coronal suture in Saethre-Chotzen syndrome
(Guenou et al., 2006).

SUMMARY
Given the generic roles of the PI3K/AKT pathway, it is not unex-
pected that it would play a role in osteoblasts. However recent
evidence suggests that some of these generic effects are selectively
activated in osteoblasts during normal physiology. Additional
specificity is introduced when one considerers the highly selec-
tive downstream interactions between the PI3K/AKT pathway and
other pathways controlling osteoblast differentiation and function.
Our contention is that the PI3K/AKT pathway may well be a cen-
tral nexus in the networks of signaling pathways that helps to
fine-tune osteoblast differentiation and homeostasis to produce a
normal skeleton. Thus AKT represents a viable therapeutic target
in multiple skeletal diseases.
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