
T
h
e 

Jo
u
rn

al
 o

f 
G

en
er

al
 P

h
ys

io
lo

g
y

 

9

 

J. Gen. Physiol.

 

 © The Rockefeller University Press 

 

•

 

 0022-1295/2004/07/9/17 $8.00
Volume 124 July 2004 9–25
http://www.jgp.org/cgi/doi/10.1085/jgp.200409015

 

Representation of Objects in Space by Two Classes of Hippocampal 
Pyramidal Cells

 

Bruno Rivard,

 

1

 

 Yu Li,

 

1

 

 Pierre-Pascal Lenck-Santini,

 

2

 

 Bruno Poucet,

 

3

 

and

 

 Robert U. Muller

 

1,2

 

1

 

MRC Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, UK

 

2

 

Department of Physiology, Downstate Medical Center, Brooklyn, NY 11203

 

3

 

Laboratoire Neurobiologie de la Cognition, CNRS - 31, Chemin Joseph-Aiguier, Marseille Cedex 20, France

 

abstract

 

Humans can recognize and navigate in a room when its contents have been rearranged. Rats also
adapt rapidly to movements of objects in a familiar environment. We therefore set out to investigate the neural
machinery that underlies this capacity by further investigating the place cell–based map of the surroundings
found in the rat hippocampus. We recorded from single CA1 pyramidal cells as rats foraged for food in a cylindri-
cal arena (the room) containing a tall barrier (the furniture). Our main finding is a new class of cells that signal
proximity to the barrier. If the barrier is fixed in position, these cells appear to be ordinary place cells. When, how-
ever, the barrier is moved, their activity moves equally and thereby conveys information about the barrier’s posi-
tion relative to the arena. When the barrier is removed, such cells stop firing, further suggesting they represent
the barrier. Finally, if the barrier is put into a different arena where place cell activity is changed beyond recogni-
tion (“remapping”), these cells continue to discharge at the barrier. We also saw, in addition to barrier cells and
place cells, a small number of cells whose activity seemed to require the barrier to be in a specific place in the en-
vironment. We conclude that barrier cells represent the location of the barrier in an environment-specific, place
cell framework. The combined place 

 

�

 

 barrier cell activity thus mimics the current arrangement of the environ-
ment in an unexpectedly realistic fashion.
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I N T R O D U C T I O N

 

For humans, the ability to recognize and navigate
within a room is usually not disturbed by movements,
additions, or deletions of furniture and other objects
between visits to the room. Similarly, people are gener-
ally able to recognize specific objects even when such
objects are located in different rooms. How does the
brain represent a room and its contents to allow flexi-
ble navigation in environments susceptible to unpre-
dictable changes? Can signals related to such high-level
cognitive capacities be detected in the discharge of in-
dividual nerve cells?

Our purpose in this paper is to show that the layout
of a small recording chamber (the “room”) and the
whereabouts of a moveable barrier within the chamber
(the “furniture”) are in fact represented by the dis-
charge of separate classes of pyramidal cells in the hip-
pocampus of freely moving rats. In agreement with a
great deal of previous work, we see that many hippo-
campal pyramidal cells act as place cells whose charac-
teristic location-specific firing reflects the animal’s
current position within the chamber (O’Keefe and

Dostrovsky, 1971; Muller et al., 1987; Wilson and Mc-
Naughton, 1993; for review see Muller, 1996). We see
other cells that discharge in relation to the animal’s
proximity to the barrier regardless of its location in the
chamber. Crucially, the same cells continue to dis-
charge in relation to the barrier even when it and the
rat are placed in a different chamber where other cells
undergo remapping. It appears that the place cell sig-
nal and the barrier-related signal can be combined to
form a representation of the environment that includes
the object’s current position. A representation in which
neuronal resources are separately allocated to the
structure of the chamber and to its contents may per-
mit accurate navigation despite strong variations of sen-
sory information. We also see a small number of cells
that are active only when the object is at a certain loca-
tion in the environment. Cells of this type imply that
the representation of the arena and the contained ob-
ject are not entirely independent.

The experiments described here stem most directly
from two earlier studies on how objects inside record-
ing arenas affect hippocampal pyramidal cell activity.
In one investigation (Gothard et al., 1996), rats were
trained to leave a box, obtain food near a pair of verti-
cal poles and then return to the box that in the mean
time had been moved. On each trial the start box, the

 

Address correspondence to Robert Muller, Department of Physiol-
ogy, Downstate Medical Center, Brooklyn, NY 11203. Fax: (718) 270-
3103; email: bob@fasthp.hippo.hscbklyn.edu



 

10

 

Barrier Cells and Place Cells

 

poles and the end box were at different places in the
arena. Three main classes of pyramidal cells were seen:
(a) Place cells that discharged in a fixed location in the
environment. (b) Box cells, some that were active when
the rat was departing to seek food and others that were
active when the rat returned to the box to end the trial.
(c) Goal cells that fired near the poles indicating food.
Box and goal cells were described as firing in spatial
frames tied to objects important for the food-seeking
task. Of these classes, the goal cells are most similar to
the object cells described here; an essential difference
is that barrier cells continue to fire in a different envi-
ronment that causes fundamental changes in the posi-
tional firing patterns of cells whose activity is far from
the barrier.

The second object experiment (Muller and Kubie,
1987) showed that placing an opaque vertical barrier to
bisect the firing field of a place cell strongly suppressed
its discharge; a transparent barrier worked equally well.
In contrast, when the barrier was away from the firing
field, discharge was unchanged even though views of
salient stimuli from inside the field were strongly modi-
fied. These observations suggest that the effects of a
barrier are local to its vicinity but raise important ques-
tions: Is a “spatial scotoma” created in the region where
the barrier suppresses place cell activity so that the rat
can no longer locally compute its position? If no such
neglected region is produced, how is the representa-
tion modified in the region of the barrier?

To begin to answer these questions, we recorded CA1
pyramidal cells in the presence of a transparent barrier,
after the barrier was moved by a small amount, a large
amount, removed from the apparatus, or placed in a
similar apparatus. In general, pyramidal cells that fired
near the barrier in the original condition continued to
fire near the barrier when it was moved, ceased firing
when the barrier was removed but once again were ac-
tive while the barrier was in the second apparatus. Cells
whose fields were relatively far from the barrier acted as
ordinary place cells; their activity was unchanged with
barrier movements or removal but greatly altered (re-
mapped) in the second environment. It is therefore
our conclusion that the ability to distinguish a bounded
region from its contents is directly reflected at the sin-
gle cell level in the rat hippocampus, which after all
may be the locus of a map-like representation of space.

 

M A T E R I A L S  A N D  M E T H O D S

 

The general methods are similar to those used in previous work
(Muller and Kubie 1987; Fenton et al., 2000). We therefore focus
on procedures specific to this study.

 

Subjects

 

All animal procedures complied with guidelines for animal ex-
perimentation published in the National Institutes of Health

publication “Principles of Laboratory Animal Care”. The subjects
were eight male Long Evans rats that weighed between 400 and
550 g before surgery during free access to food and water. They
were kept in individual cages on a 12:12 h light/dark cycle. The
12 h of light were between 7:00 a.m. and 7:00 p.m. during which
all training and electrophysiological recording was done.

 

Electrode Assembly

 

Single unit recordings were made with tetrodes (O’Keefe and
Recce, 1993). Each tetrode consisted of four 25-

 

�

 

m teflon-insu-
lated nichrome wires twisted to form a stable unit. Four tetrodes
were threaded through a 26-gauge stainless steel tube that acted
to guide the recording elements into the brain. Each of the ex-
ternal ends of the tetrode wires was attached with silver paint to
one pin of a 24 pin Mill-Max connector. The guide tube was sol-
dered to another pin at the middle of the connector to provide
mechanical support and act as a ground. The connector plus
guide tube assembly was embedded in dental acrylic that formed
a tripod that was attached to the rat’s skull. Each leg of the tripod
consisted of a 2–56 size stainless steel screw whose bottom end
was threaded for a small distance into a tapped nylon cuff that
formed the skull attachment. By turning the screws into the cuffs
the 4 tetrodes could be advanced into the brain. In this simple
design, all four tetrodes moved as a unit such that one turn ad-
vanced their tips by 

 

�

 

400 microns.

 

Electrode Implantation

 

The electrode assembly was implanted under general pentobar-
bital anesthesia (45 mg/kg). The rat was placed in a stereotaxic
unit, its scalp reflected back and holes drilled in the skull. Three
holes were made for screws used to anchor the assembly using
dental cement. A fourth hole was drilled to allow the guide tube
and electrodes to enter the brain. The actual implantation was
done after the dura was cut. The electrode tips were aimed at ste-
reotaxic coordinates 

 

�

 

3.8 mm AP, 2.7 mm lateral to bregma, and
1.5 mm below the brain surface so that their initial position was
1.0 mm above the CA1 pyramidal cell layer of the hippocampus.
Routine histology confirmed electrode placement for each rat.
The animals were allowed at least 1 wk after surgery for recovery.
No recordings were attempted until it was possible to firmly
grasp the electrode assembly (as is necessary to connect the re-
cording cable) without any emotional display by the rat.

 

Recording Chamber

 

The main recording chamber was a 76-cm diameter cylinder with
50-cm walls. The inner surface of the cylinder was gray except for
a white cue card that occupied 45

 

�

 

 of arc centered at 3:00 o’clock
in an overhead view (see Fig. 1). The floor of the cylinder was
gray photographic backdrop paper that was replaced after each
recording session. During training (see below) and in the stan-
dard recording condition a transparent plexiglas barrier 23.5 cm
wide, 33.0 cm high, and 0.5 cm thick was present in the cylinder.
This barrier extended from the cylinder center along the 7:30
o’clock radius and was held in place by a 0.5-cm groove in a lead
base 23.5 cm long, 1.7 cm high, and 3.7 cm deep.

In addition to the main chamber, a second cylinder of identi-
cal size was used to test the effects of putting the barrier and the
rat into a different environment. The second cylinder was white
except for a black cue card that occupied 45

 

�

 

 of arc centered at
3:00 o’clock. In this second chamber, the barrier was always
present and again ran along the 7:30 o’clock radius from the cyl-
inder center.

In use, the recording cylinder was visually isolated from the 3
by 3 m laboratory room with a gray circular curtain 2.0 m in di-
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ameter that extended from the floor nearly to the ceiling. The
center of the curtain was in the middle of the laboratory room.
Lighting was provided by four 25-W bulbs in reflectors set on the
corners of a square 1.0 m on a side. A TV camera 2.2 m overhead
pointing down with its optic axis aimed at the cylinder center was
used to track the position of a headlight attached to the elec-
trode assembly. The location of the headlight was determined at
60 Hz in a 64 by 64 grid of pixels 2.5 cm on a side.

Situated next to the TV camera were an automatic pellet
feeder and a 25-channel commutator. The pellet feeder deliv-
ered 25-mg food pellets at a rate of 

 

�

 

3 per minute. The pellets
landed on the cylinder floor where they were retrieved by the
hungry rats (see below). The commutator kept the recording ca-
ble from kinking during the complex movements by the rats.

 

Behavioral Training

 

After recovery from surgery, rats were food deprived to 85% of
their initial weight. They were then introduced into the record-
ing chamber with 40 or more 25-mg food pellets on the floor and
allowed to forage for 10 min. In general, rats ate all of the avail-
able pellets after the second or third training session and thereaf-
ter readily visited all parts of the cylinder. Once they moved
freely they were introduced without any pellets and the auto-
matic feeder was switched on. Rats rapidly learned to find and
eat dropped pellets that could scatter anywhere in the cylinder.
Once this behavior was established, the rats spent enough time
everywhere in the cylinder to reliably estimate the time-averaged
positional firing patterns of place cells.

 

Cell Screening

 

After training in the foraging task the recording cable was at-
tached at least once per day to search for single unit activity. If
none was seen the electrode assembly was advanced by 30–40 

 

�

 

m
and the rat was returned to its home cage for at least 2 h for the
electrode tips to relax to a new stable position. Once sufficiently
large amplitude unitary activity was resolved the rat was returned
to its home cage for several hours. If upon reconnection the
same waveforms were present a series of recording sessions was
initiated. The recordings were made in session sets such that
each session was for a certain constant group of place cells. When
the waveforms for a given session could no longer be recognized
or all four barrier manipulations were done, the electrodes were
moved and if possible another series of recording sessions was
done.

 

Recording Protocol

 

Five types of recording sessions were done (see Fig. 1). The first
session of a series was always a standard session in the gray cylin-
der with the barrier in the position used during training. One of
the other session types was then randomly selected and a second
session was done 

 

�

 

5 min later after changing the floor paper. Af-
ter the second session, another standard session was done fol-
lowed by another manipulated session and a final standard ses-
sion. Thus, in a day at most five sessions were done with standard
sessions always alternating with manipulated sessions and with
the two manipulated sessions always of a different type.

The next day, if the same waveforms were detected, an addi-
tional set of five sessions was run; sessions 1, 3, and 5 were stan-
dards. Sessions 2 and 4 were of the types not done the previous
day, in random order. If on the second day the waveforms could
not be recognized the recording sequence was reset.

In addition to standard sessions the other four types were 45

 

�

 

barrier rotations, barrier translations, barrier removals, and cyl-
inder replacements. In a 45

 

�

 

 rotation the outer end of the barrier

was put onto either the 6:00 or 9:00 o’clock radius. We saw no dif-
ferences between these subtypes and treat them as equivalent. In
a translation the barrier was slid along its length so that it ex-
tended from the cylinder center onto the 1:30 o’clock radius.
Note that this rearrangement would also occur if the barrier were
rotated by 180

 

�

 

 from its original position.
In barrier removal sessions, the barrier was not placed in the

cylinder. In cylinder replacement sessions, the white cylinder
with black card was substituted for the gray cylinder with white
card.

As an additional precaution we randomized the side of the
barrier facing the clockwise direction. We saw no differences in
otherwise equivalent sessions and do not deal further with this
issue.

 

Data Analysis

 

Spike sorting.

 

Because the analogue to digital converter sampling
rate was at most 250 KHz we recorded only from the two tetrodes
that showed the most single unit activity; each tetrode wire was
sampled at 30 KHz. The signals from each wire were filtered with
AM Systems amplifiers between 300 Hz and 10 KHz. Sorting of
waveforms into clusters was initially done with Spike Sort and Au-
tocut from Datawave and later with an off-line spike analysis pro-
gram from Plexon. We included in our final analysis only wave-
forms that generated complex spikes and whose initial phase was
at least 300 

 

�

 

s in duration. The datasets included in the results
contained between 3 and 17 simultaneously recorded units.

 

Time, spike, and firing rate arrays.

 

After spike sorting we
counted the number of 1/60-s intervals the rat’s head was de-
tected in each pixel and the number of spikes fired by each cell
in the corresponding pixels. The spike array for each cell was di-
vided by the time array on a pixel-by-pixel basis to generate a fir-
ing rate array. These arrays were numerically analyzed (see be-
low) and visualized as color-coded time, spike, or firing rate maps

Figure 1. Arrangements of the recording chamber plus barrier
in the five session types. In all session types, a cue card occupying
45� of arc of the cylinder wall was centered at 3:00. The card was
white in the gray cylinder and black in the white cylinder so that in
both cases there was a strong contrast between the card and the
wall. In “standard” sessions the barrier was put with one end at the
center of the gray cylinder along the 7:30 o’clock radius. In 45� ses-
sions the barrier was rotated around the cylinder center to run
along either the 6:00 or 9:00 o’clock radius. In 180� sessions the
barrier was rotated around the cylinder center to run along the
1:30 o’clock radius. In removal sessions the barrier was not placed
into the cylinder. In second environment sessions the barrier was
put with one end at the center of the white cylinder running along
the 7:30 o’clock radius.
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(e.g., Fig. 2). In such maps, increasing values of the encoded
property were represented in the color order: yellow, orange,
red, green, blue, and purple. With this order, intense place cell
and “barrier-related” cell activity appeared as dark areas on a yel-
low background. To emphasize the tight positional confinement
of place cell and barrier cell discharge, yellow encodes pixels in
which the firing rate was exactly zero. No positional averaging or
thresholding was applied to rate distributions or maps.

 

Measuring the distance of firing fields from the barrier. 

 

In line with
earlier findings (Muller and Kubie, 1987), inspection of firing
rate maps revealed that changes in positional firing patterns
varied with the distance between the firing field and the barrier.
To describe these changes we first calculated the location of the
field centroid (Fenton et al., 2000). The coordinates X

 

c

 

, Y

 

c

 

 of
the centroid are the means of x

 

i

 

 and y

 

i

 

, the X and Y positions of
ith pixel in the field weighted by r

 

i

 

, the firing rate in the ith
pixel.

A pixel is part of the field if r

 

i

 

 

 

�

 

 0 and it shares an edge with at
least one other pixel known to be part of the field. The minimum
field size is 9 pixels.

 

Given field location, how can the distance to the extended barrier be ob-
tained?

 

We used the separation between the centroid and the
nearest point on the barrier. To find this distance, the environ-
ment is broken up into three sections by constructing the two
perpendiculars to the ends of the barrier. If the field centroid is
between the ends of the barrier, the distance is the vertical pro-
jection of the centroid on the barrier. If the field centroid is out-
side the ends of the barrier, the distance is the length of the seg-
ment from the centroid to the nearer end of the barrier.

 

Classifying the effects of manipulations on firing fields.

 

Indepen-
dent of the distance from a field to the barrier we classified cells
according to firing rate changes and positional firing pattern
changes. To do this, the positional firing patterns of pyramidal
cells were divided into two groups: (a) Cells with a single firing
field in the standard condition and a single firing field for any
manipulation. (b) Cells that had a firing field in either the stan-
dard condition or in a manipulated condition but that were si-
lent in the other session. The separation was done using a “rate
change score”:

 

(1)

 

where CS is the change score, S 

 

�

 

 field rate in standard condi-
tions, and M 

 

�

 

 field rate in manipulated conditions. Max(S,
M) 

 

�

 

 S if S 

 

�

 

 M or M otherwise; min(S, M) 

 

�

 

 S if M 

 

�

 

 S or M
otherwise. If CS 

 

	

 

 0.35, the cell was considered to go from active
to silent or silent to active and therefore to be a “rate change”
cell. Other cells were considered have persistent rates.

 

R E S U L T S

 

Overview

 

CA1 pyramidal cells were recorded from eight rats that
experienced different numbers of session sets depending
on the ability to isolate cells. For rats that yielded several
sets we saw no serial order effects when barrier manipula-
tions were repeated and did not raise this issue again.

Xc xiri∑ ri∑⁄=

Yc yiri∑ ri∑⁄=

CS min S, M( ) max S, M( ) ,⁄=

Figure 2. 45� barrier rotations. Each colored circle is a firing
rate map that shows the time-averaged spatial firing rate distribu-
tion of a single hippocampal pyramidal cell recorded for 16 min.
Yellow indicates pixels in which the firing rate was exactly zero.
Darker colors represent increased rates of activity so that firing
fields appear as dark areas on a yellow background. (A) Rate maps
for four cells whose fields were near the barrier in the first stan-
dard session are shown in the top row. The middle row is for the
45� barrier rotation session. The bottom row is for a second stan-
dard session. Cells 1 and 2 were tested with 45� clockwise rotations;
cells 3 and 4 with 45� counterclockwise rotations. For each cell the
field rotates with the barrier. In some cases, for instance cells 1 and
4, the field expands into the region occupied during the standard
session. That the effects of barrier rotation were reversible is
shown by the very similar rate maps in the top and bottom rows.
The in-field rate (spikes/s) for each cell in the three sessions was:
Cell A1 (B11G02P1C4): 4.94, 5.39, 1.32. Cell A2 (B15G10P0C3):
2.50, 1.93, 2.12. Cell A3 (B17G02P1C2:) 3.83, 2.55, 2.96. Cell A4
(B15G08P0C2): 1.98, 3.02, 2.59. (B) Rate maps for four cells
whose fields were far from the barrier in the first standard session
are in the top row. The middle row is for 45� barrier rotation ses-
sions. The bottom row is for a second standard session. Cells 1 and
2 were tested with 45� clockwise rotations; cells 3 and 4 with 45�
counterclockwise rotations. In no case did the field move during
the rotation session. The in-field rate (spikes/s) for each cell in
the three sessions was: Cell A1 (B11G02P1C1): 5.97, 4.39, 2.70.
Cell A2 (B15G02P0C1): 4.31, 4.15, 3.25. Cell A3 (B17G03P0C1):
9.36, 7.18, 5.18. Cell A4 (B11G05P0C1): 3.25, 2.18, 4.92.
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The outcomes of 45

 

�

 

 barrier rotations, translations,
removals, and placements in a second environment are
described separately in the next four sections. The
main goal in each case is to show that the distance be-
tween a firing field and the position of the barrier in
the standard condition largely determines the effects of
a manipulation. For rotations, translations, and remov-
als, fields near the barrier underwent clear changes,
whereas fields far from the barrier were hardly affected.
This situation was reversed with the barrier in the sec-
ond environment; fields near the barrier tended to be
unchanged, whereas fields far from the barrier under-
went major changes. The overall conclusion is that the
population of CA1 pyramidal cells provides distinct
representations of the arena and the barrier, although
a few cells did not discharge unless the barrier was in a
certain part of the arena.

 

45

 

�

 

 Rotations

 

A total of 57 pyramidal cells from five of the eight rats
were recorded during 14 sequences of standard and
45

 

�

 

 barrier rotation sessions. No systematic changes
were seen between the preceding and following stan-
dard sessions, indicating that changes in positional fir-
ing patterns caused by 45

 

�

 

 rotation were reversible.
Measurements of changes induced by rotation were
made by comparison with the preceding standard ses-
sion. Of the 57 cells, 27 were recorded with the barrier
rotated to 6:00 o’clock and 30 with the barrier rotated
to 9:00 o’clock. No differences were seen for clockwise
and counterclockwise rotations and the results from
these two manipulations were therefore combined.

In agreement with the effects of other gentle pertur-
bations of the environment (Fenton et al., 2000; Lenck-
Santini et al., 2003), 45

 

�

 

 rotations caused a small (18%)
but significant decrease of in-field firing rate (rate in
standard sessions 

 

�

 

 4.08 spikes/s; rate in 45

 

�

 

 sessions 

 

�

 

3.34 spikes/s; t

 

55

 

 

 

�

 

 

 

�

 

2.89, P 

 

�

 

 0.0054). After excluding
a silent near cell that became active when the barrier
was rotated by 45

 

�

 

 (see below), the rate decrease was
seen for both far fields (t

 

40

 

 

 

�

 

 

 

�

 

2.47, P 

 

�

 

 0.0177) and
near fields (t

 

12

 

 

 

�

 

 

 

�

 

2.67, P 

 

�

 

 0.0194). The rate de-
creases for near and far fields were statistically the
same.

Firing rate maps for eight examples of the effects of
45

 

�

 

 rotations are shown in Fig. 2. Here, maps for both
bracketing standard sessions are shown to demonstrate
the reversibility of positional rate patterns, but the fol-
lowing standard session is suppressed in later examples.

Fig. 2 A shows that firing fields 

 

	

 

10 cm from barrier
tended to rotate in the same direction as the barrier re-
gardless of whether the rotation was clockwise (Fig. 2,
A1 and A2) or counterclockwise (Fig. 2, A3 and A4).
The near fields are from three different rats, suggesting
that corotation of near fields with the barrier occurs in
most if not all rats.

In contrast to near fields, the rate maps in Fig. 2 B for
fields 

 

�

 

10 cm from the barrier indicate that their posi-
tions and shapes were hardly affected by 45

 

�

 

 barrier ro-
tation. Again, these fields are from three different rats,
implying that the invariance of far fields during 45

 

�

 

 ro-
tations is a common property of the pyramidal cell rep-
resentation.

To demonstrate that the examples in Fig. 2 represent
trends in the cell sample we showed that near fields

Figure 3. Similarity between standard and 45� rotations session as a function of the shortest distance between the field centroid and the
barrier. (A) Null transform. Similarity was calculated by superimposing the standard session on the 45� rotation session. Similarity grows
with distance between the field centroid and the barrier. (B) �45� transform. Here similarity is calculated after rotating the standard ses-
sion firing pattern 45� in the same direction as barrier rotation. Now similarity decreases with distance from the barrier. (C) �45� trans-
form. Similarity is calculated after rotating the standard session firing pattern 45� in the direction opposite barrier rotation. Except for a
few outliers at intermediate distances, similarity is quite low at all distances.
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tended to rotate by 45

 

�

 

 in the direction of the barrier
rotation, whereas far fields tended to remain in the
same location. We computed three “similarity scores”
for each cell based, respectively, on the assumption
that a field does not move, that it moves by 45� in the
same direction as the barrier rotation, and that it
moves by 45� in the opposite direction as the barrier
rotation. To measure similarity for the assumption
that the fields stay still, a pixel-by-pixel correlation was
calculated for each cell when its positional rate distri-
bution for the unmodified standard session (“null
transformation”) was superimposed on its positional
rate distribution for the 45� rotation session. These
similarity scores were plotted in Fig. 3 A against dis-
tance from the center of gravity of the field to the bar-
rier, as defined in materials and methods. The over-
all trend for similarity to increase with field distance
from the barrier means that barrier rotation affects
near fields more strongly than far fields (correlation
between distance and similarity: r � �0.61, df � 55,
P 	 0.000001).

More information about the 45� barrier rotation ef-
fect is seen in Fig. 3 B, where a second similarity score
was computed in two steps. First, the positional firing
pattern in the preceding standard session was rotated
by 45� in the direction of barrier rotation (“�45� trans-
formation”). Second, this transformed pattern was su-
perimposed on the pattern for the rotation session and
a pixel-by-pixel correlation was computed. The result-
ing score measures how well the transformed standard
pattern approximates the modified pattern. Similarity
between the �45� transformed standard session and
the manipulated session decreased with distance be-
tween the field and the barrier (r � 0.61, df � 55, P 	
0.000001).

To test for specificity, we rotated the pattern in each
standard session 45� in the direction opposite the bar-
rier rotation (�45� transformation). The similarities
calculated after this transformation are plotted in Fig. 3
C, which shows that except for a few middistance cells
whose fields are near the cylinder center the values
were small. No correlation between distance and simi-
larity was detected (r � �0.24, df � 55, P � 0.075).

Of the 57 cells recorded during 45� rotations, the
fields of 56 underwent at most small changes in the ma-
nipulated session. Therefore, for 56 cells the similarity
score was high for either the null or �45� transforma-
tions; the field was either unchanged or rotated with
the barrier. In contrast, the last cell (shown in Fig. 4)
had a very different response; it was nearly silent during
the standard session but developed a clear field after
45� barrier rotation to 6:00 o’clock. This outcome was
the complement of the firing suppression seen after bi-
secting a field by a barrier (Muller and Kubie, 1987). In
fact, the suppression is reproduced when the barrier is

returned to 7:30 o’clock during the following standard
session (not depicted).

Since only 1 of 57 cells underwent a major modifica-
tion of its spatial firing pattern after 45� barrier rota-
tion, this cell could be treated as part of the sample or
as a special case without affecting overall conclusions.
For other manipulations, however, cells that go from si-
lent to active or active to silent made up an appreciable
fraction of the observed cases. To be consistent, we
therefore deal with cells that undergo large firing rate
changes as a separate category.

Barrier Translations (180� Rotations)

Out of 43 cells recorded from six rats during standard
and translation sessions, six were eliminated from fur-
ther consideration because they had two firing fields in
one session or the other. Of the remaining 37 cells,
eight “rate-change” cells were treated separately be-
cause they were inactive or showed only scattered firing
in one session or the other.

The average in-field firing rate of pyramidal cells un-
derwent a 20% decrease from 4.33 spikes/s during
standard sessions to 3.46 spikes/s during translation
sessions (paired t28 � �2.96, P � 0.006). There was a
tendency for near cells to become less active (paired
t5 � �1.53; P � 0.137) and a reliable decrease in the
rate for far cells (paired t23 � �2.39; P � 0.024). Again,
a small perturbation of the environment gives rise to a
position-independent decrease of firing rate. The mag-
nitude of the rate decrease was not detectably different
for near and far fields.

The effects of barrier translations are exemplified in
Fig. 5 A for near fields and Fig. 5 B for far fields. The

Figure 4. A rate-change cell with a field that appeared after the
barrier was rotated counterclockwise by 45�; moving the barrier
uncovered the field of a previously inactive cell. The in-field rate in
the rotation session was 5.01 spikes/s.
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overall trend visible in Fig. 5 was for near fields to move
along with the barrier and for far fields to remain in
place. Each example in Fig. 5 A was from a different
rat, as was each example in Fig. 5 B, indicating that the
two most common responses to barrier translation were
not confined to just one or two rats.

In addition to the strong tendency of near fields to
follow the barrier translation, a second and remark-
able phenomenon is visible in Fig. 5, A1–A3. In each
of these cases, the field stayed on the same side of the
barrier as in the standard session. In other words, if it
is imagined the field is attached to the barrier, then
these outcomes would be seen if the barrier were slid
by its length along the 7:30 to 1:30 diameter and not
if the barrier were rotated by 180� around its end at
the center of the cylinder. The same result was seen
for three other cells whose field ran along one side of
the barrier and we saw no instance of a field that
moved as if the barrier had been rotated. It is on this
basis that we consider the manipulation to be a trans-
lation rather than a rotation of the barrier. We also
asked if a feature peculiar to one side of the barrier
acted as a trigger by rotating the barrier 180� around
its middle while leaving it in the standard position.
On no occasion did this manipulation affect field
position.

The similarity versus distance scattergrams in Fig. 6
suggest that the examples in Fig. 5 reflect the responses
of the cell sample to barrier translations. The similari-
ties in Fig. 6 A are for the null transformation. The ten-
dency of similarity to increase with distance between
the field center and the barrier indicates that barrier
translation has mainly local effects (r � 0.64, df � 28,
P � 0.0014). The similarities in Fig. 6 B were computed
after the firing pattern in the standard session was
translated by the length of the barrier along the 7:30 to
1:30 diameter such that only pixels common to both
the original and translated barrier locations were con-
sidered. In this case, there is a strong trend for the sim-
ilarity to decrease with increasing field-to-barrier dis-
tance, as if near fields translate along with the barrier
(r � �0.52, df � 28, P � 0.003). In contrast, except for
two near cells, rotating the standard session firing pat-
tern by 180� before computing similarity results in uni-
formly low values. The basis for the relatively high simi-
larity (0.175) of the field at 1.5 cm is visible in the rate
maps of Fig. 5 A1 where some discharge was seen on
both sides of the barrier, although it was considerably
stronger on one side. This asymmetry was reflected in
the fact that similarity after translation was twice as
great (0.350) as similarity after 180� rotation. The high-
est similarity after 180� rotation was for a rather large

Figure 5. (A) Rate maps in standard
(Std) and translation (Trans) sessions
for four cells with fields close to the bar-
rier in the standard session. In each
case, the field translates with the bar-
rier. For cell 1, the field stretches, leav-
ing behind an active region in the origi-
nal location. For cell 4, the whole field
translates, but the part nearest the cy-
linder center moves less, once again
leaving the impression that it
stretches. In-field rates (spikes/s):
Cell 1 (B17G02P1C2): 2.96, 2.20. Cell
2 (B19G03P1C4): 3.10, 3.60. Cell 3
(B15G09P0C2): 4.24, 4.28. Cell 4
(B18G01P0C1): 9.82, 5.16. (B) Rate
maps in standard (Std) and translation
(Trans) sessions for four cells with fields
away from the barrier in the standard
session. In each case, the field remains
fixed in the environment after barrier
movement. In-field rates (spikes/s):
Cell 1 (B11G03P0C2): 5.91, 4.36. Cell
2 (B17G02P1C1): 4.57, 3.62. Cell 3
(B16G01P0C1): 6.39, 7.46. Cell 4
(B19G03P0C4): 2.02, 2.07.
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field close to the cylinder center where no rotation
would much affect its configuration.

In addition to fields that were either stationary or
that moved with the barrier after translation, eight rate-
change cells had a robust field in only one type of ses-
sion and were nearly silent or showed dispersed firing
in the other type. For four cells, barrier translation ei-
ther “uncovered” a previously silent field at the original
barrier location (two cases) or suppressed a previously
active cell at the new barrier location (two cases; cell 1
in Fig. 7); cells of this type are similar to the example in
Fig. 4. The discharge in the fields of the other four cells
seemed to require the barrier to be at a certain location
in the environment, as if stimuli from the barrier and
the cylinder had to summate. In one case, translating
the barrier caused in-field firing to slow quite consider-
ably but the remaining discharge was in the original lo-
cation (Fig. 7, cell 2). In a clearer example, barrier
translation seemed to induce a new field at the new po-
sition (Fig. 7, cell 3).

In sum, the translation manipulation revealed four
classes of pyramidal cells: (a) Ordinary place cells
whose fields appeared to be invariant to barrier loca-
tion. Fields far from the barrier were generally un-
changed after barrier translation. Some fields along the
cylinder wall near the outer end of the barrier also
were unaffected. (b) Place cells whose fields were ei-
ther suppressed or revealed by barrier translation. (c)
Barrier-attached cells whose activity relative to the bar-
rier was independent of the barrier location. (d) A few
“conjunction cells” that were active near the barrier
only when it was in one position or the other. In no
case, however, did we see a field away from the barrier
whose activity required a certain barrier placement.

Barrier Removals

A total of 71 cells in six rats were recorded in standard
sessions and after barrier removal. Five cells had two fir-
ing fields in at least one session and were eliminated
from the sample. Of the remaining 66 cells, 13 were
“rate change” cells that were inactive in one session or
another and were treated differently than the main
sample.

After removing the barrier, the in-field firing rate of
the main sample underwent a significant decrease by
20% from 4.49 to 3.59 spikes/s (paired t52 � �4.498,

Figure 6. Similarity between standard and translation session as a function of the shortest distance between the field centroid and the
barrier. (A) Null transform. Similarity grows with distance between the field centroid and the barrier. (B) Translation transform. Similarity
was calculated after sliding the standard session firing pattern along the 7:30 to 1:30 diameter to imitate barrier translation. Here, similar-
ity decreases with distance from the barrier. (C) 180� transform. Similarity was calculated after rotating the standard session firing pattern
180�. Similarity is low at all distances.

Figure 7. Examples of rate-change cells after barrier translation.
For the first cell, the new barrier position bisected the original
field position and firing was suppressed. Cell 2 apparently re-
quired the barrier to be in its original position for robust firing.
Cell 3 developed a new firing field after barrier translation, as if
the conjunction of the object and the object position were neces-
sary to support firing. Cell 1 (B17G02P1C5): 1.32, 0.00. Cell 2
(B17G03P0C3): 3.89, 1.30. Cell 3 (B19G03P0C2): 0.00, 4.12.
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P � 3.87 
 10�5). The decrease was also significant for
9 near cells (paired t8 � 3.153, P � 0.01354) and for
the remaining 44 far cells (t43 � 5.035, P � 0.00101).
The rate decrease was not distinguishable for near and
far fields and was therefore position independent after
barrier removal.

Examples of firing rate maps for barrier removal ef-
fects on near cells are shown in Fig. 8 A. After separat-
ing cells that were nearly silent in either the standard
or the removal session, the selected examples (from
three rats) were for the four fields closest to the barrier.
It is striking that in each case the field was quite un-
changed in the presence or absence of the barrier. The
same lack of change after barrier removal is also seen
for far cells, as shown by the examples from three rats
in Fig. 8 B. Thus, for cells active in both the standard
and removal sessions, spatial firing patterns appeared
to be constant, independent of the distance from the
field to the barrier.

This impression is reinforced by the scattergram in
Fig. 9 A, which shows that similarity scores for the null
transform were uniformly quite high regardless of the
separation between the field and the barrier (r � 0.06,
df � 49, P � 0.67). It should be noticed, however, that
the smallest distance is 4.5 cm; fields closer to the bar-
rier are inactive in one session or the other.

Examples of the 13 cells for which the firing intensity
changed strongly between standard and removal condi-

tions are shown in Fig. 10. Five cells, one of which is
shown in Fig. 10 (cell 1), went from silent to active. The
remaining nine cells went from active to nearly inac-
tive, an effect illustrated in Fig. 10 (cells 2, 3, and 4)
where the order is from small change to large.

Are rate-change cells distinct in another way? By in-
spection, it appears that their firing fields tended to be
near the barrier. This impression was corroborated by
an unequal-variance t test of the distance from field to
the barrier. For rate-change cells, the mean distance
was 7.49 cm, whereas for ordinary cells the mean dis-
tance was 20.43 cm; the probability the means were
equal is extremely small (t64 � 7.46, P � 3.22 
 10�9).
Thus, cells whose fields were near the barrier were
much more likely to be strongly affected by its removal.

The five cells that underwent large rate increases af-
ter removal are additional examples in which the field
was suppressed by the barrier. Cells of this type may
represent the cylinder since they were active only when
a region of the floor was freed of a competing influ-
ence. In contrast, the eight cells whose activity dramati-
cally weakened when the barrier was removed may rep-
resent the barrier itself since their activity required its
presence. This possibility is explored further below.

Second Environment

When several cells are recorded together in the gray
cylinder � white cue card and then in a white cylin-

Figure 8. The effects of barrier removal on cells
with fields in the presence and absence of the bar-
rier. (A) Rate maps in standard (Std) and barrier
removal (Rem) sessions for four cells with fields
close to the barrier in the standard session. In
each case, the field is unchanged, as if it fires in
relation to the cylinder despite the proximity of
the field to the barrier. In-field rates (spikes/s):
Cell 1 (B15G06P0C2): 7.73, 3.84. Cell 2
(B11G01P1C5): 7.45, 3.47. Cell 3 (B18G01P0C1):
4.50, 3.60. Cell 4 (B15G10P0C3): 2.12, 1.47. (B)
Rate maps in standard (Std) and barrier removal
(Rem) sessions for four cells with fields away from
the barrier in the standard session. In each case,
the field remains fixed in the environment after
barrier movement. In-field rates (spikes/s): Cell 1
(B11G02P0C3): 5.16, 3.50. Cell 2 (B11G02P1C5):
5.62, 5.17. Cell 3 (B16G01P0C1): 8.44, 4.46. Cell 4
(B17G04P0C2): 3.82, 2.74.
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der � black cue card, “remapping” occurs such that one
of three outcomes is seen for each cell (Kentros et al.,
1998): (a) Some cells have a field in the gray cylinder
but are silent in the white cylinder; (b) some cells have
a field in the white cylinder but are silent in the gray
cylinder; and (c) some cells have fields in both cylin-
ders, but the location, size, shape, and intensity of the
fields change dramatically so that the fields appear un-
related in the two cylinders. (Note that if the field loca-
tion changes randomly for cells that are active in both
environments, a small fraction of the cells may have
congruent fields.) To better understand both remap-
ping and the way in which the barrier is represented we
recorded standard sessions in the gray cylinder and
“second environment” sessions in a white cylinder; in
both cases the barrier was at the same place relative to
the cue card.

A total of 49 cells from six rats were recorded in the
original cylinder and in a white cylinder � black cue
card. Two cells had two fields and were eliminated from
further consideration. Of the 47 remaining cells, 22
had fields in both environments, making it possible to
compare firing rates and to ask about firing pattern
similarity. The remaining 25 satisfied the rate-change
criterion and are treated later.

For cells with fields in both cylinders, exposure to the
second environment caused a very small, nonsignifi-
cant rate increase from 3.94 to 3.97 spikes/s (paired
t21 � 0.072, P � 0.934). Thus, in contrast to the other
manipulations, the average rate of cells with fields in both
cylinders was unaffected while recording in the second
one. In short, perturbing a fixed environment caused
decreases because of mismatches between expectation
and observation, whereas recording in a different envi-
ronment did not affect rates.

The spatial firing patterns of individual cells with
fields in both cylinders are exemplified in Fig. 11. Four
near cells from three rats (Fig. 11 A) had very similar
firing fields in both cylinders. In cases where firing was
confined mainly to one side of the barrier in one cylin-
der it was confined to the same side in the other cylin-
der. In contrast, for four far cells from four rats (Fig. 11
B), the firing fields in the two cylinders appeared unre-
lated. Thus two-field far cells acted as if a remapping
had occurred whereas two-field near cells acted as if
they responded to the barrier.

How firing fields in the second cylinder depended on
the distance between the barrier and the field in the
first cylinder is summarized in the scattergram of Fig.
12 A where similarity after the null transformation is
plotted against distance. In contrast to the increased
similarity with distance after the null transformation
for 45� rotations and translations and the invariance of
fields after barrier removal, similarity decreased with
distance in the second cylinder (r � �0.55, df � 20,
P � 0.009).

In addition to cells active in both environments a
somewhat larger number of cells were active in only the

Figure 9. Similarity between standard and removal sessions as a
function of the shortest distance between the field centroid and
the barrier. Null transform. For cells with fields in both cylinders,
similarity is high regardless of the distance between the field cen-
troid and the barrier.

Figure 10. Examples of rate-change cells after
barrier removal. The first cell was silent in the
standard conditions and developed a field in the
original barrier location after removal. Cells 2, 3,
and 4 had clear fields in the standard session but
their intensity diminished greatly after barrier re-
moval. Fields of this kind may represent the bar-
rier. Cell 1 (B17G04P0C1): 0.00, 8.21. Cell 2
(B11G02P1C4): 5.28, 1.74. Cell 3 (B17G03P0C3):
4.82, 0.00. Cell 4 (B19G03P1C2): 4.26, 0.00.
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original or the second cylinder. These cells are exam-
ples of the other two kinds of remapping event in
which an active cell shuts off or a silent cell begins to
fire. Of the 25 rate-change cells, 20 went from active to
silent and 5 went from silent to active. Reflecting this
proportion, four active→silent and one silent→active
cells are shown as examples in Fig. 13. Two of the ac-
tive→silent cells (Fig. 13, cells 1 and 2) were selected
to show that fields near the barrier can undergo
remapping.

Responses of Cell Sets to the Manipulations

Up to now we have presented each manipulation as if it
were a separate experiment. Often, however, a cell set
was recorded during several manipulations and in a
several cases it was followed for the entire 10 session,
2 d protocol. Data of this kind are extremely valuable
since they allow us to see if the change caused by one
manipulation predicts changes caused by others. Se-
quential results allow us, in other words, to see if indi-
vidual cells have a consistent style that accounts for ef-
fects produced by each manipulation. In addition to se-
quential recordings, parallel recordings of many cells
yield a picture of how the pyramidal cell population
represents the state of the animal’s surroundings.

In the best example of sequential, parallel record-
ings, all four manipulations were done with 17 cells. Of

these, four fired only sporadically in most or all of the
10 sessions, one stopped firing or was lost in the last
several session, and three had two fields in one or both
cylinders. The remaining nine cells are shown in Fig.
14 and Table I in the following order: Cells 1–4 had far
fields in the first standard session, cell 5 was silent in
the first standard session, and cells 6–9 had near fields
in the first standard session. The session sequence is
shown in the order: standard, 45� (9:00 o’clock), re-
moval, translation, second environment, standard. The
second standard session is the last standard session on
day 2 of the sequence; intermediate standard sessions
are suppressed since they resemble the first standard
session as closely as does the last standard session.

The first four cells are ordinary place cells. Their fir-
ing is unchanged in the 45� rotation, translation, and
removal sessions; they continue to fire as the barrier is
moved around. Presumably their activity would be
same in the original cylinder so long as the barrier does
not encroach on the firing field. On the other hand,
when the barrier is put in the second cylinder they un-
dergo remapping; cell 1 shuts down, whereas cells 2–4
develop new fields. The cross-session response profile
therefore suggests that cells 1–4 represent the cylinder.
Note also the precision with which the last standard ses-
sion recapitulates the first standard session despite an
interval of 30 h.

Figure 11. The effects of putting the barrier
into a second cylinder on cells with fields in both
cylinders. (A) Rate maps in standard (Std) and
second cylinder (Sec) sessions for four cells with
fields close to the barrier in the standard session.
In each case, the field was unchanged, as if the
cell fired in relation to the barrier. In-field rates
(spikes/s): Cell 1 (B15G08P0C2): 2.59, 5.33.
Cell 2 (B17G02P1C2): 4.20, 2.68. Cell 3
(B19G03P0C1): 3.82, 7.86. Cell 4 (B11G04P1C3):
4.31, 2.18. (B) Rate maps in standard (Std) and
second cylinder (Sec) sessions for four cells with
fields away from the barrier in the standard ses-
sion. In each case, the field remapped; its location
was different than in the standard session. In-field
rates (spikes/s): Cell 1 (B15G02P0C3): 5.91,
4.36. Cell 2 (B16G01P0C1): 6.32, 3.57. Cell 3
(B15G04P0C3): 4.20, 7.99. Cell 4 (B22G01P0C2):
5.82, 7.70.
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Cell 5 is silent in the standard cylinder but gains a
field after the barrier is removed or translated. From
the removal session, this cell represents a certain place
in the cylinder as long as the barrier is not in its stan-
dard or 45�CW position. Barrier translation uncovers
the firing field although it is unclear why the field
moves toward the barrier. Additional work could deter-
mine the range of barrier locations for which the cell
would discharge. It is also unclear if the silence in the
second environment means that the cell has remapped
or if the standard position of the barrier suppresses fir-

ing in both cylinders. Nevertheless, the cross-session fir-
ing profile strongly implies that this is a cylinder cell.

Cells 6–9 have near fields in the original cylinder.
The fields of cells 6 and 9 rotate with the barrier during
the 45� session but the central location of the fields for
cells 7 and 8 makes their responses indeterminate. In
each case, the cell stops firing when the barrier is re-
moved, as if activity depends on the barrier’s presence.
The fields of cells 6–9 move along with the barrier in
the translation session although the activity of cell 9 is
weaker. Crucially, these cells also fire in the second cyl-
inder, as if they recognize the barrier even after a
remapping for the place cells. Cell 9 is once again a
special case since its firing is very weak during the sec-
ond cylinder session. The last four cells in Fig. 14 are
therefore considered barrier attached cells—they rep-
resent the object, regardless of whether the true place
cells are in their gray cylinder or white cylinder config-
uration. In addition to the four cells just mentioned in
Fig. 14 we saw three additional cells whose cross-session
firing profile suggests they are barrier attached.

D I S C U S S I O N

Using rats trained to find and eat food pellets inside a
cylinder fitted with a white cue card and a tall, transpar-
ent vertical barrier we recorded hippocampal CA1 pyr-
amidal cells in the original environment and after it
was modified in four ways. (a) When the barrier was ro-
tated by 45�, firing fields near the barrier tended to ro-
tate by the same amount whereas fields far from the
barrier tended to remain stationary. (b) When the bar-
rier was translated by its length along a diameter, many
fields near the original barrier position translated with

Figure 12. Similarity for cells with fields in the original and sec-
ond cylinders as a function of the shortest distance between the
field centroid and the barrier in the original cylinder. Null trans-
form. There is a strong trend for similarity to decrease with the dis-
tance between the field centroid and the barrier.

Figure 13. Examples of rate-
change cells recorded in the
two cylinders. Cells 1 and 2
have fields near the barrier
but undergo a form of remap-
ping, as if they represent the
cylinder despite their proxim-
ity to the barrier. Cells 3 and 4
are more typical; their fields
are far from the barrier in the
original cylinder and become
silent in the second cylinder.
Cell 5 is an example of cell
that was silent in the original
cylinder but become active
in the second cylinder. Note
that the field it develops
is near the barrier. Cell 1
(B11G06P1C2): 3.40, 0.00.
Cell 2 (B22G01P0C3): 4.83,
0.00. Cell 3 (B17G02P1C1): 4.25,
0.00. Cell 4 (B15G06P1C2):
8.57, 0.00. Cell 5 (B11G06P1C4):
0.00, 8.09.
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the barrier. Barrier translation also caused new cells to
fire in the original barrier location and suppressed fir-
ing at the new barrier location. A few cells whose fields
were near but not at the original barrier location
stopped firing, as if they required input from both the
barrier and the cylinder. (c) When the barrier was re-
moved from the cylinder, cells whose firing rate was sta-
ble did not undergo changes in field position regard-
less of their distance from the barrier. In contrast, rate-
change cells that went from active to silent or from
silent to active showed a very strong tendency to be
concentrated near the barrier. Cells whose fields shut-
down presumably represent the barrier, whereas cells
that became active presumably represent the cylinder.
(d) When the barrier was put into a second environment
known to cause rapid remapping (Kentros et al., 1998),
some cells had a field in each environment. Of these, if
their fields were near the barrier in the first environ-
ment they continued to fire near the barrier in the sec-
ond environment. In contrast, if their fields were far

from the barrier in the first environment the field in
the second environment tended to be altered in posi-
tion, size, shape, and intensity, one of the three “styles”
of remapping. Rate-change cells with fields in only one
environment usually had fields far from the barrier and
either shutdown or began to discharge, the other two
recognized styles of the remapping process.

Beyond selective changes in field position we noted
two other effects of barrier manipulations. First, the rat
hippocampus appears to resolve as a translation the
ambiguous motion that takes the barrier from its stan-
dard position to lie along the 1:30 o’clock radius. Addi-
tional work could reveal the threshold that separates
rotations from translations. Nevertheless, it is fascinat-
ing that the processing of information before and in
the hippocampus dictates how the barrier is to be
represented. This sort of choice is another indication
that the hippocampus participates in perceptual and
not merely sensory processes (Rotenberg and Muller,
1997).

Figure 14. Simultaneous recording of nine cells during each of the manipulations. These cells were followed for the entire protocol of
five sessions on the first day and five sessions on the second day. Only the initial standard session on day 1 and the final standard session on
day 2 are shown since these are sufficient to demonstrate stability. Sessions shown from the top down are: standard, 45� clockwise rotation,
removal, translation, second cylinder, standard. Cells 1–4 are ordinary place cells whose fields are unchanged under all circumstances ex-
cept in the second cylinder where they undergo remapping. Cell 5 develops a field only with the large barrier movement associated with
translation or during barrier removal. Cells 6–9 are barrier attached; their fields are near the barrier, follow the 45� rotation if the field is
away from the cylinder center (cells 8 and 9), stop firing after removal, follow the barrier during translation, and persist in the second cyl-
inder, although the persistence for cell 9 is barely detectable. In-field firing rates for sessions are given in Table I.
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The second interesting aspect of changing the envi-
ronment is the decreased pyramidal cell firing during
45� rotations, translations, and removals. This decrease
cannot be due entirely to fatigue since the rate recovers
in a standard session after the manipulated session.
Moreover, the rate does not decrease after remapping
in a second cylinder. These observations suggest that
rate decreases occur when the current and remem-
bered appearance of an environment fail to match
(Fenton et al., 2000). Such decreases are compatible
with models in which the activity of each cell is the
summed product of stored synaptic weights, times, and
inputs that depend on the current cue configuration.
The fact that rates decrease regardless of distance of
the field from the barrier may mean that each cell is in-
fluenced by both the cylinder and the barrier. Thus, in
the current circumstances, the separation of control by
the two main stimulus components is much stronger
than in “double rotation” experiments (Shapiro et al.,
1997), but is not absolute.

What would happen with further exposures of a rat
to one of the manipulated conditions? So far as we can
tell, the network returns to its initial state whenever the
rat is returned to the original environment. Repeated
exposure to, say, barrier translation might, however,
lead to an adjustment of synaptic weights such that
field rates would decrease if the rat were eventually
returned to the original circumstance. Alternatively,
remapping might occur, either all at once (Hill, 1978;
Wilson and McNaughton, 1993; Kentros et al., 1998),
with an animal-specific time course (Bostock et al., 1991),
or slowly and piecemeal (Sharp et al., 1995; Shapiro et
al., 1997; Lever et al., 2002).

Kinds of Pyramidal Cells

The response of cells to barrier manipulations depends
strongly on the distance from the barrier to the firing
field in the standard condition. Thus, in the original
cylinder, near fields are modified by barrier manipula-
tions, whereas far fields are stable. In contrast, in the
second cylinder, near fields are stable but far fields un-

dergo remapping. For the most part, these regularities
hold across all the barrier manipulations; far cells and
near cells behave differently but the responses of each
class are consistent. A third class of cells, reminiscent of
the conjunction cells reported by Shapiro et al. (1997)
is discussed below.

How do object cells compare with cell types reported
earlier? According to O’Keefe and Nadel (1978), place
cells fire only in a certain location in the environment
but “misplace cells” fire in a location only if some other
condition obtains. Object cells are therefore not
misplace cells since they fire whenever the barrier is
present, regardless of its location. Note, however, that
several cells recorded during barrier translation acted
as misplace cells; they were active with the barrier in its
original position but stopped firing after a large move-
ment. Such conjunction cells resemble cells that re-
quire proximal and distal stimuli to be in register dur-
ing double rotations (Shapiro et al., 1997; see also Wood
et al., 1999).

Why did we see few cells whose firing depends on the
barrier being in a certain location compared with re-
sults from experiments in which proximal and distal
stimuli are put into conflict by counter-rotation? A rea-
sonable speculation is that the barrier and the cylinder
are more easily separated by sensory and perceptual
processes that supply information to the hippocampus
than are sets of proximal and distal marker stimuli
that are originally in register. In this view, the ability to
detect barrier-attached cells and their constant re-
sponse in a second environment is a direct reflection
of the strong distinction between the barrier and the
apparatus.

Barrier cells are also reminiscent cells of cells re-
corded during goal seeking behavior (Gothard et al.,
1996; Hollup et al., 2001). In contrast to previous stud-
ies, however, the fields of barrier cells persisted in a sec-
ond environment that caused remapping of far cells,
showing their ability to encode the object independent
of the surroundings. Note also that barrier cells were
found even though we used no explicit goal nor re-
quired any spatial problem solving. This is in contrast
to the post-goal cells of Gothard et al. (1996) and the
platform-goal cells of Hollup et al. (2001). It is also very
different from the start-box and finish-box cells of
Gothard et al. (1996) since these cells required the rat
to be inside the box. Finally, the barrier cells were seen
even though the object had no significant motivational
or task significance for the rat, in contrast to goal and
box cells.

We therefore infer that there are (at least) two kinds
of hippocampal pyramidal cells, namely place cells and
object cells (exemplified, respectively, by cells 1–4 and
cells 6–9 in Fig. 14). We think that the coexistence of
these types provides a substrate for animals to properly

T A B L E  I

Firing Rates of Nine Simultaneously Recorded Cells in Each of
the Experimental Conditions

Cell number

Manipulation 1 2 3 4 5 6 7 8 9

Standard 3.09 3.10 2.81 3.86 0.00 3.56 5.09 3.80 4.26

45�-rotation 3.77 3.61 4.96 3.13 0.00 2.71 2.88 1.45 2.37

Removal 2.72 2.53 2.89 3.30 2.16 0.00 0.00 0.00 0.00

Translation 2.01 2.07 3.41 1.23 4.12 1.15 7.02 3.60 0.00

Second 0.00 3.08 2.06 2.05 0.85 1.44 7.86 3.85 0.00

Standard 1.84 2.24 1.96 2.31 0.00 2.25 4.16 2.87 2.76

The infield firing rates (spikes/s) are for the rate maps of Fig. 14.
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navigate in a familiar environment in which moveable
objects are displaced and in a second familiar environ-
ment in which an object encountered first in a differ-
ent context appears. The place cells provide a station-
ary, environment-specific framework, whereas the ob-
ject cells signal the location of the barrier relative to
the framework.

The finding of barrier cells is contrary to our previ-
ous report that objects near the center of a cylinder
barely influence firing field locations (Cressant et al.,
1997). We note, however, that the barrier used here is
structurally very different than the slender objects used
in the previous work. Specifically, the barrier has a
much stronger influence on the kinematically possible
paths for the animal and therefore may be represented
in a very different way. Another possibility concerns the
presence of a cue card from the beginning of the
present experiment. The card may provide a stable spa-
tial cue (Knierim et al., 1995) that is useful as a refer-
ence for the barrier. The preexposure of the rat to reli-
able spatial information provided by both the card and
the barrier before any manipulations could cause the
barrier to become a good predictor of spatial location
and to thus acquire the ability to exert cue control over
nearby fields.

Direct support for the two classes of pyramidal cells
identified here comes from a current investigation into
the relationship between place cells and reexploration
induced by rearranging objects (Lenck-Santini et al.,
2003). Prior work (Save et al., 1992) found that hippo-
campal lesions do not affect reexploration induced by
substituting a novel object for a familiar one. On the
other hand, reexploration induced by movement of fa-
miliar objects was strongly attenuated. When pyramidal
cell recordings were made during object substitution
their activity was unchanged even though reexplora-
tion was induced. On the other hand, recordings made
during object repositioning revealed major changes in
the activity of some pyramidal cells during reexplora-
tion. The key is that the affected cells had firing fields
near the objects, whereas far fields were invariant fixed
(Lenck-Santini et al., 2003), in full agreement with our
present work. This result is also compatible with the
work of Cressant et al. (1997) since object rotations
caused unpredictable changes nearby fields.

Are Barrier and Cylinder Cells Fixed Classes?

We have explored only a tiny fraction of the parameter
space that would be needed to fully characterize how
hippocampal pyramidal cells represent behaviorally in-
teresting variables such as environmental geometry, de-
cor, contents events and so on. With this limitation in
mind, it is our strong impression that most of the re-
corded cells maintain their characteristics over the
range of manipulations used; they are either cylinder

or barrier cells and the main feature to which they are
tuned does not change. The fixed properties of the
preponderance of cells means that the two classes can
act together in coordinated ways, an issue discussed in
the next section.

There are at least two ways in which a cell’s properties
could depart from this simple picture. In the first, the
cell does not behave in the expected way in all manipu-
lations; an example is the ninth cell in Fig. 14. The sec-
ond departure would be for a cell to be simultaneously
controlled by combined inputs from the barrier and
the cylinder and in fact we saw a few such cells (e.g.,
cell 3 in Fig. 7). Additional work will be necessary to de-
termine if cells in either of these categories are stable
and common enough to warrant incorporation into
models of hippocampal function.

An interesting, available approach to classifying hip-
pocampal pyramidal cells is provided by the “boundary
vector model” (Hartley et al., 2000). In this model,
each place cell is driven by the summed input from sev-
eral hypothetical “boundary vector cells”, each of which
is activated according to the rat’s distance from a delim-
ited segment of the environment boundary. In the orig-
inal model, the boundary vector cells that converge on
a place cell are chosen randomly and are then fixed, al-
lowing predictions of field transforms produced by en-
vironmental manipulations. If this picture is expanded
to include the barrier as an additional boundary, it
would be possible to distinguish two very different cases.
In one, boundary vector cells are chosen randomly
from cells tuned to the cylinder wall and the barrier. In
the other case, boundary vector cells are grouped ac-
cording to whether they are responsive to the cylinder
wall or to the barrier. By performing the simulation
with these two different starting assumptions it might
be possible to see if the features that drive place cells
are arbitrary subsets of available features, as suggested
from double rotation experiments (e.g., Shapiro et al.,
1997) or if preprocessing in structures afferent to the
hippocampus ensures that features that drive a given
place cell are derived from unitary objects. Our results
lead us to believe that good fits using the boundary vec-
tor model will be considerably easier to generate on the
assumption that object features relayed to a given pyra-
midal cell are derived from related and not random
boundaries.

How Does the Whole Representation Behave?

In the standard condition, a characteristic set of cells
discharge at each position in the environment. After
each manipulation firing fields remain constant, move,
appear, or disappear. How do these changes look across
the entire pyramidal cell population? Using the notion
of a chart in which fields are laid out according to their
position in the environment and not according to the
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position of their cells in the brain (Samsonovich and
McNaughton, 1997), a cartoon of the layout of firing
fields in the standard condition is shown in Fig. 15 A.
In Fig. 15 A and the other parts of Fig. 15, the semi-
transparent ellipses and crescents indicate that firing
fields overlap to cover the surface of the environment.
In the standard condition, after 45� rotation, transla-
tion and barrier removal, light blue is used to indicate
fields that represent the barrier and red is used to indi-
cate barrier-attached cells. Dark blue shows fields
whose fields appear when the barrier is removed from
their vicinity and yellow fields that are suppressed when
the barrier moves to their position. Finally, gray is used
to represent the remapped fields in the second envi-
ronment. Using this color scheme, cartoons of the envi-

ronment and the arrangement of firing fields after
each manipulation are shown in Fig. 15, B–E. What is
remarkable is that the observed outcome for each ma-
nipulation accurately mimics the rearrangement of the
environment: the CA1 pyramidal cell population realis-
tically represents the environment.

We are therefore led to ask how pyramidal cells turn
on and off in just the right ways to mimic the layout of
the manipulated environment. We think that the re-
quired information has two components, namely, sig-
nals from entorhinal cortex and the activity of the net-
work of hippocampal interneurons. In particular, we
imagine that “detaching” and “reattaching” the barrier
representation from the cylinder representation in-
volves the coordinated discharge of interneuron classes
whose identities are currently unknown. In this view, in-
terneuron discharge has a dynamic component that
varies as the rat moves inside the cylinder and a static
component that reflects the layout of the environment.
These functions may be subserved by different types of
interneurons or by complex modulations of the tempo-
ral firing of a more homogeneous network. In any case,
it is essential to begin to classify the various interneu-
ronal types during behavior according to their wave-
forms and firing patterns with an eye to determining
their anatomical identities. Efforts along these lines will
complement the excellent work by Klausberger et al.
(2003) on establishing interneuron identity with juxta-
cellular staining methods and discharge correlates dur-
ing sleep stages.

In conclusion, we think that object cells may repre-
sent the location of relatively fixed obstacles in a space
represented by place cells. That the representational
method used by rats may share many features with the
method used by humans is in line with recent results on
the discharge properties of cells in the human hippo-
campus recorded during virtual navigation (Ekstrom et
al., 2003).
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