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Abstract: The aim of this study was to investigate the antifungal activity of a cyclic tetrapeptide from
Bacillus velezensis CE 100 against anthracnose-causing fungal pathogen Colletotrichum gloeosporioides.
Antifungal compound produced by B. velezensis CE 100 was isolated and purified from ethyl acetate
extract of B. velezensis CE 100 culture broth using octadecylsilane column chromatography. The
purified compound was identified as cyclo-(prolyl-valyl-alanyl-isoleucyl) based on mass spectrometer
and nuclear magnetic resonance analyses. This is the first report of the isolation of a cyclic tetrapeptide
from B. velezensis CE 100 culture filtrate. Cyclic tetrapeptide displayed strong antifungal activity at
concentration of 1000 µg/mL against C. gloeosporioides mycelial growth and spore germination. Our
results demonstrate that the antifungal cyclic tetrapeptide from B. velezensis CE 100 has potential in
bioprotection against anthracnose disease of plants caused by C. gloeosporioides.

Keywords: antagonistic bacteria; antifungal cyclic tetrapeptide; anthracnose disease; mycelial
growth; spore germination; biocontrol agent

1. Introduction

Phytopathogenic fungi are serious threats to crops. They can reduce the quality and
yield of agricultural products [1,2]. Generally, the ideal way to prevent fungal invasion is
by the application of fungicides as they require less time to reduce serious crop losses [3,4].
However, fungicides have detrimental impacts, including the emergence of fungicide-
resistant pathogens, decline of soil physio–chemical properties, accumulation of toxic
compounds, and long residual periods [5–9]. Due to increasing demand of consumers
for fungicide-free products, the need for alternative disease control strategies, such as
biological control has been emphasized [10,11]. Biological control agents are environment
friendly and sustainable for protecting plants against pathogens [8,12,13].

The role of active metabolites derived from biocontrol agents as viable and reliable
alternatives to chemical fungicides cannot be underestimated [9,14–17]. Among various
biocontrol agents, Bacillus species show strong abilities to restrict the growth of plant
pathogens by synthesizing hydrolytic enzymes and antifungal compounds [14–16,18,19].
Moreover, Bacillus species are known to produce peptide antibiotics [20–22] used for
biocontrol of agricultural crops [23]. Peptide antibiotic compounds have received par-
ticular attention as candidates for plant protection products [24,25]. These compounds
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can permeate and disrupt fungal cell membranes [26,27], thus reducing the likelihood
of developing resistance compared to traditional antibiotics [28]. Bacillus velezensis also
produce peptide antibiotics that can inhibit the growth of various fungi [16,22]. Its poten-
tial utility as a biocontrol agent against several fungal plant pathogens has recently been
investigated [16,29,30].

Colletotrichum fungi causing anthracnose disease in many economical crops worldwide,
is categorized as one among the top 10 fungal pathogens [31]. These pathogens can invade
host plants via melanized appressoria and spread infection by forming primary and
secondary hyphae to colonize host plant cells, leading to the development of dark or water-
soaked lesions with sunken necrotic tissues at infected areas. Colletotrichum infections are
visible as lesions on leaves, fruits, and other parts of plants, resulting in yield losses and
reduced crop marketability [32]. Colletotrichum consists of approximately 189 known species
with a broad host range and high genetic diversities [33]. Although many Colletotrichum
species are seed-borne pathogens, they can exist in soil and dead plant parts as saprophytes.
Their spores can be dispersed through water splashing and by wind [33,34]. Anthracnose
caused by C. gloeosporioides has been reported from valuable crop plants such as strawberry,
dragon fruit, cassava, mango, guava, apple, coffee, avocado, almond, jujube, etc., and
causes a serious economic constraint till harvest [35]. Considering the challenges posed
by the disease, reliable and cost-efficient biocontrol agents are advocated. Further, the
mechanisms of action of biocontrol agent-derived antibiotics against anthracnose caused
by C. gloeosporioides remains poorly understood [36].

Numerous microorganisms have been used for controlling fungal diseases including
the diseases caused by C. gloeosporioides [14–16]. However, many researchers are focusing
on antagonistic microorganisms that can more effectively control C. gloeosporioides and
improve crop production and quality. Bacillus strains possess the advantage of sporulation
which confers heat resistance, desiccation tolerance, and the ability to successfully colonize
the plant micro-environment [37,38], thereby restricting pathogen infection [39]. The
objectives of this study was to isolate and identify an antifungal cyclic tetrapeptide from B.
velezensis CE 100 and, subsequently, investigate its inhibitory effects on mycelial growth
and spore germination of plant pathogen C. gloeosporioides.

2. Results
2.1. Antifungal Activities of B. velezensis CE 100 Culture Filtrate against Phytopathogenic Fungi

Various concentrations of B. velezensis CE 100 culture filtrate (BCF) were tested for
antifungal properties against the plant pathogen C. gloeosporioides (Figure 1). BCF at all
concentrations was able to inhibit the growth of the fungal pathogens. This is substantiated
by the fact that the mycelial growth inhibition significantly increased with increasing
concentration of BCF. BCF at a concentration of 50% showed the highest inhibition (75.9%)
of mycelial growth while the inhibition was 49.7% at 10% of BCF concentration (Figure 1).

2.2. Isolation and Identification of Antifungal Cyclic Tetrapeptide

The antifungal compound (EE3-3) was purified from the ethyl acetate fraction of
B. velezensis CE 100 culture broth by medium pressure liquid chromatography (MPLC)
coupled with an octadecylsilane (ODS) column. The molecular weight of EE3-3 (380.2)
was established by observing a sodiated molecular ion peak at m/z 403.2 (M+Na)+ in the
electrospray ionization-mass spectrometry (ESI-MS) spectral analysis. 1H and 13C nuclear
magnetic resonance (NMR) spectra of EE3-3 were similar to those of a cyclic tetrapeptide
cyclo-(prolyl-leucyl-alanyl-isoleucyl) reported previously [40,41].
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ther confirmed by heteronuclear single quantum correlation (HSQC) and heteronuclear 

multiple-bond correlation (HMBC, Figure 2, arrows) experiments. The antifungal cyclic 

tetrapeptide was thus confirmed to be [cyclo-(prolyl-valyl-alanyl-isoleucyl)]. 

Table 1. 1H (500 MHz) and 13C (125 MHz) NMR data of the antifungal compound in deuterated methanol (CD3OD). 

Residue Position δH (Int., Multi., J in Hz) δC 

Proline 1 a 172.7 

 2 4.21 (1H, t, 7.5) 60.2 

 3 2.312.35 (1H, m), 1.911.94 (1H, m) b 29.7 

 4 2.032.06 (1H, m), 1.911.94 (1H, m) b 23.4 

 5 3.523.54 (2H, m) 46.3 

Valine 1′ a  167.7 

 2′ 4.024.04 (1H, m) c 61.7 

 3′ 2.482.51 (1H, m) 30.0 

 4′ 1.10 (3H, d, 7.0) 19.0 

 5′ 0.94 (3H, d, 6.5) 16.8 

Alanine 1′’ a 171.4 

 2′’ 4.014.06 (1H, m) c 51.7 

Figure 1. Mycelial growth inhibition of C. gloeosporioides by bacterial culture filtrate (BCF) from B. velezensis CE 100. (a)
Growth inhibition of C. gloeosporioides by BCF. (b) Antifungal activity of BCF against C. gloeosporioides. Error bars represent
standard deviation of the mean. Calculated mean values are from three replicates. Mean with the different letter are
significantly different at p < 0.05 when compared using least significant difference test.

Further, the NMR spectral analysis identified EE3-3 to contain a valine [cyclo (prolyl
valyl alanyl isoleucyl)] instead of leucine cyclo-(prolyl-leucyl-alanyl-isoleucyl). The 13C
spectrum of EE3-3 showed the presence of 19 carbons (Table 1), including four amide
carbonyl carbons at δ 172.7 (C-1), 171.4 (C-1′′), 169.4 (C-1′ ′ ′), and 167.7 (C-1′). The 1H NMR
spectrum showed four methine protons at δ 4.21 (1H, t, J = 7.5 Hz, H-2), 4.02–4.04 (1H, m,
H-2′), 4.01–4.06 (1H, m, H-2′′), 3.91 (1H, d, J = 2.5 Hz, H-2′ ′ ′), and five methyl protons at δ
0.94–1.45. Individual amino acids were assigned based on 1H-1H correlation spectroscopy
(COSY; Figure 2, bold lines). Connectivities of the antifungal cyclic tetrapeptide were
further confirmed by heteronuclear single quantum correlation (HSQC) and heteronuclear
multiple-bond correlation (HMBC, Figure 2, arrows) experiments. The antifungal cyclic
tetrapeptide was thus confirmed to be [cyclo-(prolyl-valyl-alanyl-isoleucyl)].
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Figure 2. Chemical structure of the antifungal cyclic tetrapeptide [cyclo-(prolyl-valyl-alanyl-
isoleucyl)] isolated from B. velezensis CE 100 culture broth underlying 1H-1H COSY (bold lines)
and HMBC (arrows) correlations. Carbon position is represented as ′ for valine, ′′ for alanine, and ′ ′ ′

for isoleucine.
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Table 1. 1H (500 MHz) and 13C (125 MHz) NMR data of the antifungal compound in deuterated
methanol (CD3OD).

Residue Position δH (Int., Multi., J in Hz) δC

Proline 1 a 172.7
2 4.21 (1H, t, 7.5) 60.2
3 2.31−2.35 (1H, m), 1.91−1.94 (1H, m) b 29.7
4 2.03−2.06 (1H, m), 1.91−1.94 (1H, m) b 23.4
5 3.52−3.54 (2H, m) 46.3

Valine 1′ a 167.7
2′ 4.02−4.04 (1H, m) c 61.7
3′ 2.48−2.51 (1H, m) 30.0
4′ 1.10 (3H, d, 7.0) 19.0
5′ 0.94 (3H, d, 6.5) 16.8

Alanine 1′′ a 171.4
2′′ 4.01−4.06 (1H, m) c 51.7
3′′ 1.45 (3H, d, 7.0) 21.1

Isoleucine 1′ ′ ′ a 169.4
2′ ′ ′ 3.91 (1H, d, 2.5) 61.1
3′ ′ ′ 1.93−1.96 (1H, m) 40.4
4′ ′ ′ 1.50−1.55 (1H, m), 1.23−1.29 (1H, m) 25.8
5′ ′ ′ 1.03 (3H, d, 6.0) 15.7
6′ ′ ′ 0.96 (3H, t, 7.5) 12.3

a No proton signal. b Signals of H-3 and H-4 overlapped. c Signals of H-2′ and H-2′′ overlapped. Carbon position
is represented as ′ for valine, ′′ for alanine, and ′ ′ ′ for isoleucine.

2.3. Antifungal Properties of the Cyclic Tetrapeptide against C. gloeosporioides

The C. gloeosporioides hyphae were incubated with 1000 µg/mL of the cyclic tetrapep-
tide and benzoic acid (from B. licheniformis MH48) as a positive control. The degradation
and deformation of mycelia were observed (Figure 3). The inhibition rate of the cyclic
tetrapeptide on the mycelial growth of C. gloeosporioides was 18.8% in 1000 µg/mL, with
significant differences compared to benzoic acid (11.5%) (Figure 3a). Mycelium morphology
was observed under light microscopy and showed buckle formation and swelling growth
in C. gloeosporioides hyphae in both the treatment conditions (Figure 3b).
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Figure 3. Antifungal efficacy of the cyclic tetrapeptide against C. gloeosporioides. (a) Inhibition of C. gloeosporioides mycelial
growth. (b) Antagonistic activity against C. gloeosporioides. The experiment included methanol (as a negative control),
benzoic acid derived from B. licheniformis MH148 (as a positive control), and the cyclic tetrapeptide from B. velezensis CE 100
against the fungal pathogen C. gloeosporioides. Error bars represent standard deviation of the mean. Calculated mean values
are from three replicates. Asterisk indicates a significant difference between treatments as observed by t-test at p < 0.05.
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C. gloeosporioides spores germination was significantly inhibited with increasing con-
centrations of benzoic acid and the cyclic tetrapeptide (Figure 4). The spore germination
inhibition was 94.0% at 250 µg/mL of benzoic acid and complete inhibition at 1000 µg/mL
(Figure 4a). The spores germinated and developed into hyphae at 250 µg/mL of cyclic
tetrapeptide concentration that means no inhibition of C. gloeosporioides spore germination
(Figure 4b). At 500 µg/mL, cyclic tetrapeptide concentration 14.0% inhibition of spore
germination was observed. The C. gloeosporioides spores germination was totally inhibited
at 1000 µg/mL of the cyclic tetrapeptide concentration (Figure 4a).
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Figure 4. Antifungal efficacy of a cyclic tetrapeptide against spore germination of C. gloeosporioides. (a) Spore germination
inhibition and (b) hyphal degradation of C. gloeosporioides. The experiment included methanol (as a negative control),
benzoic acid derived from B. licheniformis MH148 (as a positive control), and the cyclic tetrapeptide from B. velezensis CE 100
against the fungal pathogen C. gloeosporioides. Error bars represent standard deviation of the mean. Calculated mean values
are from three replicates. Mean with the different letters are significantly different at p < 0.05 when compared using least
significant difference test.

3. Discussion

Bacillus species demonstrating wide array of bioactive metabolites have been rec-
ognized as effective candidates to control several phytopathogens [14–16,42–45]. In this
study, the BCF of B. velezensis CE 100 displayed significant antifungal activities against
the pathogen, C. gloeosporioides, which causes anthracnose disease in plants. Results of
in vitro tests suggested the involvement of secondary metabolites, consistent with findings
from several previous studies stating the promiscuous action of the secondary metabolites
against fungal pathogens [14–16,42–45]. In this study, we identified a cyclic tetrapeptide
compound from B. velezensis CE 100 culture filtrate based on one- and two-dimensional
NMR spectral analysis. This is the first report showing the isolation of the cyclic tetrapep-
tide from B. velezensis CE 100 culture filtrate. 1H and 13C nuclear magnetic resonance
(NMR) spectra were similar to those of cyclo-(prolyl-leucyl-alanyl-isoleucyl) as reported
previously [40,41].

Cyclic tetrapeptide caused significant antifungal activities against the fungal plant
pathogen C. gloeosporioides revealed by the mycelial growth and spore germination results.
Especially, the cyclic tetrapeptide inhibited about 1.6-fold of mycelial growth compared to
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that with the positive control benzoic acid. Moreover, the spore germination was totally
inhibited by the action of the cyclic tetrapeptide at 1000 µg/mL. The germination of the
hyphae also was inhibited by the action of the cyclic tetrapeptide. However, benzoic acid
at 250 µg/mL showed strong inhibition of C. gloeosporioides spore germination. As reported
earlier, BCF from B. licheniformis MH48 involves benzoic acid, which inhibits the growth
of C. gloeosporioides by 63.1% at 50% of the BCF [14]. Further, at 50% of the BCF from B.
velezensis CE 100 a strong antifungal activity (75.9%) was noticed against C. gloeosporioides.
The present findings indicate that the mycelial growth and spore germination inhibition
could be effective to control the plant pathogen C. gloeosporioides.

4. Materials and Methods
4.1. Bacterial Culture and Fungal Pathogen

The antagonistic bacterial strain B. velezensis CE 100 was isolated from pot soil of
tomato plant [44]. The strain was streaked onto tryptone soy agar medium to obtain single
colonies. Subsequently, a single colony was inoculated in tryptone soy broth (TSB) and
incubated at 30 ◦C and 130 rpm for 2 days. The resulting cultural broth (107 colony-forming
unit (CFU)/mL) was mixed with 50% sterile glycerin and maintained at −80 ◦C for further
experiments. The fungal pathogen C. gloeosporioides KACC 40896 used in this study was
provided by Korean Agricultural Culture Collection and sub-cultured on potato dextrose
agar (PDA) medium for 7 days at 25 ◦C.

4.2. Antifungal Activity of B. velezensis CE 100 Culture Filtrate

One single colony of B. velezensis CE 100 was inoculated in TSB medium at 30 ◦C and
130 rpm for 3 days. Then 500 µL of inoculated culture broth (107 CFU/mL) was inoculated
again into fresh TSB medium (500 mL) at 30 ◦C and 130 rpm with shaking incubator for
7 days. Three replications of the inoculation were maintained. The B. velezensis CE 100
culture broth was centrifuged at 12,000 rpm for 15 min at 4 ◦C. The supernatant was
collected and filtered through four layers of filter paper (Whatman No. 6). The endospore
remnants in the culture filtrate were removed using a syringe filter (0.2 µm). The obtained
filtrate was used for antifungal studies against C. gloeosporioides.

The PDA medium with different water levels (90%, 70%, and 50%) was prepared
in different conical flasks, autoclaved at 121 ◦C for 15 min, and keep until 60 ◦C. Then,
B. velezensis CE 100 culture filtrate concentrations (10%, 30%, and 50%) was added into
each flask, mixed thoroughly, and poured into sterile petri dishes. PDA plates without the
culture filtrate were used as controls. A mycelial plug from culture of C. gloeosporioides was
placed at the center of the PDA plate and incubated at 25 ◦C for 7 days. Three replications
were maintained for each assay. Mycelial growth inhibition percentage was calculated as
(R − r)/R × 100, where R is the radius of the fungal colony in the control plate and r was
the radius of the fungal colony in the treatment plate.

4.3. Purification and Characterization of Antifungal Compound

B. velezensis CE 100 was cultured in 12 L of TSB medium for 14 days at 30 ◦C. The
culture broth was centrifuged at 6000 rpm for 30 min and the supernatant was filtered
through a filter paper (Whatman No. 6). The culture filtrate was then acidified with concen-
trated HCl solution to pH 3 and then partitioned successively with n-hexane, chloroform,
ethyl acetate, and water-saturated n-butanol (each 12 L). These fractions were concentrated
with a vacuum rotary evaporator. The ethyl acetate fraction was found suitable for the
inhibition of the growth of C. gloeosporioides by conducting paper disc method.

The antifungal compound was purified from the ethyl acetate fraction using MPLC
(Isolera one, Biotage, Sweden) coupled with SNAP Ultra C18 120 g column (Isolera one, Bio-
tage, Sweden) with gradient elution of H2O (A) and MeCN (B). The compounds separated
were monitored at 254 and 220 nm with a flow rate of 25 and 50 mL/min. Nine fractions
(EA−EI) were separated from the ethyl acetate fraction (5.0 g) by a linear gradient elution
of initial 0% B for 5 min→100% B for 30 min. Fraction EE (retention time tR of 15–18 min,
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632 mg) was re-eluted by a linear gradient elution of 15% B→35% B for 18 min→35% B
for 28 min to obtain seven subfractions (EE1−EE7). The antifungal compound (EE3-3, tR
7.6–8.1 min, 17.2 mg) was finally purified from subfraction EE3 (tR 7.6–8.1 min, 632 mg) by
linear gradient elution of 10% B for 12 min→25% B for 36 min (flow rate 25 mL/min).

The antifungal compound (EE3-3, white amorphous powder) was analyzed by MS
and NMR experiments. Mass spectra were obtained on a hybrid ion-trap time-of-flight
mass spectrometer (SYNAPT G2, Waters, Cambridge, UK) equipped with an electrospray
ionization source at Korea Basic Science Institute (KBSI, Ochang, Cheongju, Korea). The
antifungal compound was dissolved in deuterated methanol (CD3OD). 1H (500 MHz) and
13C (125 MHz) NMR spectra were acquired using an unityINOVA 500 spectrometer (Varian,
Walnut Creek, CA, USA) in Korean Basic Science Institute, Gwangju Center, Korea. The
structure of compound was determined by the 1H−1H correlation spectroscopy (COSY),
heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple-bond
correlation (HMBC) experiments.

4.4. Antifungal Properties of the Purified Compound

The purified cyclic tetrapeptide was assayed for the inhibition of the mycelial growth
and spore germination against pathogen C. gloeosporioides. The B. licheniformis MH48
derived benzoic acid acted as positive control and was purchased from Daejung Chemicals,
Siheung, Korea. The C. gloeosporioides mycelial growth inhibition by the purified cyclic
tetrapeptide was assayed using the paper disc method. The purified cyclic tetrapeptide
and benzoic acid were dissolved in methanol at 1000 µg/mL. A paper disc was placed
on one side of the PDA plate and 50 µL from methanol (negative control), benzoic acid
(positive control), and the purified cyclic tetrapeptide was loaded on the paper disc. Then,
a mycelial plug (5 mm diameter) of C. gloeosporioides was inoculated at 4 cm distance from
the paper disc on the same PDA plate. The experiment was conducted in three replications,
wherein the plates were incubated at 25 ◦C for 7 days. The mycelial growth inhibition of C.
gloeosporioides was measured using the following formula: mycelial growth inhibition (%)
= (M − m)/M × 100, where M is the radial growth of C. gloeosporioides in the control plate
(methanol) and m the radial growth of C. gloeosporioides in the treatment plate (benzoic acid
and cyclic tetrapeptide). A small piece of mycelium from the border of C. gloeosporioides
colony inhibited by concentrations of the purified cyclic tetrapeptide and benzoic acid was
used to observe the deformation of hyphal structures under a light microscope (Olympus
BX41TF, Tokyo, Japan).

The spore suspension was prepared using the C. gloeosporioides culture spread on
PDA plates for 7 days at 25 ◦C. The surface of fully sporulated fungal colony was flooded
with 10 mL of sterile distilled water and gently scrubbed with sterile spatula. The fungal
suspension was filtered through sterile gauze to remove mycelia. The resulting spore sus-
pension was adjusted to 1 × 106 spore/mL using a hemocytometer cell-counting chamber.
To measure the effects of the cyclic tetrapeptide on C. gloeosporioides spore germination,
2 mg of the purified cyclic tetrapeptide was first dissolved in 200 µL of methanol. Next,
2 mg of benzoic acid was dissolved in 200 µL of methanol as the positive control. Subse-
quently, the purified cyclic tetrapeptide and benzoic acid was serially diluted with sterile
PDB medium to obtain concentrations of 250, 500, and 1000 µg/mL. Spore suspension
of C. gloeosporioides (100 µL) was added to each vial containing different concentrations
of purified cyclic tetrapeptide and benzoic acid. The vial with different concentration of
methanol (without cyclic tetrapeptide and benzoic acid) was used as a negative control.
Each treatment was set as three replicates. The vials were incubated at 25 ◦C for 10 h.
A total of 100 spores from each replication of each treatment were examined using an
Olympus BX41 light microscope. Numbers of germinated spores in each treatment were
counted. Spore germination inhibition (%) was calculated as (S − s)/S × 100, where S and
s represents the number of germinated spore in the control vials (methanol) and treatment
vials (cyclic tetrapeptide and benzoic acid), respectively.



Pathogens 2021, 10, 209 8 of 10

4.5. Statistical Analysis

To determine the differences in the mycelial growth inhibitions between benzoic
acid and cyclic tetrapeptide against C. gloeosporioides, we used t-test at p < 0.05. The
mycelial growth inhibition of the BCF concentrations and the spore germination inhibition
of compounds against C. gloeosporioides were determined with the analysis of variance.
Mean values were compared using least significant difference test at p < 0.05. All data were
performed using SAS 9.0 software (SAS Institute, Cary, NC, USA).
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