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Abstract: Expression of immune checkpoint proteins restrict immunosurveillance in the tumor
microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and
CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory
signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell
function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will fo-
cus on the metabolic alterations in immune and cancer cells regulated by currently approved immune
checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism.
Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy
response. The metabolic reprogramming caused by targeting these proteins is essential in under-
standing immune-related adverse events and therapeutic resistance. This can provide valuable
information for potential biomarkers or combination therapy strategies targeting metabolic pathways
with immune checkpoint blockade to enhance patient response.

Keywords: immunometabolism; immune checkpoint blockade; metabolism; bioenergetics; diet;
immune-related adverse events

1. Introduction

Immune checkpoint proteins are targets of significant interest for cancer therapeutics
to enhance T cell antitumor function. Immune checkpoints proteins consist of immuno-
suppressive and stimulatory signals to regulate self-tolerance and support immune re-
sponses [1]. The activation of inhibitory immune checkpoint proteins, such as cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and
programmed death-ligand 1 (PD-L1), impairs the T cell ability to activate, recognize and
eliminate cancer cells, allowing uncontrolled cancer growth by bypassing antitumor im-
mune surveillance. Alternatively, activating stimulatory immune checkpoint proteins, like
CD28, inducible costimulator (ICOS), glucocorticoid-induced TNFR-related protein (GITR),
and 41BB, enhance T cell activation and antitumor function. Several antagonist therapies for
inhibitory immune checkpoint protein have been FDA approved for various cancers, while
agonist therapies for stimulatory immune checkpoint proteins are still under investigation
with several therapies in clinical trials. Although these therapies are revolutionary for
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cancer treatment, a subset of patients do not respond. Treatment is also frequently com-
plicated by the development of immune-related adverse events (irAE). Therefore, further
understanding of immune checkpoint proteins and the impact of their respective targeted
therapies is essential to improve therapeutic response and patient survival.

The metabolic state of a T cell is dependent on its respective phenotype and function.
Naïve T cells undergo oxidative phosphorylation but shift to aerobic glycolysis when
differentiating into cytotoxic (CD8+) T cells [2–5]. Mitochondria increase in mass and
fission while cristae formation decreases to maintain the integrity of CD8+ T cells and
their effector function during glycolysis [5,6]. Although aerobic glycolysis is less energy
efficient, it produces the necessary precursors to support their high rates of proliferation
and cytokine production [2–4]. Alternatively, T cells differentiating to a memory phenotype
shift to fatty acid oxidation with an increased mitochondrial spare respiratory capacity
to support prolonged energy production [7,8]. There is metabolic competition within the
tumor microenvironment with T cells, specifically CD8+ T, and cancer cells, as they both
undergo aerobic glycolysis, more commonly known as the Warburg effect, to produce
energy [9]. Due to nutrient competition created by cancer cells, CD8+ T cells cannot con-
sume the necessary nutrients to sustain their bioenergetic processes, leading to decreased
mitochondrial mass, remaining in an inactivated state with an exhausted phenotype and no
antitumor cytolytic activity [6]. Therefore, maintaining the integrity of T cell metabolism,
specifically in the tumor microenvironment, is essential to their antitumor functionality.

The metabolic reprogramming associated with immune checkpoint proteins is es-
sential to understand the development of resistance and immune-related adverse events
(irAE). Furthermore, it can provide valuable information for potential biomarkers or tar-
geted metabolic therapies combined with immune checkpoint therapies to enhance patient
response and survival. This review will focus on the metabolic reprogramming of immune
and cancer cells due to inhibitory and stimulatory immune checkpoint protein activation
and its beneficial and/or detrimental effects on antitumor activity. Additionally, we will
explore the impact of diet and the microbiome on the bioenergetics of immune cells and
response to immune checkpoint therapies.

2. Metabolic Effects of Inhibitory Immune Checkpoint Protein Activation on
Immune Cells

PD-1 (CD279) and CTLA-4 (CD152) are inhibitory checkpoints of T cell responses [10,11].
PD-1 is often known for its interaction and activation with the ligands PD-L1/PD-L2, while
CTLA-4 interacts with the receptor CD80/CD86 (B7-1/B7-2) [11–13]. The activation of
these inhibitory immune checkpoint proteins alters metabolism within T cells, which can
impact their phenotype and respective function (Figure 1). Interestingly, inhibitory im-
mune checkpoint proteins are also expressed and activated on other immune cells, like
macrophages and dendritic cells, altering their metabolism and functionality (Figure 1A).

The FDA has developed and approved several therapies to block immune checkpoint
proteins. Ipilimumab, a monoclonal antibody that targets CTLA-4, was first approved by
the FDA for the use of metastatic melanoma patients [14]. This propelled the development
and approval of nivolumab and pembrolizumab, monoclonal antibodies that target PD-
1 [12,13]. This section of the review will focus on the metabolic reprogramming associated
with activating inhibitory immune checkpoint proteins on both T cells and other immune
cells; and how immune checkpoint blockade therapies potentially regulate cell bioenergetics
to enhance antitumor immune responses.

2.1. Effector T Cells

When PD-1 interacts with PD-L1, the immunoreceptor tyrosine-based switch motif
(ITSM) of PD-1 becomes phosphorylated. Src homology region 2 domain-containing
phosphatase-2 (SHP2) is recruited to dephosphorylate molecules involved in T cell receptor
(TCR) activation [15,16]. Alternatively, CTLA-4 differentially inhibits T cell activation
distinct from PD-1 [17]. CTLA-4 has a higher affinity to CD80/CD86 than CD28, the T
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cell costimulatory receptor, inhibiting TCR signaling [18,19]. Once CTLA-4 is bound to
CD80/CD86, CD28 PI3K/Akt signaling is inhibited (Figure 1C) [20,21]. Therefore, both
CTLA-4 and PD-1 activation inhibit T cell activation and impair effector T cells cytotoxicity
against cancer cells.
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Figure 1. Immune checkpoint proteins regulate metabolic signaling on T cells. (A) Interactions
with cancer or antigen-presenting cells can modulate T cell metabolism (B) PD-L1 binding to PD-1,
regulates fatty acid oxidation on T cells and limits glutamine metabolism by reduction of SNAT1/2
(C) Activation of CTLA-4 inhibits glycolysis within activated effector T cells inhibiting PI3K/AKT
signaling, reduction of glucose uptake by inhibition of GLUT-1.

Aside from inhibiting activation, PD-1 ligation can alter metabolism within effector
T cells. PD-1 ligation on CD4+ T cells inhibits the costimulatory receptor, CD28, from
phosphorylating and activating PI3K [17]. Therefore, the necessary PI3K/Akt/mTOR
signaling pathway that regulates cellular glycolysis is not activated (Figure 1B) [17]. Ex-
pression of transporters that support the cellular intake of glucose are decreased as well
as hexokinase activity, these changes are associated with a shift from glycolysis to fatty
acid oxidation (Figure 1) [22]. Alternatively, CTLA-4 differentially inhibits effector T cell
activation through a separate pathway than PD-1 [17]. Activation of CTLA-4 inhibits
glycolysis within activated CD4+ T cells but does not shift the cells to fatty acid oxidation
(Figure 1C) [22]. Instead, the cells remain in a quiescent state with little to no activity [22].

In addition to the pathways discussed above, tryptophan metabolism by the enzyme
indoleamine 2, 3-dioxygenase 1 (IDO1) may be involved in regulating immune checkpoint
proteins. IDO1 conversion of tryptophan to kynurenine is implicated in immunosup-
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pression in the tumor microenvironment and resistance to immune checkpoint blockade
therapy [23]. In tumor-infiltrating T cells, kynurenine binding to the aryl hydrocarbon
receptor (AHR) regulates PD-1 expression by AHR binding to xenobiotic response element
(XRE) motifs in the promoter region of PD-1 [24]. On the other hand, CTLA-4 interac-
tion with CD80/CD86 regulates tryptophan metabolism as a potential mechanism for
maintaining peripheral tolerance [25].

Metabolic reprogramming occurring during T cell activation depends on interactions
between the endoplasmic reticulum (ER) and mitochondria. These interactions are structurally
and functionally modulated through tethering formed at specific subdomains of the ER
membrane and mitochondrial-associated membranes (MAMs) [26,27]. This tethering role
of the MAMs regulates glucose sensing, lipid synthesis, and rapid release of calcium (Ca2+)
signals. Disruption of this process impairs activation leading to functionally anergic T cells,
which cannot flux Ca2+ and activate Nuclear Factor of Activated T cells (NFAT) [28–30]. The
T cell inability to flux Ca2+ properly is also associated with chronic expression of PD-1 [28].

ER stress is implicated in immune checkpoint therapy insensitivity due to cytotoxic T
cell dysfunction by several mechanisms, including the recruitment of myeloid suppressive
cells, transcription of inhibitory receptors, and metabolic exhaustion [29–32]. These effects
are partly mediated by ER stress canonical activation of the unfolded protein response
(UPR) pathway. In particular, PKR-like endoplasmic reticulum kinase (PERK; EIF2AK3)
activation results in an “exhausted-like” T cell phenotype linked to PD-1 expression in
CD8+ T cells [29]. Blockade of PERK alone was associated with increased T cell oxygen
consumption rate; furthermore, in vivo blockade of PERK enhanced the antitumor action
of anti-PD-1 blockade [29]. This suggests a mechanism to overcome therapeutic resistance
to immune checkpoint blockade by re-invigorating T cell bioenergetics.

2.2. Exhausted T Cells

Inflammation and chronic antigenic stimulation of T cells from the tumor microen-
vironment can cause T cells to differentiate into an exhausted phenotype with altered
metabolic activity [33]. Exhausted T cells have increased expression of inhibitory receptors
like PD-1 and CTLA-4 with decreased effector function and cytokine secretion [33–36]. The
action of PD-1 leads to a decrease in glucose consumption and a decrease in the rate of
glycolysis in T cells [31]. In the absence of glucose, short-chain fatty acids such as acetate
can serve as carbon sources, and supplementing acetate can restore interferon-gamma
(IFNγ) release on exhausted T cells, especially from CD8+ T cells with high expression of
PD-1 [37]. This suggests an alternate metabolic pathway involved in response to immune
checkpoint inhibition.

Additionally, PD-1 activation decreases PPAR-gamma coactivator 1α (PGC1α), a
transcription factor that controls mitochondria biogenesis [6,31]. Therefore, the T cell
will have diminished mitochondria biogenesis, function, and ability to undergo oxidative
phosphorylation [31]. This overall decrease in bioenergetics by T cells due to PD-1 activation
results in the differentiation of an exhausted phenotype. However, by targeting PD-1, AMP-
activated protein kinase (AMPK) and mTOR activate, resulting in amplified mitochondrial
biogenesis and oxidative phosphorylation due to increased PGC1α expression [38]. This
improvement of bioenergetics restores CD8+ T cell activation and proliferation [38].

Metabolic fitness is tightly linked to T cell exhaustion [31]. Terminally exhausted
tumor-infiltrating lymphocytes are characterized by accumulation of depolarized mito-
chondria due to lack of activation of mitophagy [39]. This accumulation of depolarized
mitochondria seems to be regulated by TCR and PD-1 signaling [39]. Consistent with these
findings, knockout of PD-1 on these cells reduced the population of depolarized mitochon-
dria suggesting that PD-1 signaling regulates mitochondria integrity and cell bioenergetics
status. In the same study, in vivo administration of nicotinamide riboside (NAD) improved
anti-PD-1 administration suggesting a mechanism to overcome the metabolic insufficiency
caused in part by PD-1 signaling.
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2.3. Memory T Cells

The shift to fatty acid oxidation promotes the differentiation of T cells to a memory
phenotype [7,8]. Fatty acid oxidation involves the catabolism of fatty acids to acetyl-
CoA, which will subsequently enter the citric acid cycle and oxidative phosphorylation
to produce ATP [40]. This type of metabolism supports prolonged survival and rapid
expansion [7,8]. When PD-1 is ligated on effector T cells, increased expression of carnitine
palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of fatty acid oxidation, and adi-
pose triacylglycerol lipase (ATGL), an enzyme involved in lipolysis, occurs (Figure 1B) [22].
This promotes lipolysis as indicated by increased free fatty acid and glycerol release [22].
Furthermore, ligation of PD-1 results in the inhibition of amino-acid transport by inhibiting
glutamine transporters SNAT1/2 [24]. This prevents metabolism of glutamine through
glutaminolysis which is known to support T cell activation [22,41].

Additionally, the mitochondrial spare respiratory capacity of these cells is increased [22],
which was observed in the clinic as tissue-resident memory T cells of gastric adenocar-
cinoma patients undergoing fatty acid oxidation have increased PD-1 expression [42].
CTLA-4 ligation also inhibits glycolysis by inhibiting glucose transporters such as GLUT-1
(Figure 1C). However, CTLA-4 activation does not amplify fatty acid oxidation through
CPT1A and ATGL like PD-1 activation, causing T cells to remain in an inactive, quiescent
state [22].

Although the longevity of these T cells is enhanced due to increased fatty acid oxida-
tion when PD-1 is activated, the amplification of fatty acid oxidation can result in increased
mitochondrial hydrogen peroxide production and total cellular reactive oxygen species
(ROS) [43]. This increase in ROS may lead to a decrease in the expression of anti-apoptotic
proteins, leading to apoptosis of T cells [43,44].

2.4. Macrophage and Dendritic Cells

Macrophage plasticity is associated with metabolic reprogramming. While macrophage
polarization is defined in a complex spectrum of differentiation, M1 macrophages tend to
favor glycolysis, whereas M2 macrophages tend to favor oxidative phosphorylation [45].
Inhibitory immune checkpoint proteins are expressed on other immune cells aside from T
cells [42,43]. It is reported that PD-1 and PD-L1 are expressed on macrophages; some re-
ports suggest that PD-L1 expression is increased in the M2-like phenotype [46,47]. Whether
the expression of these checkpoints is linked to metabolic reprogramming on macrophages
is not well understood. Within a hypoxic tumor microenvironment, PD-L1 expression
on macrophages and dendritic cells is mediated by the activation of the M2 isoform of
pyruvate kinase (PKM2) [44]. Pyruvate kinase is the final glycolysis enzyme that converts
phosphoenolpyruvic acid to pyruvate, with PKM2 associated with tumor progression and
metabolic reprogramming [45].

Additionally, ROS have been shown to upregulate PD-L1 expression on macrophages,
resulting in immunosuppressive activity [48]. Lipid metabolism and ROS production
are implicated in the immunosuppressive activity of myeloid-derived suppressor cells
(MDSCs) and response to anti-PD-L1. In two preclinical mouse models, inhibiting fatty acid
transport protein 2 (FATP2) enhanced PD-L1 blockade, which was due to a reduction in
lipid accumulation and ROS production. Additionally, there was a decrease in expression
of PD-L1 and an increase in CD107a [48], which is also known as lysosomal-associated
membrane protein-1 (LAMP-1) [49].

Alterations in UPR signaling can also impact immune checkpoint therapies due to
alterations in macrophage polarity. Melanoma patients who are non-responsive to anti-
CTLA-4 therapy have increased circulation of pro-tumorigenic and immunosuppressive
M2-like macrophages (CD206+) with increased UPR signaling [46]. This potentially impairs
the ability of the patient to respond to immune checkpoint blockade therapy, resulting in
disease progression [46]. Therefore, treating patients with immune checkpoint blockade in-
fluences T cell and other cell types metabolic signaling within the tumor microenvironment,
potentially impacting therapeutic responsiveness and resistance.



Cells 2022, 11, 179 6 of 22

3. Metabolic Effects of Stimulatory Immune Checkpoint Protein Activation on
Immune Cells

The activation of stimulatory immune checkpoint proteins plays essential roles in T cell
metabolism, proliferation, cytokine secretion, and survival [1]. Several clinical trials have
been or are currently being performed to target stimulatory immune checkpoint proteins to
promote antitumor responses and reduce tumor burden for various cancer patients [50].
While there are several stimulatory immune checkpoint proteins in this review, we focus
on CD28, ICOS, GITR, and 4-1BB due to the effects on metabolism and clinical stage of
agonist drugs.

3.1. CD28

CD28 is a widely studied costimulatory receptor that recognizes CD80/CD86 on
antigen-presenting cells [51]. As a critical regulator of T cell metabolism, CD28 promotes
PI3K/Akt/mTORC1 pathway activation to increase glucose and mitochondrial metabolism,
resulting in increased T cell proliferation and effector function (Figure 2A) [52].
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As the CD28-CD80/CD86 signaling axis is a main stimulatory immune checkpoint,
great interest was given to modulating its activity using a superagonist monoclonal anti-
body to increase T cell function for the treatment of autoimmune, inflammatory diseases,
and cancer [53]. Preclinical studies in mice and rats using TGN1412 (CD28 superagonist)
showed promising results; however, in a Phase I clinical trial, all six healthy volunteers
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experienced a life-threatening systemic release of proinflammatory cytokines, commonly
referred to as a cytokine storm [54]. Due to the unexpected outcome, clinical trials involving
the CD28 superagonist were immediately terminated [55].

3.2. Inducible Costimulator (ICOS)

Although targeting CD28 resulted in severe side effects, several other stimulatory
immune checkpoint proteins are of interest. They promote immune function through alter-
ations of metabolic processes and show promising preclinical results for cancer treatment.
ICOS is a member of the CD28 family of costimulatory molecules and is upregulated on
the surface of T cells following T cell activation and upon binding to its ligand (ICOSL)
on antigen-presenting cells [56]. ICOS promotes T cell proliferation, T helper 2 (Th2) dif-
ferentiation and directly modulates metabolism [57]. During T follicular helper (Tfh) cell
differentiation, ICOS ligation promoted glucose uptake and metabolism through mTOR
activation [58]. ICOS activated mTORC1/mTORC2 to drive glucose transporter-1 (GLUT-1)
mediated glucose metabolism and lipogenesis to promote Tfh cell response (Figure 2B) [59].
Deficiency of mTORC1/mTORC2 reversed these effects and impaired CD4+ T cell accumu-
lation and immunoglobulin A production [59].

There are currently two clinical trials studying the drug GSK3359609, an ICOS receptor
agonist antibody, intended to treat solid tumor cancers [60,61]. The first clinical trial is
a Phase I dose-escalation and expansion study to investigate the safety, pharmacology,
and preliminary antitumor activity for patients with advanced solid tumors [60]. The
second clinical trial is a Phase II study conducted in non-small cell lung cancer patients.
This trial aims to compare the clinical activity of novel regimens, including GSK3359609,
in combination or as a single agent for the standard of care for non-small cell lung can-
cer patients [61]. Regarding safety, preliminary results report that the safety profile of
GSK3359609 in combination with chemotherapy is manageable as most adverse events
were grades 1 or 2 and consistent with known chemotherapy toxicities [62].

3.3. Glucocorticoid-Induced TNFR-Related Protein (GITR)

GITR is a member of the tumor necrosis factor receptor (TNFR) family highly expressed
on T regulatory (Treg) cells and present on effector T lymphocytes, natural killer cells,
and neutrophils [63,64]. GITR is activated by its ligand, GITRL, mainly expressed on
antigen-presenting and endothelial cells [65]. GITR activation on effector T cells generates a
positive costimulatory signal and promotes T cell activation and proliferation; however, the
activation of GITR on Treg cells abolishes their suppressive function in cancer settings [66].
GITR agonists increase metabolism to support CD8+ T cell proliferation and effector
function by upregulating nutrient uptake, lipid stores, glycolysis, and oxygen consumption
rate (Figure 3C) [67]. Although GITR stimulation primarily enhances the proliferation
of Treg cells, several studies suggest that may not be the case in the context of cancer;
instead, GITR agonists reduce tumor growth by increasing effector T cells and reducing
Treg cells [68–70].

A Phase I/II clinical trial is currently in progress to determine possible side effects
and optimal dose of a GITR agonistic monoclonal antibody (BMS-986156). In addition,
BMS-986156 will be given together with ipilimumab and nivolumab, with or without
stereotactic body radiation, to evaluate efficacy in patients with lung/chest or liver cancer
that has metastasized [71].
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3.4. 4-1BB

4-1BB/CD137 is a member of the TNFR family of costimulatory receptors and is
expressed on activated CD4+ and CD8+ T cells [72]. 4-1BB acts as a potent costimulator
of T cells, increasing T cell proliferation and expansion and promoting a memory-like
phenotype [73]. Additionally, several studies show that 4-1BB agonists promote T cell
metabolic reprogramming. Choi et al. demonstrated that a 4-1BB agonist increased T
cell glucose and fatty acid metabolism, in part by enhancing GLUT-1 expression and
activating the liver kinase B1 (LKB1)/AMPK/acetyl-CoA carboxylase (ACC) signaling
pathway (Figure 2D) [74]. Menk et al. found that 4-1BB costimulation enhanced CD8+ T
cell mitochondrial capacity and increased transcription of energy metabolism genes by
activating p38-MAPK [75].

Currently, CD19-targeted chimeric antigen receptor T cells containing a 4-1BB costim-
ulatory domain are FDA approved to treat B-cell pediatric leukemia and refractory B-cell
lymphoma [76]. However, over 15 active or recruiting clinical trials are investigating using
4-1BB agonistic monoclonal antibodies in cancer patients [77]. Initial trials using urelumab
showed promising results as a single agent in patients with advanced cancer. However, tri-
als had to be terminated because of severe adverse effects, including liver inflammation [78].
Due to previous results, current studies have drastically reduced the dose and evaluated
urelumab effects in combination with other immune-modulating agents [77]. In contrast,
utolimumab has no dose-limiting toxicities and shows preliminary antitumor activity in
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patients with advanced cancer; however, utolimumab is a weak 4-1BB agonist with little
efficacy as a monotherapy and is now in clinical trials involving combination therapy to
increase effectiveness [79]. Phase 1 clinical trials combining utolimumab with rituximab
in patients with relapsed or refractory non-Hodgkin’s lymphoma and utolimumab with
pembrolizumab in patients with advanced solid tumors have demonstrated tolerability,
safety, and preliminary clinical activity [79,80].

4. Metabolic Effects of Immune Checkpoint Protein Activation on Cancer Cells

Cancer cells often overexpress the immune checkpoint protein PD-L1 (CD274). PD-L1
is commonly known for its interaction with PD-1, limiting T cell antitumor function as
discussed above. However, PD-L1 can also alter the metabolism of cancer cells and nu-
trient availability in the tumor microenvironment, impacting T cell antitumor function.
Atezolizumab, avelumab, and durvalumab are FDA-approved monoclonal antibodies
that target PD-L1 for various cancers, including melanoma, non-small cell lung cancer,
urothelial carcinoma, and metastatic triple-negative breast cancer [81–83]. Additionally,
it has recently been discovered that cancer cells can also express PD-1, resulting in the
reprogramming of cancer cell metabolism [84].

4.1. Metabolic Alterations of Cancer Cells Associated with PD-L1 Signaling

Cancer cells undergo aerobic glycolysis as their primary energy source, resulting in
increased glucose uptake and depletion of glucose from the tumor microenvironment [85].
When PD-L1 was targeted with a monoclonal antibody, a decrease in glycolysis was
observed in various cancer cells (Figure 3A,B) [86]. This is due to the inactivation of
the PI3K/Akt/mTOR pathway and the translation of glycolytic enzymes that regulate
glycolysis within these cells [86]. The decrease in glycolysis by the cancer cell may result in
increased availability of glucose in the tumor microenvironment that can be used by T cells
to sustain their effector phenotype and antitumor function [86].

Due to the high proliferation rate by cancer cells, an abundance of lipid biomass pre-
cursors is essential to support the formation of membranes of newly proliferating cells. An
integral component of membranes is phosphatidylcholine, resulting in cancer cells’ over-
expression of choline kinase alpha (Chk-α) [87]. Chk-α is an enzyme that phosphorylates
choline to phosphocholine, subsequently increasing choline metabolism and the availability
of choline-containing compounds. PD-L1 and Chk-α have been shown to have an inverse
relationship that impacts lipid metabolism and immunosuppression [88]. Targeting PD-L1
increased phosphocholine due to the increase in Chk-α, potentially providing precursors
to support proliferation through membrane formation [88]. However, when PD-L1 and
Chk-α are targeted in combination, these changes were attenuated as no metabolic changes
were observed [88]. Therefore, PD-L1 regulates cancer cell metabolism through Chk-α, and
targeting both PD-L1 and Chk-α in combination may be beneficial to enhance antitumor
immune cell surveillance to improve response to immune checkpoint blockade therapy.

In another set of studies, PD-L1 blockade was associated with lipid peroxidation in
tumors, increasing ferroptosis [89,90]. Ferroptosis is a form of cell death characterized
by activation of iron-dependent lipid peroxidation [90]. The mechanism implicated IFNγ

release from CD8+ T cells which downregulates SLC3A2 which mediates the exchange of
extracellular cystine and intracellular glutamate. In the study, treatment with anti-PD-L1
resulted in limitation of cancer cell cysteine uptake and glutamate release, subsequently
stimulating lipid peroxidation and ferroptosis [90]. The activation of ferroptosis was linked
to enhanced CD8+ T cell ant-tumor immunity resulting in better tumor clearance with
immune checkpoint blockade [90].

The observed upregulation of PD-L1 under hypoxia can also result in its translocation
to the nucleus resulting in a switch from apoptosis to pyroptosis in cancer cells [91].
Pyroptosis is a form of cell death characterized by the gasdermin C (GSDMC) mediated
cleavage of caspases [91]. In hypoxic conditions, p-Stat3 interacts with PD-L1, facilitating
translocation to the nucleus and subsequently enhancing GSDMC transcription [91]. In
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macrophages, metabolites of the TCA cycle, such as fumarate, regulate pyroptotic cell
death. Experiments show that dimethyl fumarate causes the succination of gasdermin
D [92], preventing its interaction with caspases limiting pyroptotic cell death [92]. While it
is unknown that PD-L1 directly regulates this process, the succination of gasdermin could
play a potential role in response to anti-PD-L1 therapy.

Additionally, several immunosuppressive metabolites like lactate, glutamate, S-methyl-
5′-this adenosine (MTA), or glutamine were increased when PD-L1 was targeted along with
the cytokines Transforming growth factor-β (TGF-β) and Cyclooxigenase-2 (COX-2) [88].
These metabolites have previously been examined to impair immune cell antitumor func-
tion in the tumor microenvironment [93–96].

4.2. Metabolic Alterations by PD-1 on Cancer Cells

A lesser-known aspect of PD-1 is its expression on cancer cells. In over thirty types
of cancer, the gene that encodes for PD-1, PDCD1, has been found [84]. PD-1 expression
on these cancer cells may suppress proliferation as a decrease in Akt and ERK1/2 activity
was observed (Figure 3C) [84]. Therefore, when therapies were delivered to target PD-1,
enhanced cancer cell growth was observed as Akt, and ERK1/2 activity was no longer
suppressed [84]. It is evident from these studies the impact the activation and blockade of
PD-1 can have on both T cells and cancer cells.

4.3. Regulation of PD-L1 Expression by Metabolic Pathways

The protein level expression of PD-L1 in cancer cells seems to be regulated by various
factors (Figure 4). PD-L1 protein levels (but not mRNA) were downregulated in human
and mouse cancer cells subjected to glucose starvation which was linked to activation
of AMPK (Figure 4A) [97]. Furthermore, AMPK phosphorylation of PD-L1 results in its
degradation by autophagy. In the same study, inhibition of glycolysis with 2-DG resulted
in the activation of AMPK and downregulation of PD-L1 [97].
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In vitro and in vivo studies using renal cancer cell lines have indicated that glutamine
depletion upregulates PD-L1 protein expression (Figure 4B) [98]. This is due to the acti-
vation of EGFR signaling through the mitogen-activated protein (MAP) kinase signaling.
Inhibitors of EGFR and proteins of the MAP kinase protein ERK and C-Jun downregu-
lated PD-L1 expression suggest that PD-L1 expression is subjected to regulation by this
pathway [98]. Furthermore, it is reported that fatty acid synthase (FASN) expression
in a leukemia cell line is linked to an increase in PD-L1 expression, suggesting an im-
munosuppressive role of fatty acid synthesis [99]. Orlistat treatment, which decreases
FASN, decreased PD-L1 expression [99]. Thus, suggesting a potential strategy to overcome
immunosuppression and overcome resistance to immune checkpoint therapies.

Hypoxia is a common characteristic amongst solid tumors due to their tortuous
vasculature and increased oxygen consumption by cancer cells undergoing aerobic gly-
colysis [100]. Cancer cells must adapt to the hypoxic tumor microenvironment to sustain
metabolic processes to support their high proliferation rates and survival by shifting from
the oxygen-dependent mitochondrial oxidative phosphorylation to glycolysis [101]. Pre-
vious data has shown that patients with hypoxic tumors often have low response rates
to immune checkpoint blockade therapies and decreased overall survival [102–105]. This
may be due to impaired T cell activation, proliferation, cytokine production, and cytolytic
capacity from the lack of oxygen [106–110]. Therefore, improving oxygenation within
tumors may enhance immune checkpoint blockade therapy response. Cancer cells also
stabilize and accumulate hypoxic responsive factors (HIF) within the tumor microenvi-
ronment, which will bind to hypoxia response elements (HRE) in the promoter region
of hypoxia-responsive genes like PD-L1 (Figure 4B) [111,112]. With the upregulation of
PD-L1 expression on cancer cells, T cell effector function inhibition can occur due to PD-1
interaction [112,113]. Therefore, hypoxia may be a marker of immune checkpoint blockade
response, and the oxidative metabolism of tumors impacts the ability of T cells to respond
to immune checkpoint blockade therapy due to increased PD-L1 expression.

5. Impact of Diet and the Microbiome on Immune Checkpoint Blockade Response

Dietary intake impacts host metabolism and thus is implicated in carcinogenesis.
Dietary intake, obesity, and microbial-derived metabolites can alter immune checkpoint
protein expression, immune cell metabolism, and subsequent response to immune check-
point blockade. Therefore, the role of diet and its impact on immune checkpoint signaling
remains an active area of study to improve outcomes in cancer patients.

5.1. Dietary Interventions

Several dietary interventions have been examined to test response to immune check-
point blockade. A high fiber diet is implicated in immune checkpoint response regulation.
This may be partly due to the bacterial processing of fiber and the production of short-
chain fatty acids such as acetate and butyrate that, as discussed above, influence immune
cell differentiation and function [114]. The ketogenic diet is associated with anticancer
effects, specifically by enhancing antitumor immunosurveillance by reducing the percent-
age of CD8+ T cells positive for PD-1, CTLA-4, and reducing PD-L1 expression on tumor
cells [115]. It is reported that mice fed a ketogenic diet have better responses to anti-PD-1
therapy. In the same study, feeding mice 3-hydroxybutyrate caused a similar anticancer
effect associated with ketogenic diet consumption. In vivo T cell depletion experiments
in mice reversed the antitumor effects of a ketogenic diet, implicating that the metabolic
effect of diet enhanced antitumor immunosurveillance due in part to immune checkpoint
protein expression regulated by diet [116]. Other studies have found that the ketogenic diet
was associated with downregulated PD-L1 protein levels in a murine model of colorectal
cancer. In vitro experiments in low-glucose culture media supplemented with the ketone,
body β-hydroxybutyrate demonstrated that the changes in PD-L1 expression were not
regulated by ketone body supplementation but were due to the low levels of glucose in
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media [97]. Furthermore, the mechanism for PD-L1 downregulation was mediated by
AMPK phosphorylation of PD-L1 and subsequent degradation by autophagy [97].

Caloric restriction diets are also implicated in response to immune checkpoint therapy.
In an animal study, caloric restriction by fasting or using caloric restriction mimetics
enhanced anti-PD-1/PD-L1 antibody response when combined with agents known to
induce immunogenic cell death [117]. It is thought that fasting or caloric restriction mimetics
can facilitate the release of ATP from dying cells, which stimulates an innate antitumor
immune response. However, calorie restriction also was shown to affect tumor-infiltrating
lymphocytes, which is characterized by the reduction in nucleocystosolic acetyl CoA and
activation of autophagy. This results in a signaling cascade that increases T cell stemness
resulting in enhanced antitumor immunity [118].

5.2. Obesity

Prolonged over-nutrition can cause obesity with anatomic and functional abnormal-
ities in adipose tissue leading to altered metabolic homeostasis and adipokine produc-
tion [119–121]. The link between obesity is the progression of several types of cancer is well
established; however, clinical studies show a paradoxical relationship between obesity and
immune checkpoint blockade response [122]. In a study of metastatic melanoma treated
with targeted immune checkpoint blockade, obese patients were found to have improved
progression-free and overall survival compared to non-obese patients [123]. These obser-
vations have been primarily observed in male patients with a non-specific link in female
patients [123]. In a preclinical study of breast cancer, the anti-PD-1 treatment effect on
tumor growth was augmented in obese mice compared to lean [122]. This study found that
this might be partly due to increased microbiome diversity, consistent with clinical studies
examining microbiota influence on immune checkpoint therapy response [122,124]. While
the mechanisms remain to be elucidated, it is evident that host metabolism and microbiota
influence immune checkpoint blockade therapeutic responsiveness.

5.3. Microbiome

While highly dependent on geographical location, cancer type, and treatment type,
studies analyzing the gut microbiome populations of patients prior to immune checkpoint
blockade initiation have correlated microbes with responsiveness identifying a consortium
of immunotherapy responder associated microbes (Table 1) [124–128]. Suggesting the pos-
sibility of microbiota-based therapeutic strategies to modify immune checkpoint signaling
and responsiveness.

Studies of psoriasiform dermatitis in mice suggest that feeding a Western diet increases
PD-1 expression on gamma-delta low T cells in the skin compared to control diet-fed
mice [129]. Another mechanism by which diet could regulate immune checkpoint protein
signaling is modulation of the microbiome. Investigating immune checkpoint blockade
response mediators in different cancer types shows that the gut microbiome regulates im-
mune checkpoint blockade responsiveness by pre-programming the immune system. The
elevated probiotic or commensal gut microbiome is associated with PD-1 responsiveness in
numerous cancer types; Prevotella in gastrointestinal cancer, Akkermansia muciniphila with
non-small cell lung cancer, and renal cell carcinoma, Bifidobacterium longum in non-small
cell lung cancer, and Lactobacillus metastatic melanoma [128–132].

Whether there is a direct link between specific microbial species-mediated immune
checkpoint protein expression regulation remains to be explored; however, it is known that
the microbiota can regulate tryptophan processing [133]. As discussed above, the binding
of tryptophan metabolites to the AHR receptor can regulate PD-1 expression. Therefore,
the regulation of tryptophan by microorganisms and its effect on metabolism could link to
immune checkpoint protein expression regulation.
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Table 1. Clinical studies investigating gut microbiome correlations with immune checkpoint blockade
therapy responsiveness. Cancers: NSCLC: non-small cell lung carcinoma, RCC: renal cell carcinoma,
GI: gastrointestinal. Treatments: I: Ipilimumab, N: Nivolumab, P: Pembrolizumab, A: Atezolizomab.

Cancer Study Size Geographical
Location Treatment Microbiota Associated with

Favorable Response Reference

Melanoma N = 39 Texas, USA
I, N, I+N, P (all)

IN
P

B. caccae
F. prausnitzii, B. thetaiotamicron

D. formicogenerans

Frankel et al., 2017
[126]

NSCLC and
RCC N = 100 Paris, France N Akkermansia muciniphilia Routy et al., 2018

[125]

Melanoma N = 42 Illinois, USA I, N, or P
Bifidobacterium longum,

Collinsella aerofaciens, and
Enterococcus faecium

Matson et al., 2018
[127]

Melanoma N = 53 Texas, USA N or P Faecalibacterium prausnitzii Gopalakrishnan
et al., 2018 [124]

NSCLC N = 37 Shanghai, China N
Alistipes putredinis,

Bifidobacterium longum, and
Prevotella copri

Jin et al., 2019 [130]

GI N = 74 Beijing, China I, N, P, or A
Prevotella/Bacteroides ratio,

Lactobacillus,
Akkermansia muciniphilia

Peng et al., 2020
[128]

6. Metabolism and Immune-Related Adverse Events (irAEs) Associated with Immune
Checkpoint Blockade Therapy

The role of immune cell metabolism and the onset of irAE due to immune check-
point blockade therapy is currently under investigation; however, the potential role of
bioenergetics and irAE can be extrapolated from studies in autoimmune diseases. Autoim-
mune disease is characterized by dysregulation of the immune system and an immune
response against autologous tissues due to a lack of self-tolerance. Blocking the pathway
associated with immune checkpoint proteins can lead to impaired tolerance and the devel-
opment of autoimmunity. The role of PD-1/PD-L1 in peripheral tolerance was first noted
in PD-1 deficient mice that developed autoimmunity, including lupus-like symptoms and
immune-mediated dilated cardiomyopathy [131,134].

T helper 17 (Th17) cells are a unique lineage of proinflammatory effector and memory
T helper cells that play a prominent role in the pathogenesis of systemic lupus erythemato-
sus (SLE), rheumatoid arthritis (RA), psoriasis, multiple sclerosis (MS), and inflammatory
bowel disease (IBD) by activation of pathogenic CD4+ and CD8+ T cells [132,135–137]. As
described earlier, effector T cells are dependent on nutrients derived from the microenviron-
ment. T cells for these diseases have a unique altered T cell metabolic signature systemically
and locally at the tissue level [138–140]. Glycolysis is a major metabolic pathway involved
in Th17 responses that serve as a metabolic checkpoint for Th17 and Treg cell differentiation.
When glycolysis is inhibited, Th17 development is decreased, and the growth of Treg cells
is promoted [141]. In an experimental autoimmune encephalomyelitis MS mouse model, an
increase in degradation of GLUT-1 containing vesicles was shown to decrease the severity
of encephalomyelitis [142]. T cells from patients with SLE have increased mitochondria
fission, which functions to mitigate mitochondrial stress and reduce the creation of new
mitochondria through mitochondrial fusion [143]. In addition, T cells have increased ox-
idative phosphorylation and aerobic glycolysis associated with producing excess levels of
ROS and defective lipid metabolism [144]. On the same line, hypoxia is known to regulate
differentiation of Th17 lineage and Treg cells, where the lack of HIF-1 was associated with
increased gene expression of CTLA-4 [141]. Altered lipid metabolism and serum total
fatty acid profile changes are observed in individuals with autoimmune disease [145,146].
Although it is unclear how a modified lipid profile promotes autoimmunity, long-chain
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fatty acids have been shown to enhance the differentiation of Th1 and Th17 cells [147].
Patients who consume low-fat diets and are treated with statins have a decrease in the
severity of the autoimmune disease [148].

There are several cases of autoimmune diabetes with the treatment of immune check-
point inhibitors. It is reported that hyperglycemia is associated with checkpoint blockade
and can occur in up to approximately 5% of treated patients [149]. Furthermore, in patients
with diabetes, the use of immune checkpoint blockades can worsen glucose control, in
particular, PD-1/PD-L1 therapies, as PD-L1 is expressed on pancreatic beta cells. While
the onset of hyperglycemia may not require treatment cessation, in some cases, immune
checkpoint blockade can result in rapid ketosis. Thus, monitoring glucose levels in pa-
tients undergoing treatment is warranted [149]. These studies begin to provide insight
into irAE that can develop due to immune checkpoint blockade therapy for patients with
autoimmune disease, providing a foundation to continue to examine alternative treatment
regimens and treatments to reduce irAE for cancer patients.

7. Clinical Perspective of Immune Checkpoint Blockade Therapy

One of the top challenges in cancer immunotherapy is “understanding the molecular
and cellular drivers of primary vs. secondary immune escape to checkpoint blockade
therapies” [150]. This includes understanding how metabolic signaling in the tumor mi-
croenvironment impacts immune checkpoint protein expression and whether these proteins
induce signaling to regulate cellular metabolism. This could potentially lead to finding
targetable options to potentiate immune checkpoint blockade or enhance costimulatory
receptor signaling to increase therapeutic responsiveness.

Preclinical and clinical trials have identified metabolic targeting drugs with the po-
tential to enhance the efficacy of immune checkpoint blockade therapy [151,152]. The
synergism of immune checkpoint blockade therapy combined with metformin against tu-
mor burden has been demonstrated in preclinical studies [153–155]. This is potentially due
to the inhibition of the oxygen consumption of tumor cells, which would reduce hypoxia
in the tumor microenvironment [156]. Presumably, this reduction in hypoxia would shift
nutrient availability in the tumor microenvironment facilitating metabolic reprogramming
of T cells and response to immune checkpoint blockade therapies [151].

Some trials have revealed encouraging results using metformin and immune check-
point blockade. In a trial of 55 metastatic melanoma patients, a cohort of patients treated
with ipilimumab, nivolumab, and or pembrolizumab combined with metformin had a
68.2% overall response rate when compared to 54.5% overall response rate in patients with
the same immune checkpoint blockade treatment without metformin [157]. Furthermore,
an increase in overall survival of 46.7 vs. 28 months and progression-free survival of
19.8 vs. 5 months were observed with the addition of metformin to the immune checkpoint
blockade regimen; however, these results did not reach statistical significance, possibly
due to small sample size [157]. Not all studies have demonstrated enhanced antitumor
activity. A meta-analysis of clinical trials reported that the addition of metformin to im-
mune checkpoint blockade regimens did not impact patients’ overall and progression-free
survival [153]. The antitumor and immune effects of metformin are complex. Dosing and
scheduling can have profound effects, and the challenges lie in determining optimal treat-
ment regimens [158]. Furthermore, the impact of metformin on immune checkpoint protein
expression should be further elucidated as studies have shown that metformin inhibits
PD-L1 by endoplasmic reticulum-associated protein degradation in breast cancer cells [154].

As discussed earlier, the activation of IDO is critical in regulating immunosuppression
in the tumor microenvironment. Small molecule inhibitors to IDO aim to halt the conversion
of tryptophan to the immunosuppressive metabolite kynurenine, which have been studied
in clinical trials in combination with immune checkpoint blockade therapy with mixed
results [155]. Additionally, ATP release from chemotherapy-treated leukemia cells is shown
to induce IDO-1, causing increases in Tregs and tolerogenic dendritic cells that can limit
response to immune checkpoint blockade [159].
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Phase I/II clinical trials with the IDO inhibitor, epacadostat, in combination with
pembrolizumab showed encouraging results [160]; however, the combination treatment
failed to improve in phase III clinical trial pembrolizumab efficacy [161]. Another IDO
inhibitor, indoximod, showed a modest objective response rate in combination with PD-
L1 in melanoma patients compared to treatment alone. Indoximod acts downstream of
IDO1 to stimulate mTORC1, possibly acting through a different mechanism from other
IDO inhibitors [162]. Further studies are needed to test the efficacy of IDO modulators in
combination with immune checkpoint blockade therapy.

Another challenge is finding biomarkers of response, secondary resistance, and toxicity
to guide treatment decisions. Metabolic determinants, including the IDO pathway, may
prove helpful as a biomarker of immune checkpoint blockade therapy response. Clinical
studies have found that the ratio of kynurenine to tryptophan in serum is associated with
therapeutic resistance and worst survival to nivolumab [23]. Microbiota-derived short-
chain fatty acid acids such as butyrate have been shown to limit CTLA-4 response in mouse
models [163]. In the same study, patients who responded to anti-CTLA-4 therapy had low
butyrate concentrations at baseline and higher CD4+ memory T cells than patients with
elevated serum butyrate [163]. This data suggests that circulating metabolites could be
useful in predicting responses to immune checkpoint blockade. Whether that is the case
remains to be seen.

It is evident from the studies discussed above that the activation of both inhibitory and
stimulatory immune checkpoint proteins can have a drastic alteration to both immune and
cancer cell bioenergetics. This metabolic reprogramming can enhance or impair immune
cell antitumor function and disease progression. Although antagonist and agonist therapies
have been created to target immune checkpoint proteins and restore antitumor immune cell
metabolism and function, several factors like diet and the microbiome can impact patient
therapeutic response. Therefore, further research is needed to determine biomarkers and
other targetable therapeutics combined with immune checkpoint therapies to improve
patient response and survival.
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