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ABSTRACT

Chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) is used to identify genome-wide
DNA regions bound by proteins. Given one ChIP-
seq experiment with replicates, binding sites not ob-
served in all the replicates will usually be interpreted
as noise and discarded. However, the recent dis-
covery of high-occupancy target (HOT) regions sug-
gests that there are regions where binding of multiple
transcription factors can be identified. To investigate
ChIP-seq variability, we developed a reproducibility
score and a method that identifies cell-specific vari-
able regions in ChIP-seq data by integrating repli-
cated ChIP-seq experiments for multiple protein tar-
gets on a particular cell type. Using our method,
we found variable regions in human cell lines K562,
GM12878, HepG2, MCF-7 and in mouse embryonic
stem cells (mESCs). These variable-occupancy tar-
get regions (VOTs) are CG dinucleotide rich, and
show enrichment at promoters and R-loops. They
overlap significantly with HOT regions, but are not
blacklisted regions producing non-specific binding
ChIP-seq peaks. Furthermore, in mESCs, VOTs are
conserved among placental species suggesting that
they could have a function important for this taxon.
Our method can be useful to point to such regions
along the genome in a given cell type of interest, to
improve the downstream interpretative analysis be-
fore follow-up experiments.

INTRODUCTION

A series of genome-wide experiments are largely adopted
to study biological systems in relation to a given protein.
They contribute to our understanding of particular molec-
ular mechanisms at the basis of biological processes, such
as transcription and development, just to mention a few. In
particular, ChIP-seq evaluates the genomic positions bound

by a protein in the genome. Standard ChIP-seq experiments
typically include replicated measurements in the experi-
mental design in order to have the proper statistical power
for the identification of reliable binding sites (or ChIP-seq
peaks).

Previous results have indicated for several model organ-
isms such as yeast, Drosophila and Caenorhabditis elegans
the existence of genomic regions that are bound more often
with respect to others, even in genomic positions in which a
binding site is not expected for the protein under investiga-
tion. These regions have been previously characterized and
described as ‘hyper-ChIPable’ in yeast (1) and confirmed
later in Drosophila, C. elegans and mouse and referred as
‘phantom peaks’ (2). Furthermore, other regions defined
here as variable regions, have protein binding that tends to
variate stochastically and is difficult to interpret because
their inconsistency in the reproducibility of the results. Cur-
rent approaches to analyze ChIP-seq experiments do not re-
port to the users regions that misbehave before downstream
interpretative analysis; this might lead to the misinterpreta-
tion of the ChIP-seq results in terms of the function associ-
ated to the protein under investigation.

Here, we present a method that uses replicated ChIP-seq
data for several proteins on the same cell line to detect re-
gions that misbehave in ChIP-seq experiments. We assigned
the term variable for a given genomic region if a protein
binding site (or ChIP-seq peak) was not consistently de-
tected in several experimental replicates of the same pro-
tein and for several independent proteins in a given cell
type. These assignments can increase the value of ChIP-seq
experiments by categorizing certain peaks as having cell-
specific variability. Possible reasons for this variation might
be the adoption of variable genomic structures (3), the high
expression of a nearby gene (2), the specificity of the anti-
body used and the conformation of the chromatin during
the immunoprecipitation. By finding variable regions, we
expect to be able to characterize the origins of this variabil-
ity and its potential relation to biological processes.

During the last years, the ENCODE consortium (4) ad-
dressed the problem of data collection for ChIP-seq exper-
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iments as well as other sequencing datasets creating the
metadata of all the experiments. This effort is praisewor-
thy because at the time of reusing specific datasets it is
important to know in detail how the data were produced,
from which laboratory and according to which experimen-
tal criteria. This information allows controlling possible
confounding factors in our study that focuses on local vari-
ability potentially caused by local genomic structural con-
formation or activity. Thus, we used data from the EN-
CODE consortium, and we controlled how the experiments
were performed, from which laboratory and the bioinfor-
matics tools used for data handling among other parame-
ters.

In this work, we took advantage of the metadata provided
by the ENCODE consortia, as indicated above, to select ex-
periments in a consistent and comparable manner to imple-
ment a sliding window approach to classify genomic regions
as variable or not.

Our results show that the method can identify variable
regions (which we name variable occupancy target regions
or VOTs) for every cell line tested and that, particularly for
the K562 cell line, for which many datasets are currently
available, it improves the separation of the samples in a
principal component analysis (PCA) to promote a better
downstream interpretative analysis. Method and scripts can
be found online in this link: https://github.com/tAndreani/
IPVARIABLE.

MATERIALS AND METHODS

Collection of ChIP-seq data

The ENCODE data portal provides comprehensive infor-
mation about the meta-data of each experiment generated
by the ENCODE consortium. We selected experiments ac-
cording to specific parameters in order to avoid unwanted
variability and to maintain consistency on the parameters
of the downloaded data. The experiments were selected ac-
cording to the following criteria: (i) laboratory producing
the data as Snyder, (ii) identical untreated isogenic human
cell lines (K562, MCF-7, GM12878 and HepG2) and ES-
E14 mouse embryonic stem cells (mESCs), (iii) data pro-
cessed with the standard ENCODE pipeline that uses the
optimal IDR threshold as statistical method to obtain the
significant peaks (5), (iv) status as released corresponding
to a possible usage of the data, (v) the experiments of each
biological replicate correspond to a peak file compared with
appropriate input control experiment and (vi) peaks signif-
icance selected with a false discovery rate (FDR) ≤ 5%,
which results in a list of peaks with a fold change enrichment
≥2.25 in mESCs and ≥10 for the other cell lines. The meta-
data presented in JSON format was extracted and stored
in a relational SQL database (See Supplementary Table S1
and Figure S1). For every cell we selected the following tar-
gets: for HepG2 we used MAFK, MNT, TBX3 and ZNF24
with two biological replicates; for MCF-7 we used CREB1,
CLOCK, NFIB and ZNF512B with two biological repli-
cates; for GM12878 we used BHLHE40, EP300, IKFZ2
and ZNF143 with two biological replicates; for K562 we
used ARNT, NCOR1, MNT and ZNF24 with three biolog-
ical replicates; for ES-14 mESCs we used HCFC1, MAFK,

ZC3H11A and ZNF384 with two biological replicates (see
Supplementary Table S1 for details).

Reproducibility score implementation

After the identification of suitable experiments, the genome
is binned in consecutive segments of 200 base pairs (bp)
and the experimental ChIP-seq peaks are mapped to each
segment. We formalized the reproducibility and not repro-
ducibility of the segments for a given protein as illustrated
in Figure 1A and as follows:

Let S be the genomic segments for a given genome;
Let N be the number of replicate ChIP-seq experiments

for a given protein;
For each segment in S;

Let P be the number of peaks detected in the segment;
Reproducibility score = NA if P = 0;
Else Reproducibility score = 1 if the segment itself or

one of its neighbors* has P = N;
Otherwise Reproducibility score = 0

*Neighbors are all consecutive segments with P > 0
In the following paragraph, we explain the procedure de-

scribed by the pseudocode above in words. For our study,
segments of the genome are defined considering a window
size of 200 bp, N represents the number of replicates for
each protein under investigation in a given cell type, and
P is the number of replicated ChIP-seq peaks detected in a
genomic segment (the signal). Consecutive segments with-
out any signal (P = 0; no peaks) are assigned with a NA.
Consecutive segments in between two NA segments with a
signal P reaching as a maximum value N are considered as
reproducible regions and assigned a value of 1. On the con-
trary, consecutive segments in between two NA segments
reaching a maximum value lower than N are considered as
variable regions and assigned a value of 0 (Figure 1A). The
results of each protein under investigation are aggregated in
a Reproducibility Score Matrix (RSM) (Figure 1B) where
rows show segments and columns show their reproducibil-
ity score for each protein and a final score (FS) defined as
the average value of the row (or NA if more than 1 repro-
ducibility score equals NA).

Statistical test of scored regions

To assess whether the number of reproducible or variable re-
gions associated with a particular score is significant, a suit-
able control had to be identified. The appropriate null distri-
bution was built by randomizing the RSM. We performed
this task using the ‘sample’ function in R. The randomiza-
tion was performed 1000 times, and regions at particular
scores (0, 0.25, 0.33, 0.5, 0.66, 0.75 and 1) of the null dis-
tribution were counted. Afterward, a z-score was computed
according to this formula:

z-score = δ − δ rand
θδ rand

Where δ is the number of regions observed with a particular
score, and δ rand and θδ rand are the mean value and the
standard deviation of the null distribution, respectively. As-
suming normality of the null distribution, it is possible to
analytically calculate the corresponding P-value for a given

https://github.com/tAndreani/IPVARIABLE
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Figure 1. Method to annotate genomic regions with a reproducibility score. (A) From the genomic segments S, segments with ChIP-seq peaks for a given
protein 1 in a given cell, in N = 3 replicates, are converted to a binary format (Rep1 to Rep3). The sum at each segment of the values for the replicates
(SUM or P) allows to define blocks of consecutive segments between zero-scored segments devoid of peaks (here two blocks; green and blue). All segments
in a block are identified as indicating a reproducible region (Reproducibility = 1; green) if the block holds at least one segment with value 3. Otherwise
they are given a value indicating a non-reproducible region (Reproducibility = 0; blue). (B) Average reproducibility values for ChIP-seq experiments from
four different proteins in cell type A are combined in a final score that ranges from 0 (not reproduced in the four proteins) to 1 (reproduced in the four
proteins). Only segments with values for at least three proteins were considered.

z-score with significant level α = 0.05. The regions for each
particular score were subjected to the test.

Principal component analysis and Euclidean distances

PCA was performed using the Python package scikit-learn
version 0.19.1. The dots represented in the PCA are bio-
logical replicates for a given protein. Each color represents
a specific protein and the features set used to perform the
PCA are all the segments detected in all the proteins. In or-
der to test the effect of the removal of the variable regions
in the PCA, segments within the variable regions were re-
moved from the features set. The similarity distances be-
tween replicates of the same protein in the PCA were com-
puted with the Python package SciPy version 0.19.1 using
as a metric the Euclidean distance. Boxplot and Dotplot
were performed using the Python library Matplotlib version
2.2.2.

Enrichment analysis at regulatory elements

We collected genomic coordinates of the following gene re-
lated features from the UCSC table browser database in
hg19 and mm10 annotations: promoter, 5′-UTR, coding
exon, intron and 3′-UTR. Furthermore, we also used re-
gions with R-loops (6) since they were previously reported
as a potential feature associated with misbehaving ChIP
peaks (3). For a set of regions (e.g. VOTs), the enrichment
for each feature is obtained by dividing the number of re-
gions overlapping a regulatory feature by the number of
randomized regions overlapping the same feature.

Enrichment = VOTs ∩ Feature
Simulated Regions ∩ Feature

Randomized regions were obtained using BEDTools ver-
sion v2.25.0 shuffleBed (7).
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Figure 2. Significance of the observed number of variable regions for different cell types. The number of VOTs observed in each cell line (red line) is
significantly higher than the corresponding computed null distribution (blue). (A) K562, (B) GM12878, (C) HepG2, (D) MCF-7 and (E) mouse ESCs cells.
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CG and AT dinucleotide frequency calculation

The percentage of CG and AT dinucleotides in the mouse
and human genomes was calculated with the nuc function
in the BEDTools version v2.25.0 toolkit. To compute the
CG and AT enrichment in the variable regions of mESCs
and K562 cells we used a set of control regions using the
shuffleBed function in BEDTools version v2.25.0 (7). The
differences in dinucleotide composition between the vari-
able regions and the set of control regions were tested for
significance using a t-test.

Prediction of variable regions in K562 and mESCs using ge-
nomic features

In order to found out whether different genomic features
(active chromatin marks, repressive chromatin marks, DNA
accessible regions, CpG islands, etc.) could be used by a ran-
dom forest classifier to predict variable regions in mESCs or
in K562 cells we used a large panel of datasets.

For mouse ESCs, we also considered regions undergo-
ing TET oxidation and bivalent domains. We used the fol-
lowing published data: 5hmC, 5fC and 5caC (8); CpG is-
lands extracted from UCSC table browser for mm10 an-
notation; H3K4me1, H4K4me3, H3K79me2, H3K27ac,
H3K27me3, H3K36me3 (9), LMR (10), DNAse-seq from
ID:ENCSR000CMW experiment in the ENCODE por-
tal. mm9 genome features were converted to mm10 using
the Batch Coordinate Conversion (liftOver) tool from the
UCSC Genome Browser Utilities (https://genome.ucsc.edu/
cgi-bin/hgLiftOver).

For K562 cells, we used the following data down-
loaded from the ENCODE data portal: H3K27ac (ID:
ENCFF044JNJ), H3K27me3 (ID: ENCFF145UOC),
H3K4me1 (ID: ENCFF183UQD), H3K4me3 (ID:
ENCFF261REY), H3K79me3 (ID: ENCFF350GQM),
H3K36me3 (ID: ENCFF537EUG), DNAse-seq (ID:
ENCFF856MFN). CpG islands were extracted from
UCSC table browser for hg19 annotation.

To train and test the random forest model we used the
function randomForest from the RandomForestClassifier
from the Python package sklearn (0.21.3) (11). The default
settings of the classifier were used except from max features
that was set to 2. As a positive set we have used the VOTs
estimated by our method and as a negative set we used a
set of regions obtained with the package gkmSVM version
2.0 (12). This package has a function named genNullSeqs
capable of using the positive set of sequences and learn-
ing their nucleotide composition. Subsequently, the func-
tion generates a set of genomic locations with sequences of
nucleotide composition and length similar to those in the
positive test set. Since the genomic context is also impor-
tant, we matched the simulated sequences within genomic
features enriched in the VOTs such as CG rich promoters,
5′-UTRs and R-loops. The matching was performed main-
taining the same number of regions found in the VOTs at
each of those features. A similar approach was successfully
used previously for the prediction of double strand breaks at
CTCF and accessible chromatin sites (13). The random for-
est classification models were evaluated with receiver oper-
ating characteristic (ROC) curves within a stratified ten-fold
cross-validation using the appropriate sklearn functions. In

order to analyze the importance of single features contribut-
ing to the classification model RandomForestClassifier im-
plements the function feature importances that we used to
compute values describing this aspect.

Calculation of the evolutionary conservation of VOTs

To calculate the evolutionary conservation of VOTs we used
the phastCons tool (14). The evolutionary score for each
200 bp segment was calculated by averaging the phastCons
score of each nucleotide. As a null model, we used sequences
in length, nucleotide composition and genomic context sim-
ilar to VOTs. The test for significance was performed using
the Wilcoxon rank-sum test with continuity correction. This
operation was performed across 60 vertebrate species by us-
ing the phastCons60way tool in UCSC genome browser.
Furthermore, this operation was performed across 60 pla-
cental vertebrates using phastCons60wayPlacental.

RESULTS

VOTs at transcription factor binding sites but not at chro-
matin marks can be detected in all tested cell lines

Our method to detect variable regions in ChIP-seq datasets
for a given cell line relies on having several proteins tested
for the particular cell line with replicates coming from the
same laboratory and using the same platform (see ‘Materi-
als and Methods’ section for details). Currently, the number
of such sets in the ENCODE database is limited. While we
were able to obtain a suitable set for K562 with four pro-
teins and three replicates each, it is more usual to have a
lower number of replicates, typically two.

For this reason, we applied our method to identify VOTs
using just two replicates per protein for the human cell lines
K562, GM12878, HepG2, MCF-7 and for mouse ESCs
(mESCs). We found that K562 cells have a higher and signif-
icant number of variable regions for a total amount of 483
(P-value = 6.3e-103; Figure 2A see ‘Materials and Meth-
ods’ section for details) whereas the other three human cell
lines GM12878, HepG2, MCF-7 have similar lower but also
significant numbers: 61, 76 and 62, respectively (P-value =
1.1e-07, 5.9e-6, or 4e-5, respectively) (Figure 2B–D). Fur-
thermore, we used another popular cell line used for devel-
opmental studies, mouse embryonic stem cells ES-14. Also
in this cell line, we identified a number of VOTs for a total
amount of 332 (P-value = 6.9e-3) (Figure 2E). The coordi-
nates of VOTs found in K562, HepG2, MCF-7, GM12878
and mESC are provided as Supplementary Table S2.

We next asked whether the variable regions are also
present at chromatin marks. For this, we have applied our
method to K562, human ESCs (hESCs) and MCF-7. We
found very few variable regions in K562 and hESCs for an
amount of eight and seven, respectively and given the low
number we did not subject those regions to a statistical test.
For MCF-7 we did not find any regions while for the other
cell lines HepG2 and GM12878 there were not enough data
to run our method. This led us to conclude that VOTs
are typical of transcription factors and not of chromatin
marks.

At last, we wanted to see to which extent increasing the
number of replicates in the experimental design would in-

https://genome.ucsc.edu/cgi-bin/hgLiftOver


e53 Nucleic Acids Research, 2020, Vol. 48, No. 9 PAGE 6 OF 11

Figure 3. Properties of variable regions in K562 and mESCs. CG dinucleotide composition in K562 human cell lines (A) and in mouse ESCs (B). Control
regions are a set of randomly sampled genomic regions of similar size. Enrichment of VOTs in K562 human cell lines (C) and mouse ESCs (D) at several
gene body features and R-loops. (E) Enrichment of VOTs at HOT regions (3).

crease the number of variable regions. We were able to de-
sign a proper experiment only for K562 cell lines, which is
the cell line with the highest number of experiments in the
ENCODE project. Using three replicates per protein and
four proteins (see ‘Materials and Methods’ section for de-
tails), the number of variable regions detected was drasti-
cally higher (a total of 3012). We also used the three repli-
cates from this cell line to evaluate the reproducibility of
the identified VOTs. Comparing replicate 1 versus 2, 1 ver-
sus 3 and 2 versus 3, we obtain 486, 254 and 176 regions,
respectively. The overlaps between the sets obtained are not
random. VOTs from 1 versus 2 overlapping with VOTs from
1 versus 3 are 56 (P-value = 1.59e-16, Fisher test). VOTs
from 1 versus 2 overlapping with VOTs from 2 versus 3 are
3 (P-value = 0.19, Fisher test). VOTs from 1 versus 3 over-

lapping with VOTs from 2 versus 3 are 14 (P-value = 1e-4,
Fisher test). The coordinates of VOTs found in K562 with
three replicates are provided as Supplementary Table S2.

Variable regions are rich in CG dinucleotides and enriched
along gene body features

Next, we tested the CG dinucleotide frequency of the vari-
able regions in K562 and mESCs. We found a higher fre-
quency of CG dinucleotides compared to a random set
of control genomic regions in K562 (P-value 3.8e-4) and
mESCs (P-value 8.4e-8) (Figure 3A and B, respectively).
The protein targets in the ChIP-seq experiments used do not
have DNA-binding motifs particularly affine for CG dinu-
cleotides (motifs from the Jaspar database (15); Supplemen-
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Figure 4. Effect of removing variable regions. PCA using presence of peaks in the set of 200 bp segments on the genome as features with the original data
and without 200 bp segments within the variable regions in K562 cell lines (A and B, respectively). Each dot represents a biological replicate and each color
the protein target.

tary Figure S2), hence the CG composition is specifically
related to the variable behavior and not to the DNA-motifs
bound by the proteins selected.

Furthermore, variable regions were highly enriched for
different features among K562 and mESCs cells with K562
showing a high enrichment for promoters and R-loops (Fig-
ure 3C) and mESCs showing a high enrichment for 3′-UTR
and Promoters (Figure 3D). In a recently published work
(3), the authors reported that previously characterized re-
gions as ‘high occupancy target’ (HOT) (16,17) are likely to
be a ChIP-seq artifact. Among the properties of these re-
gions, they reported GC/CpG-rich kmers and RNA–DNA
hybrids (R-loops). Since also in our work we found these
characteristics for the variable regions, we downloaded the
regions reported in (3) and checked for a possible enrich-
ment. We found significant enrichment for all the cell lines
tested except for GM12878. Especially for the K562 and
HepG2 cell lines the enrichment was of 52- and 17-fold
change, respectively (observed versus expected, two-sided
Fisher test P-value 1.46e-87, 3.9e-3, respectively). Further-
more, also mESCs showed a significant enrichment of 8-fold
change (observed versus expected, two-sided Fisher test P-
value 3.2e-3) (Figure 3E).

Variable regions are not blacklisted regions from ENCODE
project nor associated with structural variations in cancer cell
lines

The ENCODE consortia provides a detailed description
about the meaning of ‘blacklisted sites’. These genomic po-
sitions often produce artifact signal in certain loci mainly
because of excessive unstructured anomalous sequences.
Reads mapping to them are uniquely mappable so simple
mappability filters do not remove them. These regions are
often found at specific types of repeats such as centromeres,
telomeres and satellite repeats. Given the high variabil-
ity of the ChIP-seq peaks of the regions described in this
manuscript we thought to check whether our method was

detecting the already described and characterized ‘black-
listed regions’ or not. To answer this question, we analyzed
the overlap of the variable regions obtained in all the cell
lines we have used (K562, HepG2, MCF-7, GM12878 and
mESC) with the public available ENCODE blacklisted re-
gions (18). We found no overlap except for K562 (signifi-
cant depletion, 35 observed versus 261 in random model,
two-sided fisher test P-value 2.92e-46) and mESC (signifi-
cant depletion, 7 observed versus 29 random, P-value 2.1
e-4). These results confirm that our variable regions are not
associated with the ENCODE blacklisted regions, hence
need to be considered for new detection methods. At last,
given the presence of structural variation in cancer cell
lines, we asked whether VOTs found in cancer cell lines
could be the outcome of such variations. To test this, we
downloaded annotated structural variants from the https:
//portals.broadinstitute.org/ccle/ website for K562, MCF-7
and HepG2 and found no overlap for any of the correspond-
ing VOTs. There were no data available for GM12878.

The removal of variable regions improves the interpretation
of the PCA in K562 cell lines

Variable regions may reflect cell-specific effects that are not
target-specific. While this information might be indicating
biological function, we hypothesized that the removal of
such target non-specific data could result in an improve-
ment of the separation of the replicates points in a PCA.
In order to test such potential benefit in removing the vari-
able regions for downstream interpretative analysis, we per-
formed a PCA of the ChIP-seq samples obtained for the
K562 cell line. The PCA was performed using (i) all the seg-
ments bound by each protein in the respective replicates in
the original datasets (Figure 4A) and (ii) without the seg-
ments within the variable regions (Figure 4B). We found
that the separation along the components improves after re-
moving the segments within the variable regions. Further-
more, the replicates of the proteins tend to cluster better

https://portals.broadinstitute.org/ccle/
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Figure 5. Prediction of variable regions in K562 and mESCs. (A) ROC as a quality measure of the predictability of the variable regions in mESCs and (B)
importance of the features for predicting the variable regions in mESC measured as mean decrease Gini in the random forest. See text for details about
every feature. (C) ROC as a quality measure of the predictability of the variable regions in K562 cells and (D) importance of the features for predicting the
variable regions in K562 cells measured as mean decrease Gini in the random forest.

without the segments within the variable regions and this
is reflected with lower Euclidean distances in pairwise com-
parisons between replicates of the same proteins (Supple-
mentary Figure S3). We note that this does not mean that
data from these regions should be discarded, but that they
should be considered differently. Further research is needed
to characterize these regions and find out if they have a cell-
specific biological function.

VOTs are predictable by DNA accessible regions in K562 and
mESCs

At last, we searched for genomic features that can be pre-
dictive of variable behavior. We evaluated the possible asso-
ciation of different genomic features with variable regions
using a random forest classifier.

The classifier was trained with a positive set consisting
of the variable regions detected in mESCs (332 variable re-

gions), and with a negative set consisting of genomic se-
quences with size and nucleotide composition similar to
those of the positive set (see ‘Materials and Methods’ sec-
tion for details about the training and about the set of ge-
nomic features).

The algorithm was able to classify the variable regions
(AUC (Area Under ROC-curve) = 0.718) and returned as
best predictors DNA accessible regions, together with re-
gions lowly methylated and oxidative products of TET en-
zymes 5hmC and 5caC (Figure 5A and B). These modifi-
cations are highly frequent at distal regulatory elements (8)
and promoters (19) and we speculate that the turnover of
these modifications might affect the binding of the proteins
to the DNA leading to stochastic variation of the binding
sites.

To observe the reproducibility of these results, we studied
next data from K562 cells (483 variable regions). Again, as
best predictor of variable regions we found DNA accessible
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Figure 6. Functional analysis of VOTs. GO enrichment analysis of VOTs
(not overlapping HOTs or blacklisted regions) for K562 cell lines using
Cistrome-GO. A similar enrichment analysis for mESC selected only the
term ‘protein–DNA complex’ (see text for details). The dashed vertical red
line represents FDR = 5%.

regions, together with K3K4me1 and H3K27ac chromatin
marks (AUC = 0.951) (Figure 5C and D).

Functional analysis and evolutionary conservation of VOTs

In order to study the functional implications of VOTs, we
decided to interrogate Cistrome-GO (20) and perform func-
tional enrichment analysis for K562 and mESCs, which
were the two cell types with a reasonable number of regions
for such an analysis. We found in K562 as a top hit the RNA
Pol-II core complex (corrected P-value 1.72e-06, Figure 6)
suggesting that the variable regions can be located at sites
of genes regulating core complexes of transcription. Consis-
tently, for mESCs the only significant Gene Ontology term
found was protein DNA complex (corrected P-value 3.3e-
02).

Considering that VOTs in mESCs could have a functional
implication in development, we asked whether there is a
conserved role for these DNA sequences across different
vertebrate species. We performed this using the phastCons
(21) tool (see ‘Materials and Methods’ section for details)
and found that VOTs in mESCs are not conserved among
60 vertebrate species (Wilcoxon rank-sum test with conti-
nuity correction P-value = 0.12, Figure 7A). However, con-

sidering only the placental among the 60 vertebrate species
we found a significant result (Wilcoxon rank-sum test with
continuity correction P-value = 0.021, Figure 7B). This sug-
gests that VOTs would have a function specific to this taxa.

Taken together, our results suggest that VOTs have a con-
served role in the establishment of feedback loops of the
gene regulatory network stochastically influencing the ex-
pression of DNA binding proteins at DNA accessible re-
gions.

DISCUSSION

During the last years, several laboratories tried to study the
regulation of gene expression in different model organisms.
For this scope, ChIP-seq was adopted as a standard tech-
nique but the extent of its usage raised some questions in
terms of reliability (1–2,21–22). In particular, in a previous
work (3), Wreczycka and colleagues presented a method
that considers the nature of phantom peaks and hyper-
ChIPable regions to define HOT regions where un-specific
binding to multiple targets would be found even in the ab-
sence of expected binding motifs. They concluded that the
un-specificity of binding sites in HOT regions is associated
with CG dinucleotide rich regions and as a consequence at
R-loops (that are CG rich) and DNA tertiary structures.
Though, this is a common concern for ChIP-seq assays and
since the beginning the technique was known to be biased
toward GC-rich contents during fragment selection in the
steps of the library preparation and amplification during the
sequencing (22). Here we have found evidence that supports
that such regions could also be responsible for variable be-
havior in ChIP-Seq in a cell-specific fashion. Our method
evaluates replicated ChIP-seq experiments for multiple tar-
gets in a cell type, to find regions where target binding is
not reproduced in all replicates for multiple targets. These
variable occupancy target regions (VOTs) are cell-specific
and share structural features with HOT regions. However,
differently to HOTs, VOTs do not produce consistent un-
specific target binding. Accordingly, VOTs do not overlap
blacklisted ENCODE regions. Together, the cell-specificity
of VOTs and our finding that VOTs can be predicted using
DNA accessibility suggest their dependency on gene expres-
sion and epigenetic state.

While the most consistent enrichment of variable regions
observed was for promoters and 5′-UTR regions in both
K562 cells and mESCs, the differences observed for vari-
able regions at R-loops suggest that it is not possible to
drive a certain conclusion relating where exactly this vari-
ation occurs. On the other hand, the fact that we are able to
predict variable regions using genomic features alone with
relatively high accuracy indicates that there is certainly a re-
lation between genomic features and variability that could
be eventually detected. Taking these results together, we as-
sume that with the future availability of further ChIP-seq
datasets testing multiple proteins in the same cell lines it
will be possible to assess the sources of variability in ChIP-
seq with more certainty. Regarding the predictive genomic
features, we note that histone marks were not predictive of
VOTs in K562 and mESCs. This is in agreement with the
fact that VOTs are not detected when using histone ChIP-
seq (as opposite to transcription factor ChIP-seq). These re-
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Figure 7. Conservation of VOTs in mESCs (A) across 60 vertebrate’s species and (B) across placental. x-axis represents the average phastCons score in
segments of 200 bp and y-axis represents the number of segments for the particular score.

sults support that VOTs are not due to ChIP-seq technical
issues.

With our method, we propose a systematic approach
using ChIP-seq experiments and replicated measurements
in a given cell-type to identify misbehaving DNA regions
that have to be treated differently in the post processing
downstream analysis. We have shown that discarding data
from these regions can improve studies focusing on target-
specific effects. However, the specific study of VOTs is neces-
sary, since our functional analyses indicate that VOTs might
regulate DNA binding proteins at regions enriched in R-
loops and 5′-UTRs, which have a tendency to adopt struc-
tures. For mESC we found their conservation among pla-
centals. These results suggest their role in developmental
functions by feedback loops of the gene regulatory network.
Formation of structures in VOTs could result in sites in
which different transcription factors compete for binding in
a stochastic manner that results in the observed variability.
Further research is needed to study potential cell-specific
functions of VOTs as hubs or sponges for transcriptional
regulatory complexes, which could be verified with other
experimental assays like ChIP-qPCR. We suggest applying
our approach as a post processing quality check of the data
before starting follow up experiments and driving biological
conclusions.

We must point out that our method requires enough repli-
cates for the same protein in a given tissue. For example, pre-
dictions for organisms like the fly Drosophila melanogaster
using data from modENCODE and modERN are not yet
possible, At this point, the only datasets we find suitable for
our analyses are in ENCODE.

At last, we note that similar approaches to the one used
for our method to point to variable regions in ChIP-seq
datasets could be eventually developed and applied to any
type of next generation sequencing datasets that uses repli-
cated measurements under various conditions (for example,
ATAC-seq from multiple cell types). This could open av-
enues for the discovery of other types of variability leading
to a more informed use of sequencing-based data. The study
of the similarities and differences between variable regions

obtained with different techniques might be crucial to in-
crease our understanding of the inter-relation between ge-
nomic structural flexibility and regulatory function.
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