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Recent evidence suggests that splicing factors (SFs) and alternative splicing (AS) play
important roles in cancer progression. We constructed four SF-risk-models using
12 survival-related SFs. In Luminal-A, Luminal-B, Her-2, and Basal-Like BRCA, SF-
risk-models for three genes (PAXBP1, NKAP, and NCBP2), four genes (RBM15B,
PNN, ACIN1, and SRSF8), three genes (LSM3, SNRNP200, and SNU13), and three
genes (SRPK3, PUF60, and PNN) were constructed. These models have a promising
prognosis-predicting power. The co-expression and protein-protein interaction analysis
suggest that the 12 SFs are highly functional-connected. Pathway analysis and gene set
enrichment analysis suggests that the functional role of the selected 12 SFs is highly
context-dependent among different BRCA subtypes. We further constructed four AS-risk-
models with good prognosis predicting ability in four BRCA subtypes by integrating the
four SF-risk-models and 21 survival-related AS-events. This study proposed that SFs and
ASs were potential multidimensional biomarkers for the diagnosis, prognosis, and
treatment of BRCA.

Keywords: breast cancer, TCGA database, prognosis, splicing factor, alternative splicing

Edited by:
Long Gao,

University of Pennsylvania,
United States

Reviewed by:
Cai Chen,

Merck, United States
Ruoyu Zhang,

Regeneron Pharmaceuticals, Inc.,
United States

Ye Wang,
Biogen Idec, United States

Ting Wang,
Complete Genomics, United States

*Correspondence:
Ruifang Niu

rniu@tmu.edu.cn
Fei Zhang

feizhang03@tmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 20 July 2021
Accepted: 08 September 2021
Published: 24 September 2021

Citation:
Zhang H, Han B, Han X, Zhu Y, Liu H,
Wang Z, Cui Y, Tian R, Gao Z, Tian R,

Ren S, Zuo X, Tian J, Zhang F and
Niu R (2021) Comprehensive Analysis

of Splicing Factor and Alternative
Splicing Event to Construct Subtype-
Specific Prognosis-Predicting Models

for Breast Cancer.
Front. Genet. 12:736423.

doi: 10.3389/fgene.2021.736423

Abbreviations: SF, splicing factor; AS, alternative splicing; BRCA, breast cancer; TCGA, the cancer genome atlas; ROC, receiver
operating characteristic; AUC, area under curve; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter;
AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retention intron; TPM, transcripts per million; PSI,
percent spliced index; PCA, principal component analysis; PPI, protein-protein interaction; GSEA, gene set enrichment
analysis; NES, normalized enrichment score.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7364231

ORIGINAL RESEARCH
published: 24 September 2021

doi: 10.3389/fgene.2021.736423

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.736423&domain=pdf&date_stamp=2021-09-24
https://www.frontiersin.org/articles/10.3389/fgene.2021.736423/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736423/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736423/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736423/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736423/full
http://creativecommons.org/licenses/by/4.0/
mailto:rniu@tmu.edu.cn
mailto:feizhang03@tmu.edu.cn
https://doi.org/10.3389/fgene.2021.736423
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.736423


INTRODUCTION

Alternative splicing (AS) is a post-transcriptional process, in
which the precursor mRNA is processed to different mature
mRNAs from one protein-coding gene (Baralle and Giudice,
2017). The AS is a highly regulated process and nearly all
multiexon genes are involved in AS and most cellular
processes may be regulated by AS (Cherry and Lynch, 2020;
Sciarrillo et al., 2020). In this process, genes can be edited into
many different mature mRNAs to produce different proteins. AS
includes seven types of alternative splicing, namely, alternate
acceptor site (AA), alternate donor site (AD), alternate promoter
(AP), alternate terminator (AT), exon skip (ES), mutually
exclusive exons (ME), and retained intron (RI) (Taylor and
Sobczak, 2020). AS modifies more than 90% of human genes
and is an important mechanism to enhance transcription and
protein diversity by including or excluding different exons or
partial exons in mRNA (Raj and Blencowe, 2015; Baralle and
Giudice, 2017; Martinez-Montiel et al., 2018). Therefore, AS
events are closely related to many physiological and
pathological processes including cancer. However, the clinical
relevance of ASs has largely remained unexplored.

The disorder of AS can promote the occurrence of tumors
and affect the key phenotypes of tumor cells, such as
proliferation, apoptosis, invasion, and metastasis (Oltean and
Bates, 2014). Emerging evidence suggests that tumor initiation
and progression are complex processes that cannot simply be
attributed to the misregulation of “tumor suppressor” or/and
“oncogenes” (Hjelmeland and Zhang, 2016). Alternative
splicing could be one of the important reasons for this
“complex” situation. Some isoforms of “oncogenes” can
promote the apoptosis of tumor cells, but some “tumor
suppressor genes” can enhance the migration and invasion
ability of tumor cells after deleting an important domain
(Sveen et al., 2016). Several genes have been reported to be
involved in alternative splicing, and the splicing isoforms may
serve as potential biomarkers and therapeutic targets (Zhang
et al., 2019a). One of the most extensively studied genes is the
apoptosis-related gene BCL-X which encodes two protein
isomers, namely, BCL-XL and BCL-XS, these isomers have
opposite effects on apoptosis (Shiraiwa et al., 1996; Bauman
et al., 2010). Other examples also emerge, such as the splicing
isoforms of AIMP2. BRCA5, BRAF, VEGFA and CXCL12 are
associated with lung cancer, ovarian cancer, melanoma,
colorectal cancer, and breast cancer (BRCA), respectively
(Choi et al., 2011; Poulikakos et al., 2011; Vivas-Mejia et al.,
2011; Bates et al., 2012; Zhao et al., 2014). The dysregulation of
the splicing factor (SF) expression may lead to overall changes in
some cancer-specific AS events, thereby affecting the occurrence
and development of cancer (Urbanski et al., 2018). The
proportion of BCL-XL and BCL-XS is regulated by some SFs,
such as SAM68, which can promote the expression of BCL-XS
and induce apoptosis (Paronetto et al., 2007; Bielli et al., 2014).
These findings indicate that the potential splicing factor-
alternative splicing (SF-AS) regulatory network provides a
new perspective for exploring tumor biomarkers and
tumorigenesis mechanisms.

BRCA is one of the most common malignant tumors in
women, accounting for 30% of all newly diagnosed cancers,
and the second leading cause of cancer death in women
worldwide (Li et al., 2016; Ahmad, 2019). Although advanced
diagnosis and therapeutic strategies have significantly extended
the survival-time of BRCA patients, BRCA still remains a major
life-threatening factor among women worldwide. BRCA can be
classified into four different molecular subtypes, namely,
Luminal-A, Luminal-B, Her-2, and Basal-like, known as
PAM50 intrinsic molecular subtype (Nielsen et al., 2010). The
PAM50 subtypes can be determined by immunohistochemistry
(IHC). Luminal A features ER/or PR positive IHC signatures,
Luminal B approximates ER and/or PR positive plus HER2
positive signatures, HER2 features ER and PR negative, but its
HER2 is strongly positive. However, Basal-like BRCA has all ER,
PR and HER2 negative under IHC examination (Hon et al., 2016;
Sun et al., 2019a).

Biological properties and molecular characteristics are
different among the four types of BRCA. The therapeutic
strategies, as well as the prognosis, are also highly dependent
on the molecular subtype of BRCA patients (Inoue and Fry, 2015;
Wallden et al., 2015; Cao and Niu, 2020). The distinct molecular
characteristics between different molecular subtypes are also
interconnected with AS events to form a unique molecular
environment in different BRCA subtypes, thereby modulating
the biological properties of cancer cells (Climente-González et al.,
2017). Studies have been conducted extensively to demonstrate
the role of AS events on BRCA. Results have shown that abnormal
splicing of ER and HER2 correlated to the occurrence of BRCA;
thus, it may be a potential target for cancer treatment (Inoue and
Fry, 2015; Martínez-Pérez et al., 2019; Francies et al., 2020).
Dysregulation of SFs has also been investigated, and results have
shown that they are connected to the malignant phenotype of
BRCA (Park et al., 2019). Thus, SFs and ASs potentially serve as
diagnostic markers to predict patients’ clinical outcomes.
However, few studies have provided a genome-wide landscape
of SF and AS in four BRCA subtypes, and the clinical significance
of these SFs and ASs is poorly described.

In the present study, we comprehensively analyzed the
expression patterns of SFs and ASs in BRCA with different
molecular subtypes. Furthermore, four subtype-specific SF risk
models were constructed using the survival-related SFs. The
potential mechanistic connections in the risk models were
described using a series of bioinformatics approaches. Lastly,
we identified key AS events and constructed four subtype-specific
AS risk models by using a combination of SF risk models and
survival-related AS events. The constructed AS/SF risk models
may provide new multidimensional biomarkers for the prognosis
and diagnosis of BRCA with different molecular subtypes.

MATERIALS AND METHODS

Data Collection and Preprocessing
The RNAseq data were downloaded from The Cancer Genome
Atlas (TCGA) database and transformed to transcripts per million
(TPM) for downstream analysis (https://portal.gdc.cancer.gov/).

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7364232

Zhang et al. Splicing Factors Predicts Breast-Cancer Prognosis

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The batch effect in the data was analyzed by TCGA Batch Effects
Viewer (https://bioinformatics.mdanderson.org/public-software/)
and no significant batch effect was found. The
clinicopathological information was obtained using Xnea
database (http://xena.ucsc.edu/). The detailed clinicopathological
information of BRCA patients involved in this study is described in
Supplementary Table S1. The gene list of SFs was obtained from a
previous pan-cancer study conducted by Seiler et al. (2018) and 393
SFs (Supplementary Table S1) were subjected to downstream
analysis after omitting unmatched gene symbols.

The RNA splicing data were downloaded from TCGA
SplicingSeq database (https://bioinformatics.mdanderson.org/
TCGASpliceSeq/index.jsp). The percent spliced index (PSI), an
intuitive ratio to quantifying splicing events from 0 to 1, was
calculated for seven types of AS patterns: mutually exclusive
exons (ME), exon skip (ES), retained intron (RI), alternate
terminator (AT), alternate promoter (AP), alternate acceptor
site (AA), alternate donor site (AD). AS-events with >30% of
“NA” value were omitted to form the study and then the data
were processed by the Impute package. Then, the imputed AS
data were filtered by the standard deviation (SD), and AS-events
with an SD < 0.15 were excluded from the study (the
preprocessed data contains 910 BRCA samples and 1048575
AS-events). The mRNA expression data were log2 transformed
and the PSI data were Z-normalized and then subjected to the
downstream analysis. The clinical data were manually curated
and cases with incomplete survival data were omitted from the
downstream analysis.

Analysis of the Expression and Survival
Landscapes of SFs and ASs
The expression of SFs and ASs were analyzed using principal
component analysis (PCA). For mRNA expression data, the
expression value of SFs was extracted and log2 transformed.
The PSI value of AS data was directly subjected to the PCA.
The analysis was done using pca3d package in R. For survival
analysis, the processed TPM and PSI data were subjected to
univariable Cox analysis using survival package in R. The
survival-related AS-events were also processed by UpsetR
package to generate the UpSet graph, which is a visual
technique for quantitative analysis of interactive sets.

Construction and Validation of the
Subtype-Specific Risk SF-Risk-Models
For the construction of SF-risk-models, the patients (Luminal A,
N � 528; Luminal B, N � 203; HER2, N � 76; Basal-like, N � 180)
were randomly divided into the training group and the testing
group, both of them consist 50% of the involved cases. Initially,
univariable Cox-analysis was performed to identify the survival-
related SFs. Then, the LASSO regression (using glmnet R
package) was performed to eliminate the false-positive
parameters caused by overfitting. The lambda selected in the
regression was determined by “cvfit$lambda.min” in “glmnet” R
package and showed in Supplementary Figure S2A. Finally, the
multivariable-Cox analysis was used to calculate the Hazard-

Ratio and generated the prognosis model. The RiskScores (SF-
RiskScore) for SF-risk-models were calculated by the regression
coefficient of a single gene and the expression value of each gene.
The LASSO-COX regression was run in a repeated loop for
selecting the best gene combination to construct the final
prognosis models. So gene combinations with a p < 0.05 of
Kaplan-miller analysis in both testing and training dataset and
ROC-AUC >0.65 were selected.

The calculation formula is as follows:

SFRiskScore � ∑ i�1,2,3,i coefficient (SFi ) × expression(SFi)
where SFi represents the identifier of the ith selected SF. The value
of coefficient (SFi) is the regression coefficient estimated by SFi
based on Cox proportional risk regression analysis. The RiskScore
is a measurement of the prognostic risk of each BRCA patient.
The median of RiskScores was used to stratified patients into
subgroups.

The performance of the SF-risk-models was further analyzed
by Kaplan-Meier analysis and Time-dependent ROC analysis,
whereas a log-rank p value < 0.05 and area under curve (AUC) >
0.700 were considered as models with acceptable
predicting power.

Construction the Subtype-Specific
AS-Risk-Models
For the construction of the subtype-specific AS-risk-models, the
AS-events PSI data were firstly Z-score normalized across all the
BRCA samples. Then the univariable-Cox analysis was
performed to analyze the survival-related AS-events, whereas
p < 0.05 was considered as statistically significant. Besides, the
Pearson’s correlation coefficients were calculated using the SF-
RiskScore (RiskScore calculated by SF-risk-models) and the PSI
value, AS-events with |R| > 0.15 and p < 0.05 were screened out.
Then we pick the AS-events that both significant in Cox analysis
and correlation analysis. The selected AS-events were then
subjected to LASSO regression analysis and multivariable-Cox
analysis to generate the final prognosis model. The RiskScore
(AS-Riskscore) was calculated as follow:

ASRiskscore � ∑ i�1,2,3,i coefficient (ASi ) × PSI(ASi)
where ASi represents the identifier of the ith selected AS. The
value of coefficient is the regression coefficient estimated by ASi
based on Cox proportional risk regression analysis. The risk score
is a measurement of the prognostic risk of each BRCA patient.
The median of RiskScore was used to stratified patients into
subgroups. The AS-risk-models were evaluated by Kaplan-Meier
and Time-dependent ROC analysis. Models with a log-rank p
value <0.05 and AUC >0.700 were considered have acceptable
predicting power.

Comprehensive Analysis of SFs in the
Risk-Specific Model
The SFs involved in the SF-risk-models were subjected to several
downstream analyses. The Pearson’s correlation coefficients were
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calculated between all the 12 SFs and the result was plotted using
corrplot R package.

The clustered heatmap was plotted using the expression value
of 12 SFs and the clinical information for all BRCA patients.
Expression of SFs in different molecular subtypes of BRCA was
presented using violin plots, the Wilcox test and Kruskal-walls
tests were used to determine the statically significant differentially
expressed genes. The SFs in AS-risk-models were also subjected
to Kaplen-Meier analysis using the GEPIA database (http://gepia.
cancer-pku.cn/), the log-rank test was used to determine the
statistical significance. The clinical relevance of SFs in Luminal A
and Luminal B AS-risk-models were also validated by Kaplan-
Meier plotter database (http://kmplot.com/), we used progress-
free survival time (PFS) to perform the statistical tests.

The 12 SFs were also analyzed by the cBioProtal database
(http://www.cbioportal.org/) to assess the copy number variation
and mRNA expression variation. The threshold to determine the
mRNAs expression alteration was set as Z-score � 1.5.

For protein-protein interaction (PPI) network construction,
the 12 selected SFs were subjected to STRING database (https://
string-db.org/), the interacting proteins (both experimentally
determined and computational predicted) are marked as
colored lines between genes.

Genes involved in the SF-risk-models were also analyzed by
GSCALite database (http://bioinfo.life.hust.edu.cn/web/
GSCALite/) to address the SFs associated tumor-essential
pathways.

The mRNA expression of these SFs in tumor and normal
tissue were also analyzed by the GEPIA database in four BRCA
subtypes, SF with a P (Limmamethod) < 0.01 and |Log2 FC| > 0.5
were regarded as significantly expressed SFs.

Gene Set Enrichment Analysis
To explore the hallmarks and pathways that were enriched in the
predicted high- and low-risk group, Gene set enrichment analysis
(GSEA) was performed as previously described (Zhang et al.,
2020). Using GSEA, the present study tested whether the
activated/repressed gene signatures were enriched for high-risk
vs. low-risk cases. The enrichment of pre-defined hallmarks and
KEGG pathways was calculated using a normalized enrichment
score (NES) and normalized p-value. Terms with |NES|>1 and
p < 0.05 were considered significantly enriched.

Statistical Analysis
All statistical analyses were performed using R software (version
3.6.0). p < 0.05 was considered statistically significant. Wilcox test
or Kruskal–Wallis test was used to evaluate the distribution
differences among variables. Kaplan–Meier survival curve
analysis and log-rank test were used to analyze OS. The Cox
regression model was used to analyze the factors influencing the
survival of BRCA patients. Cox proportional risk regression
model was used for univariable and multivariate analyses.
Time-related ROC analysis was used to assess the accuracy of
models for predicting prognosis. We used the survival time,
survival state, and RiskScore obtained from the risk models to
draw the ROC curve in the R software using the survivalROC
package, and both 5, 3 and 10 years ROC curve was drawn. The

AUC value greater than or equal to 0.70 was regarded as the
significant prediction value, and AUC value greater than or equal
to 0.65 was regarded as the acceptable predicted value.

RESULTS

Flowchart of this Study
The detailed workflow of this study is shown in Figure 1A. We
first download The Cancer Genome Atlas (TCGA)-RNAseq data,
TCGA alternative splicing PSI data, and the related clinical data
from TCGA Data Portal and TCGA SplicingSeq database. A
preprocessing step was implemented to improve the data quality
for downstream analysis.

Then, we use PCA and univariable-Cox analysis to address the
expression pattern and clinical relevance of all SFs and ASs. The
survival-related AS was subjected to KEGG enrichment analysis.
Four SF risk models (containing 12 SFs) were constructed using
survival-related SFs, and the performance of these models was
verified by ROC and Kaplan-Meier analysis in the testing and
training datasets. The expression, clinical relevance, and potential
mechanical links in BRCA were further described by a
combination of Kaplan-Meier analysis, mRNA correlation
analysis, cancer-related pathway analysis, mRNA differential
expression analysis, and PPI analysis. Lastly, we combine four
constructed SF risk models and survival-related AS events to
screen essential AS events, and four AS risk models were built
with high prognosis predicting capacity. The schematic
representation of analyzed AS events is shown in Figure 1B.

The Landscape of SFs and Alternate
Splicing Events in BRCA
BRCA has four distinct molecular subtypes, known as Luminal-
A, Luminal-B, Her-2, and Basal-like. We perform the principal
component analysis (PCA) to characterize the expression pattern
of SFs and ASs in the four molecular subtypes, as shown in
Figures 1C,D. Notably, on the level of SFs, only Basal-like was
clearly separated from the other three molecular subtypes.
Besides, for AS-events, all four molecular-subtypes were
clustered into more separated groups in the PCA plots,
especially for the Basal-like subtype (Figures 1C,D). This
finding indicated that the expression patterns of SFs and ASs
were different across the four BRCAmolecular subtypes. The type
and the corresponding number of AS events in BRCA are shown
in Figure 1E. Then, the survival-related SFs and ASs were
determined by univariant Cox analysis in each molecular
subtype, as shown in Figures 1F,H. However, the identified
survival-related SFs and ASs showed little overlapping among
the four subtypes (Figures 1G,I). This finding may indicate that
the contribution of SFs and ASs in the progression of BRCA is
distinct in the different molecular subtypes. The detailed results
for the multivariable-Cox analysis of SFs and ASs were presented
in Supplementary Tables S2, S3.

We perform KEGG pathway enrichment analysis to better
describe the function of the identified survival-related ASs. We
found that the identified ASs were closely related to several
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FIGURE 1 | The landscape of splicing-factors and alternative-events in Luminal-A, Luminal-B, Her-2 and Basal-like BRCA. (A) The follow chart of this study. AA
(alternate acceptor site), an alternative 3′ splice junction (acceptor site) is used, changing the 5′ boundary of the downstream exon. AD (alternate donor site), an
alternative 5′ splice junction (donor site) is used, changing the 3′ boundary of the upstream exon. AP (alternate promoter), an alternative region fromwhich transcripts of a
gene originate. AT (alternate terminator), the transcripts have more than one termination exons. ES (exon skip), an exon is removed with its intron-flanking site. ME
(mutually exclusive exons), exons do not occur together but do not refer to length, sequence or exon numbers. RI (retained intron), an intron retains in the final transcript.
The red and brown line indicates different final transcripts resulted from the corresponded alternative splicing event. (B) Schematic summary diagram of alternative

(Continued )
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metabolic-related pathways, such as glycosaminoglycan
biosynthesis and glycosphingolipid biosynthesis in Luminal A
BRCA (Supplementary Figure S1A). In Luminal B BRCA, the
survival-related ASs were enriched in DNA-repair related
pathways, such as nonhomologous end-joining, and several
metabolic-related pathways, such as thiamine metabolism and
oxidative phosphorylation (Supplementary Figure S1B).
Moreover, similar to the Luminal B BRCA, in Her-2 BRCA,
survival-related ASs were enriched in DNA repair and metabolic-
related pathways (Supplementary Figure S1C). In addition,
survival-related ASs in Basal-like BRCA were enriched in
metabolism- and autophagy-related pathways (Supplementary
Figure S1D). Collectively, these results suggested that ASs may
play important roles in BRCA, especially, each molecular subtype
may be regulated by unique groups of SFs and ASs. Thus, the
connections among SF, AS, and BRCA are subtypes specifically.

Construction and Validation of
Subtype-Specific Prognostic Risk Models
Using Survival-Related SFs
We constructed risk models in the four BRCA subtypes using
Lasso-Cox regression to address the connection between survival-
related SFs and prognosis. We initially generated training and
testing datasets using TCGA-BRCA data and then subjected them
to downstream prognosis model construction. We obtained four
subtype-specific risk models for each molecular-subtype by using
12 SFs, and the RiskScores were calculated for each patient. The
Lasso regressions for the risk model generation for Luminal-A,
Luminal B, Her-2, and Basal-like subtype were shown in Figures
2A,G, 3A,G, respectively. The lambda selection for the lasso
regression was shown in Supplementary Figure S1E. The
results for univariable-Cox analysis of 12 SFs are shown in
Table 1.

In Luminal A BRCA, a three-gene (PAXBP1, NKAP, and
NCBP2) SF-risk-model was obtained with the area under
curve (AUC) � 0.752 in the training set and AUC � 0.705 in
the testing set (Figures 2A,B and Supplementary Figure S2A).
The Kaplan–Meier survival analysis also showed good prognosis
predicting power for this risk model in the training and testing
datasets (Figure 2C). The three gene expression patterns and the
RiskScore distribution of this risk model are shown in Figures
2D,E and Supplementary Figure S1E. In addition, the
multivariable Cox analysis was performed, and the hazard
ratio and the corresponding p-value are shown in Figure 2F.
The Kaplan–Meier plots for individual genes involved in this risk
model are shown in Supplementary Figure S2B.

The same data processing and analysis were also performed in
other BRCA subtypes. We identified a four-gene SF-risk-model

(RBM15B, PNN,ACIN1, and SRSF8) in Luminal-B BRCAwith an
AUC � 0.953 in the training set and AUC � 0.706 in the testing set
(Figures 2G,H and Supplementary Figure S2A). The
Kaplan–Meier plots also suggested good prognosis predicting
power for this risk model in the training and testing datasets
(Figure 2I). The expression pattern for the four-gene model and
the RiskScore distribution are shown in Figures 2J,K and
Supplementary Figure S1E. The hazard ratios and the
corresponding p values for multivariable Cox analysis are
shown in Figure 2L. The Kaplan–Meier plots for individual
genes involved in this risk model are shown in Supplementary
Figure S2C.

We also constructed a three-gene SF-risk-model (LSM3,
SNRNP200, and SNU13) in patients with Her-2 BRCA with
AUC � 0.953 in the training and AUC � 0.794 in the testing
set (Figures 3A,B and Supplementary Figure S2A). A good
prognosis predicting power was also suggested by the Kaplan-
Meier analysis in the training and testing datasets (Figure 3C).
The expression pattern for the three-gene model and the
RiskScore distribution are shown in Figures 3D,E and
Supplementary Figure S1E. The multivariable Cox analysis
suggested that these genes were positive risk-related genes
(Figure 3F). The Kaplan–Meier plots for individual genes
involved in this SF risk model are shown in Supplementary
Figure S2D.

Finally, we constructed a three-gene risk model (SRPK3,
PUF60, and PNN) in Basal-like subtype with AUC � 0.838 in
the training set and AUC � 0.713 in the testing dataset (Figures
3G,H and Supplementary Figure S2A). The Kaplan-Meier
analysis also suggested that this risk model can accurately
predict the prognosis of patients with Basal-like BRCA
(Figure 3I). The expression pattern and the RiskScore
distribution of this three-gene risk model are shown in
Figures 3J,K and Supplementary Figure S1E. Among these
genes, SRPK3 and PUF60 were identified as positive risk-
related genes, whereas PNN was recognized as a negative risk-
related gene (Figure 3L). The Kaplan–Meier plots for individual
genes involved in this SF-risk-model are shown in
Supplementary Figure S2D. The figure shows that most of
the selected SFs are correlated with the overall survival of
BRCA patients. In addition, the clinical relevance of SFs in
Luminal-A and Luminal-B BRCA was validated using a
combination of GEO datasets by KM-plotter database (http://
kmplot.com/). Consistently, all six SFs showed high correlations
between mRNA expression and PFS (Supplementary Figures
S3A,B).

To further evaluate the prognosis-predicting performance of
the SF-riskmodels for each BRCA subtype, we perform
multivariable-Cox analysis and time-dependent ROC analysis

FIGURE 1 | splicing events analyzed in this study. (C) Principal Component Analysis (PCA) of the splicing-factors in Luminal-A, Luminal-B, Her-2 and Basal-like BRCA.
(D) PCA of splicing-events in Luminal-A, Luminal-B, Her-2 and Basal-like BRCA. (E) UpSet plot and bar plot showing the statistics of seven types of AS-events in BRCA.
For the same splicing events that happened in different patients, the events were counted only once. (F) Volcano plots showing the Hazard-Ratio (HR) and log10-P value
of splicing-factor in univariable-Cox analysis in four subtypes of BRCA. (G) Venn diagram showing the intersections of survival-significance splicing-factors in four
subtypes of BRCA. (H) Volcano plots showing the Hazard-Ratio (HR) and log10-P value of alternative-splicing events in univariable-Cox analysis in four subtypes of
BRCA. (I) Venn diagram showing the intersections of survival-significance alternative-splicing events in four subtypes of BRCA.
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FIGURE 2 | Construction and Validation of the SF-risk-models in Luminal-A and Luminal-B BRCA. (A) Lasso regression analysis of the top 20 survival-related SFs in Luminal-A
BRCA. (B) Time-dependent ROC curve analyses showing AUC values (5 years) for the constructed SF-risk-models in Luminal-A BRCA. Left, training dataset right, testing dataset. (C)
Kaplan-Meier plot showing theSF-risk-model of Luminal-ABRCAcanaccurately predict thepatient’sprognosis (log-rank test). (D)Heatmapof the threekeygenesexpressionprofiles in
the training dataset of Luminal-A BRCA (upper panel). Dot plots showing the survival time andRiskScore in the training set of Luminal-ABRCA (lower panel). (E)Heatmapof the
three key genes expression profiles in the testing dataset of Luminal-ABRCA (upper panel). Dot plots showing the survival time andRiskScore in the testing dataset of Luminal-ABRCA
(lower panel). (F) Forest plot showing the multivariable Cox regression analysis of three key genes in SF-risk-model for Luminal-A BRCA. (G) Lasso regression analysis of the top
20 survival-related SFs in Luminal-B BRCA. (H) Time-dependent ROC curve analyses showing AUC values (5 years) for the constructed SF-risk-models in Luminal-B BRCA. Left,
training dataset right, testing dataset. (I)Kaplan-Meier plot showing theSF-risk-model of Luminal-BBRCAcan accurately predict the patient’s prognosis ((log-rank test)). (J)Heatmapof
the four keygenes expression profiles in the trainingdataset of Luminal-BBRCA (upperpanel). Dot plots showing the survival time andRiskScore in the training set of Luminal-ABRCA
(lowerpanel). (K)Heatmapof the four key genes expression profiles in the testing dataset of Luminal-BBRCA (upper panel). Dot plots showing the survival time andRiskScore in the
testing dataset of Luminal-A BRCA (lower panel). (L) Forest plot showing the multivariable Cox regression analysis of four key genes in SF-risk-model in Luminal-B BRCA.
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FIGURE3 |Construction and Validation of the SF-risk-models in Her-2 and Basal-like BRCA. (A) Lasso regression analysis of the top 20 survival-related SFs in Her-
2 BRCA. (B) Time-dependent ROC curve analyses showing AUC values (5 years) for the constructed SF-risk-models in Her-2 BRCA. Left, training dataset right, testing
dataset. (C) Kaplan-Meier plot showing the SF-risk-model of Her-2 BRCA can accurately predict the patient’s prognosis (log-rank test). (D) Heatmap of the three key
genes expression profiles in the training dataset of Her-2 BRCA (upper panel). Dot plots showing the survival time and RiskScore in the training set of Her-2 BRCA
(lower panel). (E) Heatmap of the three key genes expression profiles in the testing dataset of Her-2 BRCA (upper panel). Dot plots showing the survival time and
RiskScore in the testing dataset of Luminal-A BRCA (lower panel). (F) Forest plot showing themultivariable Cox regression analysis of three key genes in SF-risk-model
of Her-2 BRCA. (G) Lasso regression analysis of the top 20 survival-related SFs of Basal-like BRCA. (H) Time-dependent ROC curve analyses showing AUC values
(5 years) for the constructed SF-risk-models in Basal-like BRCA. Left, training dataset right, testing dataset. (I)Kaplan-Meier plot showing the SF-risk-model of Basal-like
BRCA can accurately predict the patient’s prognosis (log-rank test). (J) Heatmap of the four key genes expression profiles in the training dataset of Basal-like BRCA
(upper panel). Dot plots showing the survival time and riskscore in the training set of Basal-like BRCA (lower panel). (K) Heatmap of the three key genes expression
profiles in the testing dataset of Basal-like BRCA (upper panel). Dot plots showing the survival time and RiskScore in the testing dataset of Basal-like BRCA (lower
panel). (L) Forest plot showing the multivariable Cox regression analysis of three key genes in SF-risk-model of Basal-like BRCA.
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by using the model-predicted RiskScore and other clinical
parameters. The multivariate Cox analysis indicated that the
predicted RiskScore could independently predict the OS for
the four types of BRCA (Figures 4A,C,E,G). In Luminal-A
BRCA, the predicted RiskScore has an AUC � 0.740, which is
lower than the patient’s age (AUC � 0.813), as shown in
Figure 4B. Particularly, the RiskScore showed better predicting
performance in Luminal-B, Her-2, and Basal-like BRCA than in
other well-established clinical parameters (Figures 4D,F,H).
These results suggest that the four subtype-specific risk models
can be used independently to predict the OS in BRCA patients
with different molecular subtypes.

Mechanistic Exploration of
Model-Predicted High-Risk Patients by
Gene Set Enrichment Analysis
The results indicated that the SF-RiskScore could independently
and accurately predict the prognosis of BRCA patients. We
subsequently used gene set enrichment analysis (GSEA) to
explore the possible mechanisms that linked the RiskScore and
prognosis. The GSEAs were performed using model predicted
low- and high-risk samples to calculate the fold change of gene
expression, and the analysis was conducted using Hallmark 50
and KEGG pathway datasets. The detailed analysis results for
GSEA analysis are shown in Supplementary Tables S4, S5.

In the Luminal A subtype, the GSEA revealed that high-risk
samples were enriched in genes related to cell cycle progression,
such as G2M checkpoint and mitotic spindle (Figure 5A).
Besides, GSEA using KEGG gene set suggested that high-risk
patients were upregulated with cell cycle and ERBB signaling-
related genes (Figure 5B). However, PAPP signaling-related
genes and cytochrome P450 pathway-related genes were
enriched in low-risk patients, indicating that the signaling may
have a protective function in Luminal A BRCA (Figure 5B).

In Luminal B BRCA, we found that the top enriched Hallmark
gene sets were not closely related to cancer progression
(Figure 5C). However, GESA suggested that Aldarate
metabolism- and chlorophyll metabolism-related genes were

enriched in high-risk patients, indicating that these genes were
negatively correlated with the prognosis (Figure 5D). Interestingly,
cytochrome p450 related genes, which were enriched in the low-
risk Luminal A BRCA, were enriched in the high-risk Luminal B
BRCA, suggesting that this set of genes may play a different role in
the two Luminal BRCA subtypes (Figure 5D).

In Her-2 BRCA, as expected, estrogen response-related genes
were enriched in high-risk patients (Figure 5E). Similar to the
Luminal A BRCA (Figure 5A), the E2F target genes and G2M
checkpoint-related genes were also enriched in the high-risk
patients (Figure 5E). Notably, interferon-gamma response-
related genes were enriched in low-risk patients, suggesting
that this signaling may have a protective effect in Her-2 BRCA
(Figure 5E). In addition, GSEA using KEGG gene set showed that
cell cycle-related genes were enriched in high-risk patients, and
adhesion molecule CAM-related genes seem to have a protective
function in Her-2 BRCA (Figure 5F).

In Basal-like BRCA, we found that interferon-gamma-related
genes, inflammatory response-related genes, and IL-2 STAT5
signaling related genes were enriched in low-risk patients
(Figure 5G); while, autophagy-related genes, were enriched in
high-risk patients (Figure 5H). Collectively, GSEA suggested that
many cancer-related signaling may be linked with SFs to regulate
the progression of BRCA.

Comprehensive Analysis of Genes in
Subtype-Specific SF-Risk-Models
Then, we analyzed the genes expressed in the four subtype-specific
risk-models using different approaches. The correlation analysis
showed that some genes in the risk-models were positively
correlated at the mRNA level, indicating intricate regulatory
cascade may exist between these SFs (Figure 6A). The p-values
for the correlation analysis were shown in Supplementary Table
S6. Furthermore, the links among molecular subtypes, clinical
parameters, and the mRNA expression of the 12 risk-model-
related genes were shown by clustered heatmap (Figure 6B). In
addition, violin plots showed that most 12 riskmodel-related genes
were differentially expressed among four molecular subtypes of
BRCA (Figure 6C). To further describe the line between the 12
selected genes and cancer-essential pathways, we analyze these
genes by using the GSCALite database (http://bioinfo.life.hust.edu.
cn/web/GSCALite/). We found that most genes were positively
correlated to the cell cycle (Figure 7A). SRSF8, which is negatively
correlated with the prognosis of Luminal B BRCA, was strongly
negatively correlatedwith apoptosis and cell cycle (Figure 7A). The
interaction network of the analyzed genes and pathways is shown
in Figure 8B. Interestingly, pathway analysis showed that SRSF8
was involved in 7 out of 10 analyzed pathways, thereby suggesting
that it has intrinsic biological functions in BRCA (Figures 7A,B).

Furthermore, we analyzed the mRNA expression of the
12 risk-related genes using GEPIA database (http://gepia2.
cancer-pku.cn/) in four molecular subtypes of BRCA. We
found that PAXBP1 and NCBP were differentially expressed in
Luminal A BRCA compared with normal samples (Figure 7C).
However, although PAXBP1 is downregulated in Luminal A
BRCA, it has been shown as a good prognosis gene

TABLE 1 | Univariable Cox analysis of 12 selected SFs.

Gene symbol HR HR-95L HR-95H PAM50 p Value

PAXBP1 3.39 1.94 5.93 Luminal-A <0.001
NKAP 3.30 1.87 5.85 Luminal-A <0.001
NCBP2 2.43 1.41 4.21 Luminal-A 0.001
RBM15B 0.43 0.23 0.82 Luminal-B 0.010
PNN 0.53 0.31 0.88 Luminal-B 0.015
ACIN1 0.47 0.25 0.87 Luminal-B 0.016
SRSF8 1.82 1.12 2.98 Luminal-B 0.016
LSM3 11.30 2.94 43.40 Her-2 <0.001
SNRNP200 4.08 1.70 9.84 Her-2 0.002
SNU13 8.20 1.76 38.20 Her-2 0.007
SRPK3 1.78 1.21 2.63 Basal-like 0.003
PUF60 2.24 1.27 3.95 Basal-like 0.006
PNN 0.478 0.26 0.87 Basal-like 0.016

Abbreviations: HR, hazard ratio; HR-95 L/H, 95% confidence interval of the
hazard ratio.
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FIGURE 4 | Multivariable Cox regression analyses and ROC analyses of SF-risk-models in Luminal, Her-2, and Basal-like BRCA. (A) Forest plots showing the
multivariable Cox regression analyses of the SF-risk-models of Luminal-A BRCA. (B) Time-dependent ROC analysis (5 years AUC was shown) of SF-risk-models and
other clinical-parameters in Luminal-A BRCA. (C) Forest plots showing the multivariable Cox regression analyses of the SF-risk-models of Luminal-B BRCA. (D) Time-
dependent ROC analysis (5 years AUC was shown) of SF-risk-models and other clinical-parameters in Luminal-B BRCA. (E) Forest plots showing the multivariable
Cox regression analyses of the SF-risk-models of Her-2 BRCA. (F) Time-dependent ROC analysis (5 years AUC was shown) of SF-risk-models and other clinical-
parameters in Her-2 BRCA. (G) Forest plots showing the multivariable Cox regression analyses of the SF-risk-models of Basal-like BRCA. (H) Time-dependent ROC
analysis (5 years AUC was shown) of SF-risk-models and other clinical-parameters in Basal-like BRCA.
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FIGURE 5 | Gene set enrichment analysis (GSEA) of genes in high-risk and low-risk patients in Luminal, Her-2 and Basal-like BRCA predicted by SF-risk-model.
(A,B) Gene set enrichment analysis (GSEA) showing the enrichment of Hallmarks (A) and KEGG pathways (B) in high-risk and low-risk patients with Luminal-A BRCA.
(C,D) GSEA showing the enrichment of Hallmarks (C) and KEGG pathways (D) in high-risk and low-risk patients with Luminal-B BRCA. (E,F) GSEA showing the
enrichment of Hallmarks (E) and KEGG pathways (F) in high-risk and low-risk patients with Her-2 BRCA. (G,H)GSEA showing the enrichment of Hallmarks (G) and
KEGG pathways (H) in high-risk and low-risk patients with Basal-like BRCA.
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FIGURE 6 | ThemRNAexpression landscape of 12 selectedSFs in SF-risk-models. (A)Clustered heatmap showing the correlation of genes expression in four SF-risk-
models. The correlation was calculated by Pearson’s correlation using log2 (TPM+0.01). Not statistically significant correlations were defined as p > 0.05 and marked by a
black cross. (B)Clustered heatmap showing the genes expression and clinical information in BRCA patients. (C) Violin plots showing identified gene expression in Luminal-A,
Luminal-B, Her-2 and Basal-like BRCA. The p values were calculated by Wilcox-test (two groups comparison) and Kruskal- Wallis test (four groups comparison).
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FIGURE 7 | Comprehensive analysis of genes in SF-risk-models. (A) Heatmap showing the correlation between the 12 selected genes and the tumor-essential
pathways. (B) Connection network showing the relationship between 12 selected genes and the tumor-essential pathways. (C–F) Boxplots showing the significant
differentially expressed SFs in Luminal-A (C), Luminal-B (D), Her-2 (E) and Basal-like (F) BRCA. (G) OncoPrint showing the copy number alterations and mRNA
expression alterations of 12 SFs in SF-risk-models. The analysis was performed by cBioProtal database. (H) Protein-protein interaction (PPI) analysis of genes in
SF-risk-models by STRING database.
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FIGURE 8 | Construction of AS-risk-models in four subtypes of BRCA using AS-events. (A) The workflow of construction the AS-risk-models. (B) The gene
ontology analysis of selected AS-events which are shared by correlation-significant ASs and survival-significant-ASs. (C) Kaplan-Meier plot showing the AS-risk-models
can accurately predict the patient’s prognosis (log-rank test). (D) Time-dependent ROC curve analyses showing AUC values for the constructed AS-risk-models in four
types of BRCA. (E) Forest plots showing the multivariable Cox regression analysis of key genes in SF-risk-models of four types of BRCA.
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(Supplementary Figure S2A). In Luminal B BRCA, PNN was the
only gene that passed the significant threshold (log FC > 0.5, p <
0.01) and was downregulated in tumor samples (Figure 7D). In
Her-2 BRCA, LSM3 and SNU13 were significantly upregulated in
tumor samples and both genes were negatively correlated with
prognosis (Figure 7E, Supplementary Figure S2C). In Basal-like
BRCA, PUF60 was upregulated and PNN was downregulated
in tumor samples. This finding was consistent with the
survival analysis that PUF60 was a poor prognosis gene, and
PNN was positively correlated with the prognosis (Figure 7F,
Supplementary Figure S2D). However, although some SFs in the
SF risk models showed a significant correlation with clinical
outcome, the mRNA expression was comparable between
tumor and normal tissue (Supplementary Figures S4A–D).

The mRNA expression alternation and gene mutation pattern
for the 12 SFs were also analyzed by Oncoprint using cBioPotal
database. The results showed that high mRNA expression
alteration existed in all 12 analyzed SFs (Figure 7G). Notably,
PUF60 showed a high frequency of mRNA hyperexpression
among BRCA samples. However, only a small fraction of
samples were involved in gene amplification, deletion, and
mutation. This finding indicated that genetic level alterations
were not the primary driving force for the dysregulation of these
SFs (Figure 7G). To further address the relationship between the
identified 12 SFs, the protein-protein interaction (PPI) network
was visualized using the STRING database. The PPI network
indicated that LSM3, SNRNP200, PUF60, NHP2L1, and NCBP2
were closely interconnected, suggesting a potential regulatory
cascade among these proteins (Figure 7H). The analysis showed
that SRPK3, SRSF8, and RBM15B have no connection with other
genes, indicating that these proteins may function independently
in tumors (Figure 7G). In summary, these results suggested that
the 12 genes selected for risk prediction have strong connections
to the tumor-related pathways. In addition, genes that are
differentially expressed between the tumor and normal tissue
indicated that they may serve as reliable markers to predict a
patient’s disease outcome.

Identification of Prognosis-Related
AS-Events Using SF-Risk-Models
We have constructed risk models for different molecular subtypes of
BRCA by using SFs. Considering that AS events are regulated mostly
by SFs, we identified prognosis-related AS events using the
constructed SF models. The workflow for identification of the
prognosis-related AS events is shown in Figure 8A. We initially
calculated the correlation between RiskScore (calculated by SF-risk-
models) and all PSI values of AS events. In addition, the survival-
relatedAS events were screened using univariable Cox analysis. Then,
the survival-related AS events and the risk-correlated AS events were
combined, and the intersected AS events (85 in Luminal A, 64 in
Luminal B, 125 in Her-2, and 42 in basal-like) were screened out and
subjected to downstream LASSO-Cox regression analysis and risk
model construction (Figure 8A). In addition, the intersected AS
events were subjected to enrichment analysis to explore their
biological functions. Enrichment analysis suggested that these AS
events were related to microtubule organizing center localization,

signal transduction in the absence of ligand, adherence junction,
EGFR tyrosine kinase inhibitor resistance, and regulation of actin
cytoskeleton. Thus, these identified AS events may play important
roles in tumor progression (Figure 8B). Interestingly, AT was
enriched in Luminal A BRCA, whereas ES was enriched in Her-2
and Basal-like BRCA, besides, RI was enriched in Luminal B BRCA
(Supplementary Figures S6A,B and Supplementary Table S7). This
result indicated different molecular-subtype of BRCAmay have their
unique alternative-splicing preference to regulating its progression.

Subsequently, we constructed risk models using the intersected
AS event identified in Figure 8A. In Luminal A, Luminal B, Her-2,
and Basal-like BRCA, four risk models were identified using AS
events via LASSO regression and multivariable Cox analysis
(Supplementary Figure S5A). We identified 6, 5, 5, and 5 key
AS events in Luminal-A, Luminal-B, Her-2, and Basal-like AS-risk-
model, respectively (Figure 8E). The Oncoprint analysis of the
genes involved in the final AS models suggested that they may
manifestmoderate levels of genetic alterations, such as amplification,
deep deletion andmutations (Supplementary Figure S5C). We also
analyzed the mRNA expression levels of these genes between tumor
and normal tissue in the matched BRCA subtypes; however, only a
few geneswere dysregulated (Supplementary Figure S5D), we think
that these genes may contribute to cancer progression, not at the
absolute-expression level. The detailed information and splicing
patterns for identified AS events in the AS risk models are
shown in Supplementary Figure S7.

Subsequently, the patients were grouped into high- and low-risk
groups by using the calculated AS-RiskScore, and the Kaplan-Meier
analysis showed that the AS-risk-models can accurately predict the
patient’s prognosis (Figure 8C). Furthermore, ROC analysis showed
that the constructedmodels have good performance in the prediction
of three-, five-, and 10 years OS of BRCA patients (Figure 8D). In
addition, the RiskScores (SF-RiskScore and AS-RiskScore) predicted
by the SF-risk-models and AS-risk-models are significantly
correlated. This finding indicated that the prediction power of the
two types of models was highly consistent (Supplementary Figure
S5B). Importantly, multivariable Cox analysis indicated that the AS
events involved in the AS risk models were independently correlated
with the OS of BRCA patients (Figure 8E). In summary, we
combined the SF risk models, survival-related AS events, and
LASSO-Cox analysis to construct four subtype-specific AS
models. The ROC and Kaplan-Meier analysis suggested that both
models have good robustness and accuracy to predict the prognosis
of BRCA patients with different molecular subtypes.

DISCUSSION

Dysregulation of gene expression has been associated with tumor
initialization and progression. However, due to the complexity of
mRNA maturation and processing and the existence of alternative
splicing, a new layer of regulation is added; thus, tumor biology is
beyond the well-known “central dogma” (Lee and Abdel-Wahab,
2016). Emerging evidence suggests that SFs play important roles in
tumors. SFs are mainly RNA binding proteins, which are involved
in themRNA transcription and processing and ultimately regulates
the isoform-specific protein synthesis (Naro et al., 2015). SF
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controlled AS events implicated in various tumor-related biological
processes, such as cell cycle progression, sustaining activation of
growth/survival signaling, reprogramming of tumor-specific
metabolic processes, as well as evading the immune surveillance
(Ding et al., 2020). Thus, the abnormal alternative splicing has been
recognized as new cancer “hallmark.”

Alternative splicing events are mainly controlled and
processed by SFs, and alteration of SF expression has been
observed in many types of cancer, including BRCA (Sveen
et al., 2016). The function of SFs has been recognized as
highly context-dependent, and evidence suggests that some SFs
switch between oncogenes and tumor suppressors in different
malignancies (Shchelkunova et al., 2013). SFs have been found
generally dysregulated in cancer, and the number of differentially
regulated SFs (tumor versus normal) is substantially different
among different malignancies (Sveen et al., 2016). Evidence
suggests that BRCA is more associated with cancer-specific
AS-events than with other cancer types (Dvinge and Bradley,
2015). Aberration of AS pattern has been frequently detected in
BRCA. However, the upstream regulators that control the tumor-
specific AS event lack systemic characterization. We found that
the expression patterns of SFs and ASs are distinct in different
molecular subtypes of BRCA, suggesting that subtype-specific
SF–AS regulatory networks may exist. This hypothesis is further
supported by the Cox analysis of SFs and ASs. It showed that very
few survival-related SFs and ASs are shared by multiple BRCA
subtypes. Interestingly, PCA showed that the Basal-like BRCA
has a different expression pattern in SFs and ASs. This finding
suggests that SFs and ASs may play different functional roles in
Basal-like BRCA compared with others.

We constructed four subtype-specific SF risk models for each
BRCA subtype, and 12 SFs were involved in the model
construction. Interestingly, correlation analysis showed that
most SFs were positively correlated at the mRNA level. The
PPI analysis also suggested that the identified SFs were highly
interconnected. Interestingly, we also found that all the 12 SFs
were differentially expressed across at least two different PAM50
subtypes (Figure 6C), indicating some SFs may regulate the
progression of BRCA in a subtype-specific manner. PUF60 has
been identified that involved the progression of Basal-like MDA-
MB-231 cells by regulating PTEN signaling (Sun et al., 2019b).
We also speculated that these SFs may act synergistically to
regulate the downstream AS events and finally modulate the
behavior of tumor cells. SRSF8, which is a member of serine- and
arginine-rich SF, was related to multiple pathways in the pathway
analysis result. Although little direct evidence shows connections
between SRSF8 and cancer, our in silico analysis suggests that it
may be valuable for deep research. Besides, GSEA indicates that
interferon-gamma pathway plays a protective role in Her-2 and
Basal-like BRCA. The cytochrome P450 pathway seems to be
involved in Luminal A/B BRCA, but its functional role may be
highly context-dependent. We speculate that SFs control several
tumor-essential signaling. However, this regulatory role may be
more dependent on systemic effects caused by the dysregulation
of SFs but not the change of some key AS events.

Some studies developed risk-predicting models using AS
events and showed good prognosis predicting potential

(Zhang et al., 2019b; Liu et al., 2020; Yu et al., 2020).
However, considering that BRCA is a highly heterogeneous
malignancy with different molecular subtypes that display
distinct biological properties, and thus identify that
biomarkers specific to each subtype are more applicable for
clinical usage. In addition, although deep RNA-sequencing
provides valuable insight into the AS process, the precise
quantification of AS events are challenging, thereby
influencing the robustness of the downstream analysis (Sveen
et al., 2016). To address this challenge, we constructed four risk
prediction models using the survival-related SFs in each BRCA
subtype, and the downstream analysis suggested that the models
can accurately predicate the prognosis of BRCA patients.
Among these models, 12 risk-related SFs were identified, and
the following comprehensive analysis indicates that these genes
may play essential roles in BRCA progression and diagnosis.
Then, the AS events that are significantly correlated with the
RiskScore predicted by the SF-risk-models were screened out
and combined with univariable Cox analysis to pinpoint the
survival significant AS events. Finally, we constructed four
subtype-specific risk models using the selected AS events and
the following ROC analysis showed optimistic risk-predicting
power. The combination of SF-risk-models and survival-related
AS events may improve the overall robustness of the
constructed AS risk models. However, due to the limitation
of available data in the TCGA database, the SF-risk-models and
AS-risk-models need to be optimized and validated using more
datasets, and the predicting power should be tested in local
BRCA cohorts.

In summary, we systemically analyze the expression landscape
and clinical relevance of SFs and ASs by interpreting the mRNA
expression and AS event data. Four SF-risk-models and four AS-
risk-models were constructed for each molecular subtype of
BRCA. The identified SFs and ASs may serve as targets for the
treatment and intervention of BRCA. However, the main
limitation of this study is that the data used were obtained
from several public databases. Therefore, the findings need to
be validated in future clinical trials. In addition, although we
described the potential mechanistic links between the SF risk
models and BRCA, the actual connections still need to be verified
by experimental approaches.

CONCLUSION

To sum up, our study shows that the SFs and ASs have promising
potential as biomarkers and therapeutic targets for diagnosis and
prognosis in BRCA. The constructed risk-predicting models have
good performance in predicting the prognosis of BRCA patients.
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