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Abstract: In order to ensure smooth traffic and driving safety, deicing salt or snow melting agents are
usually adopted to solve the problem of traffic jams and prevent pavement surfaces from freezing.
The objective of this present study is to investigate the performance deterioration evaluation of asphalt
mixture under the chloride salt erosion environment. Five chloride salt solution concentrations were
designed and the uniaxial static compression creep test, low-temperature IDT test, freeze-thaw
splitting test, and freeze-thaw cycle test were carried out for asphalt mixtures (AC-16) soaked in
chloride salt solution. Results showed that with the increase in chloride salt solution concentration,
the high-temperature stability, low-temperature crack resistance, and water stability of the asphalt
mixture decreases. Moreover, the high-temperature stability, low-temperature crack resistance,
and water stability of the asphalt mixture show a decreasing trend under different chloride salt
solution concentrations following the negative cubic polynomial function. Based on the viscoelastic
analysis, chloride salt solution could reduce the ability of the asphalt mixture to resist instantaneous
elastic deformation and permanent deformation, and this influence will become more obvious
with the increase in chloride salt solution concentration. In addition, the salt freeze-thaw cycle test
indicated that in the early stage of freeze-thaw cycles, the splitting tensile strength of the asphalt
mixture decreases rapidly, then tends to be flat, and then decreases rapidly. This study explores the
performance damage law of asphalt mixture under salt corrosion, and the analysis results of this
study could provide some references for the chloride salt dosage in the snow melting project while
spreading deicing salt.

Keywords: asphalt mixture; salt erosion; freeze-thaw cycles; performance evaluation; viscoelastic be-
havior

1. Introduction

In northern China, the temperature is very low in winter (the average temperature is
about −15 ◦C); the duration of freezing is long, then continuous snowfall or heavy snow
easily leads to traffic jams on expressways and urban roads [1–5]. The decrease in the anti-
sliding performance of asphalt pavement may even lead to serious traffic accidents [6–8].
In order to ensure smooth traffic and driving safety, many road projects adopt the method
of spreading deicing salt, a snow melting agent with the function of quick deicing and
snow melting, to solve the problem of traffic jams and prevent pavement surfaces from
freezing [9]. However, the deicing salt solution would gradually penetrate the interior of
the asphalt mixture in the different work environments, and the migration of chloride ions
follows Fick’s second law, resulting in a series of physical and chemical reactions (such as
the salting-out effect and condensation reaction), leading to asphalt softening, asphalt film
spalling, aggregate looseness, and other distress [10–13].

The main working principle of spreading the deicing salt snow melting agent is based
on the freezing point reduction theory [14,15]. The so-called freezing point refers to the
temperature when a substance reaches the state of solid-liquid coexistence. When chloride
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salts are added into water, the surface of water is occupied by chloride salt ions, resulting
in relatively small vapor pressure of water compared with ice. Therefore, it is necessary
to lower the temperature to make the vapor pressure of ice equal to the vapor pressure
of water, resulting in a decrease in the freezing point. Asphalt mixture is a multi-phase
mixture system composed of coarse and fine aggregates, fillers, and asphalt binders [8].
Its strength formation comes from two aspects: on the one hand, it is the embedment
and extrusion between aggregates; on the other hand, it is the bonding effect of asphalt
binders [15–17].

At present, many scholars have carried out extensive research on the performance
damage of asphalt mixture under salt solution. Zhou et al. investigated the failure in-
fluences of salt erosion on the interfacial effect between asphalt and aggregate at the
conditions of high temperature and hygrothermal environments [18]. Xu et al. investigated
the transport property of chloride salt in asphalt mixtures under different working con-
ditions based on Fick’s second law [19]. Ran et al. used ABAQUS software to simulate
the 45◦ shear test for the contact state between the base layer and asphalt layer under
the effects of different salt solution concentrations and temperatures [20]. Xiong et al.
carried out the durability evaluation of asphalt mixture in the salt corrosion condition
under the effect of dynamic water pressure via a splitting test [21]. Zhang et al. studied
the influences of salt erosion conditions on the asphalt binder by using a four fractions test
and an atomic force microscopy, and they found that the main reason for the performance
degradation of asphalt binder is that the chemical composition of asphalt binder changed
under the action of salt erosion, resulting in the phenomenon of salt aging. At the same
time, the freeze-thaw cycle test of salt solution was simulated [22]. Xiong et al. utilized
CT technology to study the void characteristics of asphalt mixture under the action of salt
erosion by using a three-dimensional reconstruction model. They found that there is a
linear relationship between the splitting strength of asphalt mixture in the salt erosion
condition and its void characteristics. The crystallization pressure caused by salt will
accelerate the development of internal pores of asphalt mixture, resulting in a decrease
in its mechanical properties [14]. Wang et al. investigated the pavement performances of
asphalt mixture containing salt-storage aggregates with the function of snow melting [9].
Liu et al. evaluated the antifreeze and moisture susceptibility of asphalt mixture containing
salt-based filler and its thermal analysis and scanning electron microscope [23].

In the seasonal frozen area of northern China, asphalt pavement performance fail-
ure occurs under the combined action of repeated freeze-thaw and chloride salt erosion,
which leads to the further development of water damage of asphalt pavement [10,12,16].
With respect to the influence of freeze-thaw cycle in salt erosion conditions on the per-
formance of asphalt mixture, Cui et al. investigated the viscoelastic properties of asphalt
mortar in the salt and freezing condition and used the Burgers model while considering
the damage factor to analyze the viscoelastic properties of asphalt mortar. Meanwhile,
the microstructure of asphalt binder in the salt and freezing condition was studied by
scanning electron microscopy [24]. Guo et al. explored the interface bonding property be-
tween asphalt and aggregate subjected freeze-thaw cycles and salt solution erosion through
pull-off tensile tests considering different test temperatures [15]. Zhang et al. studied the
influences of chlorine salt and freeze-thaw cycles on asphalt mastics from the perspec-
tive of spectroscopic and characteristics by using Fourier-transform infrared spectroscopy,
gel permeation chromatography, and atomic force microscopy techniques [25]. Amini et al.
investigated the influences of moisture and chloride salt on the performance degradation
of asphalt mixture subjected to freeze-thaw cycles according to the Marshall stability and
mass loss [26]. Feng et al. discussed the effects of salt on asphalt binder based on the con-
ventional performances, and further studied the influences of salt and freeze-thaw cycles
on the mechanical and volumetrics of asphalt mixes. They found that the freeze-thaw cycle
effect is the main factor influencing asphalt mixture damage, and chloride salt erosion
would accelerate the damage of the asphalt mixture [27]. However, the performance dete-
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rioration of asphalt mixture varying in the wide range of chloride salt concentration was
not considered.

In this study, asphalt mixture was firstly prepared by using the Marshall test method,
and then various chloride salt solution concentrations were designed to simulate the
chloride salt environment of an asphalt pavement with deicing salt in winter. Subsequently,
the uniaxial static compression creep test (for high-temperature stability), low-temperature
IDT test (for crack resistance), freeze-thaw splitting test (for water stability), and freeze-
thaw cycle test (for freeze-thaw resistance) were carried out on asphalt mixtures which
were soaked in chloride salt solution, to evaluate the performance deterioration of the
asphalt mixture. The analysis and results of this study could provide some references for
the chloride salt dosage in the snow melting project.

2. Materials
2.1. Asphalt Binder

The asphalt binder used in this study was an unmodified asphalt binder (Zhonghai
AH-70, Zhonghai Bitumen Co., Ltd., Binzhou, China). According to the Chinese specifi-
cation requirements of “Standard test methods of bitumen and bituminous mixtures for
highway engineering” (JTG E20-2011) [28] and “Technical specifications for construction of
highway asphalt pavements” (JTG F40-2004) [29], the AH-70 asphalt binder has been tested
in the laboratory, and its basic performance parameters are shown in Table 1. The test
results show that the AH-70 asphalt binder meets the specification requirements.

Table 1. Basic performance parameters of AH-70 asphalt binder.

Test Items Units Index Requirements

Penetration @ 25 ◦C 0.1 mm 75 60~80
Penetration index (PI) - −1.77 −1.8~+1.0

Ductility @ 10 ◦C cm 25.4 ≥20
Ductility @ 15 ◦C cm >100 ≥100

Softening point (R&B) ◦C 46.7 ≥43
Brookfield viscosity @ 135 ◦C Pa·s 0.527 -
Brookfield viscosity @ 60 ◦C Pa·s 0.793 -

2.2. Aggregates

The limestone aggregates used in this study were sieved and tested according to the
Chinese specification of “Test methods of aggregate for highway engineering” (JTG E42-
2005) [26,30]. The test results are shown in Tables 2–4. The test results show that the coarse
aggregate, fine aggregate, and mineral powder meet the specification requirements.

Table 2. Performance parameters of coarse aggregate.

Particle Size (mm) 16 13.2 9.5 4.75
Bulk density (g/cm3) 2.851 2.856 2.811 2.768

Saturated surface-dry density (g/cm3) 2.875 2.886 2.833 2.808
Apparent density (g/cm3) 2.915 2.944 2.905 2.876

Water absorption (%) 0.96 1.02 1.28 1.48
Weared stone value (%) Average: 8.41

Flat and elongated particle content (%) Average: 7.66
Crushed stone value (%) Average: 19.81
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Table 3. Performance parameters of fine aggregate.

Particle Size (mm) 2.36 0~2.36
Bulk density (g/cm3) 2.727 2.215

Saturated surface-dry density (g/cm3) 2.769 2.751
Apparent density (g/cm3) 2.842 2.827

Water absorption (%) 1.49 1.55

Table 4. Performance parameters of mineral powder.

Test Items Index Requirements

Apparent specific density 2.763 ≥2.450
Hydrophilic coefficient 0.87 <1
Water absorption (%) 0.91 ≤1

Passing percentage <0.6 mm (%) 100.0 >98.6
Passing percentage <0.15 mm (%) 92.4 >78.5

Passing percentage <0.075 mm (%) 75.5 >62.2

2.3. Snow-Melting Salt

According to the Chinese specification of “Salt of ice and snow melting for road”
(GB/T 23851-2009) [31], the ability of snow melting salt should reach 90% of that of sodium
chloride, that is to say, sodium chloride can be used as a standard to evaluate the snow
melting ability of snow-melting salt. Therefore, this study used sodium chloride snow
melting salt as the main research object to study the influence of chloride salt concentration
on the performance of the asphalt mixture. After testing, the dissolution rate of chloride
salt (snow melting salt) used in this study is 6.955 g/min at standard atmospheric pressure
and stirring rate of 100 r/min, which meets the specification requirements.

2.4. Asphalt Mixture Preparation

The main purpose of asphalt mixture design is to determine the mineral aggregate
gradation and the optimal asphalt content in asphalt mixture. According to “Technical
specifications for construction of highway asphalt pavements” (JTG F40-2004) [29], combined
with the engineering experience, the mineral aggregate gradation of asphalt mixture
(AC-16) used in this study was determined as the median gradation, and the mineral
aggregate gradation is shown in Figure 1.
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The Marshall design method is a mature method to determine the optimum asphalt
content [32–34]. The comprehensive performance of asphalt mixture is usually the best
under the optimal asphalt content. According to the determined mineral aggregate gra-
dation composition, the asphalt content was selected in the range of 4.6~5.8%, and the
Marshall specimens were made with four different asphalt contents at an interval of 0.4%.
According to the compaction method (T0702) of “Standard test methods of bitumen and
bituminous mixtures for highway engineering” (JTG E20-2011) [28], the asphalt mixture
AC-16 specimens were compacted 75 times on both sides, then the optimal asphalt content
could be determined.

2.5. Optimal Asphalt Content

It is known that asphalt content has a great influence on the road performances
of asphalt mixture [32]. At larger asphalt content, the high-temperature deformation
resistance of asphalt mixture would decrease, and asphalt pavement is prone to rutting,
bleeding, and other distress. While at smaller asphalt content, the cohesive force between
asphalt and aggregates will also be reduced, and asphalt pavement is prone to aging,
water damage, etc. Therefore, the optimal asphalt content is generally firstly determined.
In this study, the standard Marshall test method has been used to determine the optimal
asphalt content of asphalt mixture.

According to the Chinese specification requirements of “Standard test methods of bi-
tumen and bituminous mixtures for highway engineering” (JTG E20-2011) [28], the bulk
specific gravity, air voids, voids in mineral aggregates, voids filled with asphalt, Marshall
stability, and flow value could be measured for the prepared standard Marshall spec-
imens, as shown in Figure 2. Then, the optimal asphalt content of AC-16 would be
determined at the maximum bulk specific gravity and Marshall stability, median air voids,
and voids filled with asphalt. According to “Technical specifications for construction of
highway asphalt pavements” (JTG F40-2004) [29], OAC1 = (a1 + a2 + a3 + a4)/4 = 5.23%,
OAC1 = (OACmin + OACmax)/2 = 5.10%, and OAC = (OAC1 + OAC2)/2 = 5.16%. Therefore,
the optimal asphalt content in this study was 5.16% based on the Marshall design results.
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3. Methods
3.1. High-Temperature Stability

The high-temperature stability of asphalt mixture refers to the characteristic of resisting
the repeated action of vehicle load without significant deformation under the condition
of high temperature. Due to the lack of high-temperature stability, there are some asphalt
pavement distresses including rutting, side shift, disintegration, bleeding, and so on,
of which rutting is the most common distress [35]. The most widely used and mature
methods for high-temperature stability of asphalt mixture are rutting test and uniaxial
static creep test, which have been described in previous studies [13,36].

In this paper, the NU-14 type pneumatic asphalt multifunctional testing machine,
produced by British Cooper company, UK, was used to evaluate the influence of different
concentrations of chloride snow melting salt on the high-temperature stability of asphalt
mixture by uniaxial creep test. The specific test steps are as follows:
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• Step 1: specimen pretreatment
Asphalt mixture specimens were put into water and sodium chloride solution (6%,
12%, 18%, and 24%), in which three specimen replicates should be immersed by liquid
to make the specimens fully saturated. After 7 days of full submersion, the asphalt
mixture specimens were taken out and placed in the dry place for 1 day;

• Step 2: temperature control of specimen
The uniaxial creep test temperature was set as 50 ◦C, and pretreated asphalt mixture
specimens were put into a temperature control chamber for at least 4 h;

• Step 3: uniaxial creep test
After the asphalt mixture specimen was coupled with the upper and lower pressure
plates, the LVDT sensors were connected and the test parameters were set, that is,
the axial stress was 10% (0.2 MPa) of the failure load, and the loading time was 2700 s.
In order to eliminate the contact voids, the preload of 300 s with the stress of 10 kPa
(5% of the test loading stress) was applied before the test.

3.2. Low-Temperature Crack Resistance

The low-temperature crack resistance of asphalt mixture usually refers to its ability to
resist shrinkage deformation [37]. The development of cracks will damage the smoothness
and reduce the bearing capacity of asphalt pavement, but also easily lead to other issues.
For example, water will penetrate the pavement structure layer along the cracks in areas
with more rain and snow, and then the subgrade and pavement structure will lose the
bearing capacity due to a long-term freeze-thaw cycle [16,17].

As the indirect tensile (IDT) strength test is relatively simple, the low-temperature IDT
test was used to study the influence of different concentrations of chloride snow melting
salt on the low-temperature crack resistance of asphalt mixture. The specific test steps are
as follows:

• Step 1: specimen pretreatment
The specimen pretreatment of low-temperature IDT test is similar to that of the above
high-temperature uniaxial creep test;

• Step 2: temperature control of specimen
The pretreated asphalt mixture specimens were put into a constant temperature
chamber of −10 ◦C for at least 6 h;

• Step 3: IDT test
Low-temperature IDT test of pretreated Marshall asphalt mixture specimens was
carried out by using a pavement material strength tester, and the time from taking
specimens out the chamber to the end of test should not exceed 45 s.

3.3. Water Stability

Generally, the ability of asphalt mixture to resist water erosion is known as the
water stability of asphalt mixture [5,38]. The asphalt pavement damage caused by the
lack of water stability has become one of the main distresses for asphalt pavement in
China [27]. In the northern region, chloride snow melting salt is often used in winter to
maintain smooth traffic, so asphalt pavement is often under the combined action of water,
temperature, and chloride snow melting salt [39]. In this study, the freeze-thaw splitting
test was used to study the relationship between the concentration of chloride snow melting
salt and the water stability of the asphalt mixture. The specific test steps are as follows:

• Step 1: specimen pretreatment
The solution involved in the freeze-thaw test would be replaced by chloride solution
of different concentrations, such as saturated water and water bath, etc.;

• Step 2: freeze-thaw splitting test
The saturated asphalt mixture specimens were put into plastic bags with 10 mL
chloride solution, and then stored in the refrigerator at the required temperature
for 16 h. After that, the asphalt mixture specimens were put into the water bath
for 24 h. Four specimen replicates should be prepared for each group of sodium
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chloride solutions. After the freeze-thaw cycle, the splitting test was carried out,
as described above.

4. Results and Discussion
4.1. High-Temperature Stability
4.1.1. Uniaxial Compressive Creep Test Results of AC-16

According to the uniaxial compressive creep test at 50 ◦C, the creep deformation curves
of AC-16 under different chloride salt concentrations are shown in Figure 3a. Figure 3a
demonstrates that the strain curves of the uniaxial static compressive creep test of AC-16
can be obviously divided into three stages.

• Stage I: preloading stage
In stage I, the slopes of creep strain curves are larger, and the loading time is shorter.
The creep curves are almost perpendicular to the abscissa axis and an approximate
straight line. This is as asphalt mixture, as a kind of viscoelastic material, is subjected
to vertical load, showing instantaneous elastic performance in a short time, and has a
high deformation rate.

• Stage II: constant loading stage
In stage II, the creep strain curves are relatively gentle, and the slope changes little.
Meanwhile, the creep strain of the asphalt mixture specimens increases gradually with
the increase in loading time, which is also called the stable stage.

• Stage III: unloading stage
The deformation of the asphalt mixture specimens has obvious recovery. This is
due to the viscoelastic characteristics of asphalt mixture, when the constant loading
disappears, the instantaneous elastic deformation of the asphalt mixture will gradu-
ally recover with time, and the viscous flow deformation will become a permanent
deformation.
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In addition, comparison among different groups shows that the residual deforma-
tion of asphalt mixtures after chloride salt erosion is significantly greater than that of
the control group. Meanwhile, the permanent deformation of asphalt mixture increases
with the increase in chloride solution concentration, implying that the high-temperature
performance of asphalt mixture decreases. This could be attributed to the emulsification
effect between chloride salt and asphalt when the chloride salt solution penetrates the
asphalt mixture through the air voids. The chloride salt erosion would reduce the adhesive



Materials 2021, 14, 3339 9 of 15

properties between asphalt and aggregate to a certain extent, leading to the decrease in
the shear strength of the asphalt mixture. With the increase in chloride solution concen-
tration, the emulsification of chloride salt and asphalt will be further intensified, and the
high-temperature performance of the asphalt mixture will be reduced.

Figure 3b shows the creep stiffness modulus-loading time curves of asphalt mixture
under different chloride solution concentrations. The creep stiffness modulus of asphalt
mixture specimens appears to decrease very quickly in the preloading stage, and then the
curves of creep stiffness modulus gradually flatten until the unloading stage, which in-
dicates the viscoelastic characteristics of the asphalt mixture. The comparison among
different groups demonstrates that the creep stiffness modulus of asphalt mixture affected
by chloride salt erosion is significantly smaller than that of control group. Due to the
emulsification effect between chloride salt and asphalt, the creep stiffness modulus of
asphalt mixture decreases with the increase in chloride solution concentration. Accord-
ing to the statistical analysis, the curves of creep stiffness modulus of asphalt mixture
with loading time can be fitted by a power function. From the fitting power equations in
Figure 3b, the absolute value of the fitting power index decreases with the chloride solution
concentration, which indicates that chloride salt erosion will reduce the reduction rate of
creep stiffness modulus.

4.1.2. Creep Model Analysis Based on Burgers Model and Modified Burgers Model

Asphalt mixture is a typical viscoelastic material, and the constitutive equation of the
viscoelastic model is used to study the creep behavior of asphalt mixture. Two commonly
used viscoelastic models, i.e., the Burgers model and modified Burgers model, are adopted
to fit the above-measured creep deformation curves. The Burgers model and modified
Burgers model have been described in detail in previous studies [34,40,41], and are given
in Equations (1) and (2).

Burgers model : ε(t) = σ0

[
1

E1
+

t
η1

+
1

E2

(
1 − e−E2t/η2

)]
(1)

Modified Burgers model : ε(t) = σ0

[
1

E1
+

(1 − e−Bt)

AB
+

1
E2

(
1 − e−E2t/η2

)]
(2)

where E1, E2, η1, and η2 are viscoelastic parameters, and A and B are fitting constants.
Figure 4 plots the fitting Burgers model and modified Burgers model of AC-16 under
different chloride salt concentrations at the loading stage. The fitting Burgers model and
modified Burgers model possess a high accuracy with R2 above 0.99. This indicates that
both the Burgers model and modified Burgers are close to actual creep strain curves of
asphalt mixture.

As a viscoelastic material, asphalt mixture has creep deformation under constant
loading. E1 represents the instantaneous elastic deformation modulus in the Maxwell
mechanical model, which will recover immediately after the external load disappears.
The larger the value of E1, the better the ability of the asphalt mixture to resist instantaneous
elastic deformation. E2 and η2 represent the elastic modulus and viscosity coefficient under
long-term load in the Kelvin mechanical model, which will recover slowly after the external
load disappears. η1 represents the viscosity coefficient of the Maxwell mechanical model
in the process of loading, which is irrecoverable. The greater the value of η1, the better the
ability of the asphalt mixture to resist permanent deformation. In the modified Burgers
model, the product of fitting parameters A and B could be used to characterize the ability
of asphalt mixture to resist permanent deformation.
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Figure 4. Comparison of Burgers model and modified Burgers model of AC-16 under different
chloride salt concentrations.

The variation of viscoelastic parameters of AC-16 under different chloride salt con-
centrations is plotted in Figure 5. Figure 5 shows that the instantaneous elastic modulus
(E1) in the Burgers model and modified Burgers model would decrease with chloride salt
concentrations. Through the comparative analysis of different fitting models, the cubic
polynomial function is more suitable to fit the variation of instantaneous elastic modulus
of AC-16 under different chloride salt concentrations, in which R2 of a cubic polynomial
function is higher than that of a linear function. As shown in Figure 5b regarding the
variation of viscous resistance, the permanent deformation (η1) in the Burgers model has a
similar trend with AB in the modified Burgers model. Compared with a linear function,
the permanent deformation η1 and AB decreases following the negative cubic polynomial
function. Therefore, chloride salt solution could reduce the ability of asphalt mixture to
resist instantaneous elastic deformation and permanent deformation, and this influence
will become more obvious with the increase in chloride salt solution concentration.
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4.2. Low-Temperature Crack Resistance

The low-temperature IDT tensile strength of AC-16 under different chloride salt
concentrations is plotted in Figure 6. This figure highlights that the low-temperature
crack resistance of asphalt mixture specimens soaked in water and chloride salt solution is
reduced, and the influence of chloride salt solution on the asphalt mixture specimens is
more serious than that of water. After soaked in a chloride salt solution of 0%, 6%, 12%,
18%, or 24%, the IDT tensile strength of asphalt mixture specimens are reduced by 3.4%,
5.9%, 9.2%, 14.3%, and 23.2%, respectively, compared to the control group (i.e., dry AC-16
specimen). In Figure 6, the IDT tensile strength of the asphalt mixture decreases with the
increase in chloride solution concentration. When the chloride solution concentration is
greater than 12%, the slope of the curve increases, indicating that the effect of chloride
solution on the IDT tensile strength of asphalt mixture becomes more obvious when the
chloride solution concentration is greater than 12%. The low-temperature IDT strength of
AC-16 decreases under different chloride salt concentrations following the negative cubic
polynomial function. The chloride salt solution enters the asphalt mixture via the air voids,
erodes the interface between asphalt and aggregate, reduces their adhesion, and weakens
the interaction between asphalt and aggregate. This is due to the salting-out effect and
condensation reaction between asphalt and chloride salt [16,42]. When the chloride salt
solution concentration increases, the concentration of external ions increases, and chloride
ions are more likely to enter the asphalt mixture and cause damage under capillary action
due to the higher solution concentration.
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4.3. Water Stability

The freeze-thaw splitting tensile strength ratio (TSR) of AC-16 under different chloride
salt concentrations is plotted in Figure 7. The water stability of asphalt mixture specimens
soaked in water (0%) and chloride salt solution (6%, 12%, 18%, and 24%) is reduced with
the increase in sodium chloride solution concentration. The TSR results of the asphalt
mixture specimens soaked in chloride salt solution of 6%, 12%, 18%, and 24%, are reduced
by 1.4%, 1.8%, 2.0%, and 2.2%, respectively, compared to the asphalt mixture soaked in
water (0%). When the chloride solution concentration is greater than 6%, the slope of
the curve increases, meaning that the effect of chloride solution on the water stability
of the asphalt mixture becomes more obvious. Meanwhile, the water stability of AC-
16 decreases under different chloride salt concentrations following the negative cubic
polynomial function. The variation trend of TSR with chloride salt concentration changes,
first quickly, then slowly. This may be due to the chloride salt solution entering the asphalt
mixture from the air voids, eroding the interface between asphalt and aggregate.
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4.4. Freeze-Thaw Resistance

Considering the frequent rain and snow in northeast China in winter, asphalt pave-
ment will experience more than one freeze-thaw cycle after spraying snow melting salt.
In order to simulate the long-term effect of snow melting chloride salt on asphalt pavement,
asphalt mixtures were conducted through 1, 2, 4, 6, and 8 freeze-thaw cycles to study the
mechanical properties. Figure 8 presents the variation of splitting tensile strength with
freeze-thaw cycles for AC-16 specimens under different chloride salt concentrations.
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Figure 8. The variation of splitting tensile strength with freeze-thaw cycles under different chloride
salt concentrations.

As seen in Figure 8, the splitting tensile strength of the asphalt mixtures decreases
with the increase in freeze-thaw cycles, following a cubic polynomial decrease for the
variation trend. In the early stage of freeze-thaw cycles, the splitting tensile strength of
the asphalt mixture decreases rapidly, then tends to be flat, and finally decreases quickly
again. Additionally, the splitting tensile strength of asphalt mixture specimens soaked in
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water is higher than that soaked in chloride salt solution, and the splitting tensile strength
of asphalt mixture decreases with the increase in chloride solution concentration, showing
a similar variation trend in the low-temperature crack resistance. Indeed, when asphalt
mixture specimens are below 0 ◦C, water entering asphalt mixture will freeze into an ice
state, which causes an increased volume due to the frost heaving, and then some fine
cracks would occur in the asphalt mixture structure. When the temperature of asphalt
mixture specimens is above 0 ◦C, the ice inside the asphalt mixture structure will melt into
water, which penetrates along the air voids or cracks on the surface of the asphalt mixture
specimens and the internal capillary, causing deep damage to the asphalt mixture. With the
increase in freeze-thaw cycles, the freeze-thaw effect occurs alternately, damaging the
internal structure of the asphalt mixture and reducing its splitting tensile strength. On the
other hand, chloride salt solution reduces the adhesion between asphalt and aggregates,
resulting in a significant weakening of the interaction and a decrease in the mechanical
strength of the asphalt mixture. With the promotion of freeze-thaw cycles, the penetration
speed of chloride salt solution to the interface between asphalt and aggregate would
accelerate and cause greater damage to the asphalt mixture.

5. Conclusions

In this study, the asphalt mixture specimens soaked with different snow melting chlo-
ride salt concentrations were taken as the research object. The uniaxial static compression
creep test, low-temperature IDT test, freeze-thaw splitting test, and freeze-thaw cycle test
were carried out. The viscoelastic theory was used to analyze the creep test of asphalt
mixture. The conclusions are as follows:

(1) With the increase in chloride salt solution concentration, the high-temperature stability,
low-temperature crack resistance, and water stability of asphalt mixture decrease.
Moreover, the high-temperature stability, low-temperature crack resistance, and water
stability of the asphalt mixture show a decreasing trend under different chloride salt
solution concentrations following a negative cubic polynomial function;

(2) The instantaneous elastic modulus (E1) and the permanent deformation (η1 and
AB) decrease following a negative cubic polynomial function. In addition, chloride
salt solution could reduce the ability of the asphalt mixture to resist instantaneous
elastic deformation and permanent deformation, and this influence will become more
obvious with an increase in chloride salt solution concentration;

(3) In this study, the salt freeze-thaw cycle test was used to simulate the long-term effect of
snow melting chloride salt on asphalt pavement. The IDT strength of asphalt mixtures
decreases with the increase in salt freeze-thaw cycles, presenting a negative cubic
polynomial decreasing trend. In the early stage of freeze-thaw cycles, the splitting
tensile strength of asphalt mixture decreases rapidly, then tends to be flat, and finally
decreases quickly again.

In the follow-up work, we will carry out micro tests to explore the mechanism of the
effect of snow melting chloride salt on the performance of asphalt mixture, and verify the
snow melting chloride salt amount suggested in this study, combined with engineering
practice. In addition, the relationships between the different parameters would be discussed.
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