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The information gained by making a measurement, termed the Kullback–

Leibler divergence, assesses how much more precisely the true quantity is

known after the measurement was made (the posterior probability distribution)

than before (the prior probability distribution). It provides an upper bound for

the contribution that an observation can make to the total likelihood score in

likelihood-based crystallographic algorithms. This makes information gain a

natural criterion for deciding which data can legitimately be omitted from

likelihood calculations. Many existing methods use an approximation for the

effects of measurement error that breaks down for very weak and poorly

measured data. For such methods a different (higher) information threshold

is appropriate compared with methods that account well for even large

measurement errors. Concerns are raised about a current trend to deposit data

that have been corrected for anisotropy, sharpened and pruned without

including the original unaltered measurements. If not checked, this trend will

have serious consequences for the reuse of deposited data by those who hope to

repeat calculations using improved new methods.

1. Introduction

Likelihood-based methods are now used throughout crystallo-

graphy to provide a probabilistic treatment of the effects of all

sources of error in tasks such as phasing with a model (Read,

1986a), experimental phasing (de La Fortelle & Bricogne,

1997; McCoy et al., 2004), model refinement (Pannu & Read,

1996; Bricogne & Irwin, 1996; Murshudov et al., 2011) and

molecular replacement (McCoy et al., 2007; Read & McCoy,

2016). In all of these areas, the introduction of likelihood has

led to more powerful and robust methods.

Information gain, described in terms of the Kullback–

Leibler divergence or KL-divergence (Kullback & Leibler,

1951), is a related statistical concept that measures how much

is learned when an imperfect measurement is made. This

concept has recently become particularly prominent in the

context of various applications within machine learning

(Bishop, 2006; Goodfellow et al., 2016). In crystallography it

has only been used rarely, with one example being to evaluate

how much different sources of phase information contribute

to combined phases (Read, 1986b, 1997).

As discussed in our previous work on this subject

(Jamshidiha et al., 2019), the information content gained by

measuring a data set corresponds to the likelihood score that

could be achieved with a perfect model, providing an upper

limit to what can be achieved with the data in a likelihood-

based method. Considered one observation at a time, infor-

mation provides a way to assess how much value each

measurement adds, which is especially relevant for data in

which some observations are systematically weakened by
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effects such as anisotropic diffraction or translational non-

crystallographic symmetry (tNCS). This is particularly timely,

as there is now a better appreciation that weak data have

value, at least up to a point (Karplus & Diederichs, 2012).

The implementation of our earlier work on information

gain for diffraction data was limited to an expected value, i.e.

what information gain would be expected for a reflection with

a particular standard deviation, averaged over all possible

intensity measurements that could be made consistent with

that size of measurement error. The advantage of this

approach is that it lends itself to simple rules: a threshold for

useful information gain can be translated into a single number:

the corresponding standard deviation of a normalized inten-

sity. A table of normalized standard deviations corresponding

to different thresholds of expected information gain was

evaluated by numerical integration in the symbolic mathe-

matics program Mathematica (Wolfram Research, Champaign,

Illinois, USA) and was then used to define thresholds in

Phaser (McCoy et al., 2007) without new functions having to be

implemented. The disadvantage of this approach is that it

neglects the influence of the observed value of the intensity.

Here, we explore a more exact calculation in which the actual

information gained with each intensity observation is eval-

uated considering both the intensity and its standard devia-

tion. This allows a true reflection-by-reflection evaluation of

the sensitivity of likelihood calculations to an individual

observation.

2. Computing information gained in measuring
diffraction data

2.1. Derivation of information calculation

The derivation of equations defining per-reflection infor-

mation gain builds on intermediate steps in our previous work

(Jamshidiha et al., 2019), some results of which are reproduced

here for convenience. The equations below are expressed in

terms of the normalized intensity Z (= E2). Note that the

expected intensity value used to normalize the intensities

should account for overall anisotropy and/or tNCS, if these

effects are present.

Information is gained in an experiment when some quantity

is known more precisely after carrying out the experiment

(measured by the posterior probability distribution for its true

value) than before the experiment (measured by its prior

probability distribution). As discussed above, this information

gain can be evaluated by the KL-divergence. For diffraction

data, as discussed previously (Jamshidiha et al., 2019), it turns

out to be more convenient to use a rearrangement based on

Bayes’ theorem (1) to express the KL-divergence, DKL, in

terms of the probabilities of the observations rather than the

true values, as shown in (2),

ppostðZ; ZOÞ ¼
pðZO; ZÞppriorðZÞ

pðZOÞ
; ð1Þ

DKL ¼
R1
0

ppostðZ; ZOÞ ln
ppostðZ; ZOÞ

ppriorðZÞ

" #
dZ

¼
R1
0

pðZO; ZÞppriorðZÞ

pðZOÞ
ln

pðZO; ZÞ

pðZOÞ

� �
dZ: ð2Þ

Note from (2) that if the measurement does not alter the

prior probability so that the posterior probability is identical

(for instance when the standard deviation of the measurement

approaches infinity), the logarithm evaluates to zero for all

values of the intensity; as expected, no information has been

gained. Information gain is expressed in units of nats if the

natural logarithm is used, or in bits using logarithm base 2,

corresponding to dividing nats by ln(2). In the following, we

will use the traditional units of bits for information content on

its own. Likelihood is traditionally computed with the natural

logarithm, but we will convert it to units of bits when

comparing likelihood and information.

The prior probability is the Wilson distribution of inten-

sities, given in (3a) for the acentric case and in (3b) for the

centric case (Wilson, 1949),

pprior;aðZÞ ¼ expð�ZÞ; ð3aÞ

pprior;cðZÞ ¼
1

ð2�ZÞ
1=2

exp
�Z

2

� �
: ð3bÞ

The probability distribution for the observed normalized

intensity (ZO) given the true intensity is assumed to arise from

Gaussian measurement error, with a standard deviation of

�ZO
. The probability distribution for observed intensities is

then the convolution of the Wilson distribution with the

Gaussian. This is given in (4a) and (4b) for the acentric and

centric cases, reproduced from equations (9a) and (9b) from

work on the LLGI intensity-based likelihood target (Read &

McCoy, 2016),

paðZOÞ ¼
1

2
exp

�2
ZO

2
� ZO

� �
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�2
ZO
� ZO

21=2�ZO

 !
; ð4aÞ
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Þ
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16
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� 4ZO �
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�2
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 !" #

� D�1
2
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� 2ZO

2�ZO

 !
: ð4bÞ

In these equations, erfc is the complement of the error

function and D is a parabolic cylinder function (Whittaker &

Watson, 1927).

For acentric intensities, the analytical solution to the

information integral in (2) is given in (5),

DKL;a ¼
expð�X2ÞðZO þ �

2
ZO
Þ

ð2�Þ1=2�ZO
erfcðXÞ

þ
1

2
ln

2

�
� 1

� �

� ln½�ZO
erfcðXÞ� þ ZO � �

2
ZO
; ð5Þ

where

X ¼
�2

ZO
� ZO

21=2�ZO

:
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When the arguments give large positive values for X, both

the exponential in the numerator of the first term and the

complement of the error function in the denominator become

extremely small, in which case it is preferable to use the scaled

complement of the error function to obtain (6),

DKL;a ¼
ZO þ �

2
ZO

ð2�Þ1=2�ZO
erfcxðXÞ

þ
1

2
ln

2

�
� 1

� �

� ln½�ZO
erfcxðXÞ� þ

Z2
O � �

4
ZO

2�2
ZO

; ð6Þ

where erfcx(x) = exp(x2)erfc(x).

There is also an analytical solution to the information

integral for centric intensities, given in (7),

DKL;c ¼
�1=2
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where

X ¼
�2

ZO
� 2ZO

2�ZO

:

However, it was judged easier to implement a numerical

integral using functions that were already available in the

computer code. To avoid numerical problems with overflow of

the parabolic cylinder function for large negative arguments

and underflow for large positive arguments, an exponential

scaling is used where Dx�1/2(x) = exp[x(x2)1/2/4]D�1/2(x). In

addition, a change of variable from Z to E avoids a singularity

at zero in the prior probability of the true intensity, giving (8),

which can be evaluated using the expressions above,

DKL;c ¼
R1
0

ppost;cðE; ZOÞ ln
ppost;cðE; ZOÞ

pprior;cðEÞ

" #
dE: ð8Þ

Fig. 1 illustrates the dependence of information gain on the

normalized intensity and its standard deviation for both the

acentric and centric cases. As one would expect, reflections

with lower standard deviations convey more information.

Reflections with higher intensity also have a lower prior

probability and also therefore convey more information.
2.2. Implementation of information-gain calculation

The calculation of information gain has been implemented

within the program Phaser (McCoy et al., 2007) and is avail-

able in versions from 2.8.2 by providing the keyword

command ‘INFO ON’ in either the MR_AUTO or NCS

modes. Our interest is in the information gained relative to the

best estimate of the prior probability distribution of inten-

sities, so the calculation is carried out after accounting for the

statistical effects of both anisotropy and translational non-

crystallographic symmetry, if present. The total number of bits

of information conveyed by the data set is reported. In addi-

tion, the average number of bits of information per reflection

is reported in resolution shells as a new indicator of the

resolution dependence of data quality.

3. Relationship between KL-divergence and the
log-likelihood gain score

3.1. Information gain is equivalent to the expected
log-likelihood gain score for a perfect model

The expected log-likelihood gain, or eLLG, was originally

defined as an integral over all possible pairs of observed and

research papers

240 Read et al. � Information gained by observing diffraction data Acta Cryst. (2020). D76, 238–247

Figure 1
Contour plots showing bits of information in an intensity measurement as a function of ZO and �ZO

for (a) acentric and (b) centric intensity
measurements. Contour lines are drawn, from the blue region through orange to yellow, at 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 bits of information. This figure
and Figs. 2–5 were prepared using Mathematica (Wolfram Research, Champaign, Illinois, USA).



calculated structure-factor amplitudes consistent with the

quality of the model and the standard deviation of each

intensity measurement (McCoy et al., 2017). This approach

neglects the specific intensity values and so yields a very

simple approximation that nonetheless allows valuable rules

of thumb. For instance, the LLG that will be obtained for a

partial model will be approximately proportional to the square

of the model completeness, so that one can judge how much

the signal will be reduced by searching separately for two

domains. When defined in this way, the eLLG for a perfect

model is equivalent to the expected information gain defined

in our earlier work (Jamshidiha et al., 2019), when that infor-

mation is specified in units of nats.

Similarly, if the eLLG is expressed on a per-reflection basis

that takes account of the actual measured intensity instead of

averaging over all possible values, the actual information gain

for a reflection (expressed in nats) corresponds to the eLLG

for a perfect model. In other words, the information gained by

a diffraction measurement defines an upper limit for the

contribution that it could possibly make to the total LLG

score. (9) defines an eLLG that averages over possible values

of the calculated intensity weighted by their probability given

the observed intensity,

eLLG ¼
R1
0

pðZC; ZOÞ ln
pðZO; ZCÞ

pðZOÞ

� �
dZC: ð9Þ

As above, Bayes’ theorem allows an alternative expression

for the ratio in the argument of the logarithm, shown in (10),

eLLG ¼
R1
0

pðZC; ZOÞ ln
pðZC; ZOÞ

pðZCÞ

� �
dZC: ð10Þ

For a perfect model, the calculated structure factor is equal

to the true structure factor, in which case (9) is equivalent to

the KL-divergence in (2).

Inspection of (2) and (10) shows that any value for the true

structure factor that gives a positive contribution to the KL-

divergence (or equivalently the eLLG for a perfect model) will

also tend to be given a higher weight in the integral. This effect

is illustrated in Fig. 2 for the cases of reflections with moderate

and low information contents. When the information gain is
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Figure 2
Illustration of information calculation for moderate and weak intensities. The top figures (a, b) illustrate the posterior probability of the true normalized
intensity, Z, given the observed normalized intensity, ZO (blue), as well as its prior probability before making the measurement (orange), while the
bottom figures (c, d) show the corresponding logarithm of the ratio between the posterior and the prior probability. The information content is computed
by integrating the log of the ratio (bottom figure) weighted by the posterior probability in blue above. The figures on the left (a, c) correspond to an
intensity conveying 1 bit of information (ZO = 1.5, �ZO

= 0.449), while the figures on the right (b, d) correspond to an intensity conveying 0.01 bits of
information (ZO = 1.5, �ZO

= 2.47).



low, no possible choice of the intensity calculated from even a

perfect model will yield a high LLG score.

4. Correspondence between KL-divergence and I/r
ratios

It might be useful to provide a very rough correspondence

between the mean information gain in the highest resolution

shell and the mean I/� ratio. There is not, of course, a one-to-

one relationship between these quantities. As seen in Fig. 1, in

which observations with the same I/� ratio will lie on a line

running through the origin and observations with the same

standard deviation will lie on a horizontal line, the information

gain depends on both the intensity and its standard deviation.

Nonetheless, we can obtain an intuitive idea of how these

quantities are related by considering some drastic simplifying

assumptions.

Firstly, we assume that the data do not suffer from signifi-

cant anisotropy or tNCS, which will lead to dramatic variation

in the I/� ratios within the highest resolution shell. Secondly,

we consider that near the resolution limit, the peak counts

differ relatively little from background. In this case, the

photon-counting statistics will be similar (and close to

constant) in the peak and background regions, so that the

standard deviations of the net integrated intensities (peak

minus background) will be close to constant. Even then, we

need a third assumption that different reflections in the shell

have been measured with similar redundancy: averaging

several measurements reduces the standard deviation of the

mean by a factor equal to the square root of the number of

measurements.

With these assumptions, we can compute the mean infor-

mation gain expected for a shell of reflections with constant

intensity standard deviation. The expected value is obtained

by computing the KL-divergence (equations 5 and 6 for the

acentric case) over all possible values of the observed

normalized intensity, weighted by the probability of making

that intensity observation (equation 4a for the acentric case).

This yields (11), which can be evaluated by numerical inte-

gration for a particular choice of the standard deviation of the

normalized intensities, �ZO
. Note that if all of the intensity

observations have the same standard deviation and the mean

normalized intensity is 1, the mean I/� ratio will be the inverse

of �ZO
,

DKL ¼
R1
�1

pðZOÞDKLðZO; �ZO
Þ dZO: ð11Þ

Fig. 3 shows the variation of this expected KL-divergence

with the I/� ratio. It can be seen that for very low I/� ratios of

less than about 0.2 the mean information gain will be close to

zero, and will then increase steadily for higher ratios. To the

extent that we can treat the curve in Fig. 3 as approximately

linear, the mean KL-divergence will be very similar even if

there is a limited distribution of intensity standard deviations

over the observations in the shell, as long as these are

uncorrelated with the intensity. An I/� ratio of 1 corresponds

roughly to a mean information gain of 0.35 bits, while an I/�
ratio of 2.5 corresponds to about 1 bit per observation. We

have not carried out a systematic survey of data sets in the

wwPDB (Berman et al., 2007), but have noted that the mean

information gain in the highest resolution shell is frequently in

the range 0.5–1 bits, which is in agreement with these rough

calculations because data are frequently cut with a threshold

I/� around 1 to 2.

5. Applications

5.1. Pruning data by information gain

In principle, if the effects of measurement error are

accounted for properly in a well founded likelihood target,

there should be no real disadvantage to including data with

very little or even no signal, apart from wasting some

computer time. In practice, most crystallographic methods still

do not account optimally for measurement error, so it has

been found that it can be helpful to limit the resolution to data

containing significant signal (Karplus & Diederichs, 2012) or

to prune data that are systematically weak because of effects

such as anisotropy (Strong et al., 2006). This can be understood

by examining the effect of different treatments of measure-

ment error. Model refinement, like molecular replacement in

versions of Phaser prior to the introduction of the LLGI target

(Read & McCoy, 2016), typically uses a likelihood target

based on an inflated-variance Rice-function approximation

(equation 12, acentric case) to add a contribution from

measurement error to the contribution from model error

(Murshudov et al., 2011; Bricogne & Irwin, 1996),

pðEO; ECÞ ¼
2EO

1� �2
A þ 2�2

EO

exp �
E2

O þ ð�AECÞ
2

1� �2
A þ 2�2

EO

" #

� I0

2�AEOEC

1� �2
A þ 2�2

EO

 !
: ð12Þ
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Figure 3
Approximate relationship between I/� (represented by the ratio between
the normalized intensity and its standard deviation) and the expected
KL-divergence measured in bits per reflection. The calculation makes a
variety of assumptions and should be taken only as a rough guide to the
correspondence between these measures of signal to noise in data.



In this equation, EO and �EO
are the normalized observed

amplitude and its standard deviation, obtained by some

transformation from the observed intensity and its standard

deviation. Most often, the algorithm of French & Wilson

(1978) is used to compute the posterior value of the normal-

ized amplitude and its standard deviation: EFW and �EFW
. In

the following, we will refer to the inflated-variance likelihood

target based on (12) but using the French–Wilson amplitude

estimates as LLGFW. We have shown that this approximation

breaks down when measurement errors are large, whereas the

LLGI target remains an excellent approximation to an exact

likelihood target computed by numerical integration (Read &

McCoy, 2016). This target is based on an alternative Rice-

function approximation, shown for the acentric case in (13),

pðEe; ECÞ ¼
2Ee

1�D2
obs�

2
A

exp �
E2

e þ ðDobs�AECÞ
2

1�D2
obs�

2
A

� �

� I0

2Dobs�AEeEC

1�D2
obs�

2
A

� �
: ð13Þ

In this equation, Ee and Dobs are chosen to optimize the

approximation by matching the first two moments of the exact

distribution.

Here, we show that the information gained by an intensity

observation gives a good indication of whether or not the

French–Wilson inflated-variance Rice target, LLGFW, will

provide a sufficiently good approximation to the exact like-

lihood target. Fig. 4 compares the LLGI target with LLGFW

for observations with standard deviations corresponding to

different information contents. As the information content

drops even further than shown in this figure, the LLGI target

becomes even flatter, yielding values very close to zero with

very little dependence on the calculated structure factor, i.e. it

ceases to influence any refinement or hypothesis test; on the

other hand, LLGFW continues to favour calculated amplitudes

near the expected amplitude from the Wilson distribution.

This justifies the omission of very weak observations from any

calculation that uses LLGFW or any other target that does not

account well for the effect of measurement error.

Given that observations with very little information content

have very little influence on likelihood calculations, such

observations can legitimately be ignored to save computing

time once the data have been characterized, even if the LLGI

target is used. However, the fact that the systematically weak

observations are weak provides information in characterizing

anisotropy or tNCS, so they should be included in these steps

of the analysis. This is the approach taken in Phaser, in which
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Figure 4
LLG as a function of the calculated normalized intensity, ZC, for several levels of information gain. In each case the observed normalized intensity, ZO, is
2.0 and the value of �A is 0.8, which would correspond, for instance, to an r.m.s. error of 0.4 Å for a model at a resolution of 2.2 Å. The LLG computed
with the formula for LLGI (Read & McCoy, 2016) is shown in blue and the LLG computed with the inflated-variance Rice function LLGFW is shown in
orange. (a) Information gain is 0.01 bits, corresponding to �ZO

= 2.57, EFW = 0.91, �EFW
= 0.44. (b) Information gain is 0.1 bits, corresponding to �ZO

= 1.33,
EFW = 0.99, �EFW

= 0.41. (c) Information gain is 1 bit, corresponding to �ZO
= 0.63, EFW = 1.25, �EFW

= 0.26. (d) Information gain is 3 bits, corresponding to
�ZO

= 0.21, EFW = 1.40, �EFW
= 0.08.



the anisotropy and tNCS analyses include all data, but data

with low information gain are then excluded from subsequent

calculations (Jamshidiha et al., 2019). The current default is to

exclude data conveying less than 0.01 bits of information

according to the expected information criterion. Tests in the

context of molecular replacement (where models are poor in

challenging cases and such data would have even less influence

than with good models) show that this is a good tradeoff. The

use of the actual reflection-by-reflection information gain

described here has also been tested, and gives comparable

results at this information threshold (results not shown).

When higher thresholds are applied, the reflection-by-reflec-

tion estimate is, as expected, more efficient in identifying the

reflections that can be ignored with the least impact on the

calculation.

5.1.1. Effect of including weak data in the LLGFW target.
The effect of using LLGFW can be assessed by considering

which likelihood scores will be encountered and how much

they will differ from the scores that would be calculated with

either the exact likelihood integral or the LLGI target. The

largest errors will be encountered in the limiting case of a

perfect model, which would have calculated structure factors

corresponding to the true structure factors. Although we do

not know the true intensities, we know their distribution of

possible values consistent with an intensity measurement, i.e.

the posterior probability distribution shown in (1). Knowing

this, we can compute quantities such as the expected value of

LLGFW or, of greater relevance, the r.m.s. error in the LLG

expected for the range of model structure factors that should

be encountered.

For a particular intensity observation with a measured value

and estimated standard deviation, we can compute an r.m.s.

error with (14),

r:m:s:2LLG ¼
R1
0

ppostðZ; ZOÞð�LLGFW ��LLGIÞ2 dZ: ð14Þ

In this equation, the values represent the difference between

the LLG value for a particular true intensity and the expected

value over all possible true intensities given the observed

intensity; this is used because reproducing the deviation from

the mean is more important than reproducing the exact value

when carrying out a search or testing a hypothesis.

Fig. 5(a) shows the behaviour of this r.m.s. error as a

function of both normalized intensity and standard deviation,

expressed in terms of bits for easier comparison with the

information measure. This confirms that LLGFW is only a good

approximation for relatively well measured data. Fig. 5(b)

shows the relative error obtained by dividing the values in

Fig. 5(a) by the information values in Fig. 1(a). This shows that

the relative error becomes large when the information gain

drops below about 1 bit.
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Figure 5
Contour plots illustrating, for the acentric case, the errors in likelihood scores for a perfect model arising from using French and Wilson amplitudes in the
inflated-variance Rice likelihood target as a function of ZO and �ZO

. (a) The expected r.m.s. error in the likelihood score (converted to bits for
comparison with information gain), averaged over the calculated structure factors consistent with the measurement, with contour lines drawn from the
blue region through orange to yellow at 0.5, 1, 1.5, 2 and 2.5. (b) The ratio of the r.m.s. error from (a) and the information gain from Fig. 1(a), with
contour lines drawn from the blue region through orange to yellow at 0.1, 1, 10 and 100. Only well measured intensities have likelihood errors that are
smaller than the information content gained (points below the second contour line).

Table 1
Effect of information-content thresholds on maximum-likelihood
molecular-replacement calculations using the LLGFW and LLGI targets.

LLGFW LLGI

Information
threshold (bits)

No. of
reflections

Top
correct

Top
incorrect Ratio

Top
correct

Top
incorrect Ratio

3 12346 † 73.7 0 † 72.7 0
2 15765 119.7 81.0 1.48 123.5 79.8 1.55
1 19771 131.0 83.2 1.57 130.4 82.6 1.58
0.5 22278 142.5 81.9 1.74 140.0 76.9 1.82
0.1 25186 169.9 97.7 1.74 151.5 72.6 2.09
0.01 27516 222.3 164.3 1.35 152.9 74.1 2.06
0.001 29133 272.9 258.0 1.06 152.9 73.4 2.08
0 32631 † 439.3 0 152.1 74.0 2.06

† The correct solution was not found in this molecular-replacement search.



Molecular-replacement calculations were carried out on a

test case to evaluate the effect of these errors in practice.

wwPDB (Berman et al., 2007) entry 2g38 (Strong et al., 2006) is

the structure that inspired the development of the UCLA

Diffraction Anisotropy Server (https://services.mbi.ucla.edu/

anisoscale/), which can be used to prune weak data. The

deposited data for this entry have already been pruned, but

the complete data set was kindly provided by Mike Sawaya.

These data were pruned at different information-content

thresholds, and molecular-replacement calculations were

carried out either with Phaser version 2.5.6 (the last release

before the introduction of the LLGI target), using posterior

amplitudes (French & Wilson, 1978) obtained from intensities

with the CCP4 (Winn et al., 2011) program CTRUNCATE, or

with Phaser version 2.8.3, using intensity data. The structure

contains two copies each of a 99-residue chain and a 198-

residue chain. A search for a single copy of chain A of PDB

entry 4w4k, 97% identical in sequence to the smaller chain

(which comprises only 1/6 of the total structure), was carried

out as a reasonably challenging problem.

The results are shown in Table 1. As expected, the signal

increases for both targets when more data are added, as long

as those data convey substantial useful information. A mole-

cular-replacement solution is not found with either target

when only data conveying 3 bits of information are used, but

both succeed using data up to a 2 bit threshold. However, the

LLGFW target behaves more badly as weaker data conveying

much less than 1 bit of information are added, increasing the

noise level: the total score increases for both correct and

incorrect solutions, with the correct solution eventually being

lost once too many weak data have been added. On the other

hand, the addition of weak data continues to improve the

LLGI target even up to about a 0.01 bit threshold, and

inclusion of even the weakest data does not jeopardize the

solution. The results from this example suggest that if most

deposited data have a mean information gain of 0.5 bits or

more per reflection at their resolution limit (as discussed

above), value could be gained from retaining even weaker

data at high resolution, as long as the methods using these data

account properly for the effects of measurement error.

5.2. Comparing approaches to pruning data

A mode to analyse a diffraction data set and produce an

output data file including the information measures will be

made available in the new version of Phaser that is under

development, phasertng (McCoy et al., 2020). The original data

will be left unaltered, on the principle that some programs

(including Phaser itself) already make good use of unpruned

data and that future algorithms may be able to extract even

more from these data. Programs that have not been adapted to

use the LLGI target could easily be changed to select data

based on information thresholds; the relevant threshold may

depend on the task at hand. Since the weak reflections provide

the evidence for which reflections were weak (as opposed to

being unobserved) in the original data, there is potentially a
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Figure 6
Result of pruning weak reflections from the human Rab27a data, illustrated for the h0l section. (a) The STARANISO server (Tickle et al., 2018) retains
63 176 reflections from the full set of 91 204. (b) An information threshold of 0.2 bits retains 62 836 reflections. The boundary between the retained and
pruned reflections is similar, but the information measure accounts for the systematic alternation of intensities arising from tNCS, keeping some strong
observations that the STARANISO approach would delete and deleting some weak observations that would be kept. Figures were prepared with the
CCP4 (Winn et al., 2011) program VIEWHKL.



danger in discarding them and thereby hampering the

refinement of anisotropy and tNCS parameters.

In other tools such as the UCLA Diffraction Anisotropy

Server (Strong et al., 2006) or STARANISO (Tickle et al.,

2018), pruning is carried out on the basis of smoothly varying

functions such as overall anisotropy (UCLA Diffraction

Anisotropy Server) or local signal to noise (STARANISO). In

contrast, the information approach evaluates each intensity

independently, taking account of the differing prior prob-

ability distributions for different reflections. When data are

weak because of anisotropy, reflections with low information

gain will still tend to be near to each other. In contrast, the

effect of tNCS does not vary smoothly. Fig. 6 illustrates the

difference that this makes for the human Rab27a data from

PDB entry 6huf (Jamshidiha et al., 2019).

6. Discussion

As demonstrated here, including weak data in crystallographic

calculations adds signal and can even make the difference

between success and failure. With proper accounting for the

effects of measurement errors, such as in the LLGI target used

for molecular replacement in Phaser, even data with negligible

signal can now be accommodated without the danger of

adding noise. This allows structures to be determined more

readily, even if they suffer from effects such as strong

diffraction anisotropy or tNCS. The potential disadvantage of

increasing computational cost without any added benefit can

be avoided by using the close relationship between likelihood

and information gain to identify the observations that can

legitimately be ignored. However, when optimal treatments

for measurement error are not used more care must be taken

about which data to include.

It is important to account first for all systematic effects that

might alter the distribution of the data, such as anisotropy and

tNCS, because these are essential for defining the most accu-

rate prior probability distribution. If information gain is

calculated before correcting for these effects (implicitly

assuming a radially symmetric distribution of expected

intensities in reciprocal space), intensities that are system-

atically increased along the strong directions of diffraction or

enhanced by constructive interference from tNCS will appear

to convey more information. On a related note, if the esti-

mated standard deviations are underestimated, observations

will also appear to convey more information; this is more

likely to be an issue for serial crystallography, where data

processing is less mature than for single-crystal diffraction.

The methods described here could in principle be improved

further by accounting for other effects that change the

intensity distributions, such as lattice-translocation defects or

twinning. Twinning, in particular, reduces the variance in the

intensity distribution, which should be accounted for in both

the prior and posterior probability distributions. Such a

treatment would quantify our understanding of how the

presence of twinning reduces the information available from a

data set.

Finally, we are deeply concerned about the trend for crys-

tallographers to deposit data that have been pruned, corrected

for anisotropy and even sharpened to bring the diffracting

power in the weaker directions up to that in the strongest

direction. While such treatments can improve the subjective

interpretability of maps, they could be problematic for any

methods using statistically based scoring functions. For

instance, an isotropic B factor that might have been positive

when refined against unaltered data will potentially become

negative when refined against sharpened data.
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