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ABSTRACT

Motivation: Metagenomic binning remains an important topic in
metagenomic analysis. Existing unsupervised binning methods for
next-generation sequencing (NGS) reads do not perform well on (i)
samples with low-abundance species or (ii) samples (even with high
abundance) when there are many extremely low-abundance species.
These two problems are common for real metagenomic datasets.
Binning methods that can solve these problems are desirable.
Results: We proposed a two-round binning method (MetaCluster
5.0) that aims at identifying both low-abundance and high-
abundance species in the presence of a large amount of noise due
to many extremely low-abundance species. In summary, MetaCluster
5.0 uses a filtering strategy to remove noise from the extremely low-
abundance species. It separate reads of high-abundance species
from those of low-abundance species in two different rounds. To
overcome the issue of low coverage for low-abundance species,
multiple w values are used to group reads with overlapping w-mers,
whereas reads from high-abundance species are grouped with high
confidence based on a large w and then binning expands to low-
abundance species using a relaxed (shorter) w. Compared to the
recent tools, TOSS and MetaCluster 4.0, MetaCluster 5.0 can find
more species (especially those with low abundance of say 6× to
10×) and can achieve better sensitivity and specificity using less
memory and running time.
Availability: http://i.cs.hku.hk/∼alse/MetaCluster/
Contact: chin@cs.hku.hk

1 INTRODUCTION
Metagenomics is the study of genomes of multiple species from
environmental samples, such as soil, sea water and the human
gut. Successful metagenomic projects provide deeper insight into
the microbial world. For example, the diversity of microbes
in the human gut has been found to be related to common
diseases such as inflammatory bowel disease (IBD) (Qin et al.,
2010) and gastrointestinal disturbance (Khachatryan et al., 2008).
High-throughput next-generation sequencing (NGS) techniques can
sequence reads (short DNA fragments) from a sample containing
genomes of multiple species. An important step in metagenomic
analysis is grouping reads from similar species together, which is
known as binning.

Existing binning algorithms fall into two main categories,
supervised methods and unsupervised methods. Supervised methods
(Brady and Salzberg, 2009; McHardy et al., 2006) align reads
to known genomes and group reads aligned to similar genomes
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together. Since up to 99% (Eisen, 2007) of bacteria found in
environmental samples are unknown or cannot be cultured and
separated in laboratories (Amann et al., 1990), most reads cannot
be aligned and binned. Instead of aligning reads to known genomes
directly, some semi-supervised methods use taxonomic markers [e.g.
recA, rpoB and 16S rRNA (Cole et al., 2005)] to classify reads into
different groups. However, the precision of these methods may be
low because species may contain multiple markers and different
species may share markers (Case et al., 2007). Moreover, since
only a small part (<1%) of the genome (or reads) contains these
taxonomic markers (Garcia Martin et al., 2008), most of the reads
cannot be binned by these methods.

When the corresponding genomes are unknown, unsupervised
methods usually bin reads based on three observations: (A) the k-mer
frequency from reads of a genome is usually linearly proportional to
that of the genome’s abundance (Wu and Ye, 2011); (B) sufficiently
long w-mers are usually unique in each genome (Fofanov et al.,
2004) and (C) the short q-mer frequency distributions (or q-mer
distributions in short) of individual sufficiently long reads (Chatterji
et al., 2008; Prabhakara and Acharya, 2011; Teeling et al., 2004; Wu
and Ye, 2011; Yang et al., 2010a,b) sampled from the same genome
or similar genomes are similar (Yang et al., 2010a,b).

AbundanceBin (Wu and Ye, 2011) groups reads based on
Observation (A) but fails when the species in the sample have
similar abundance. TOSS (Tanaseichuk et al., 2011) bins reads
based on Observations (A) and (B), and since TOSS relies on
AbundanceBin to handle genomes with different abundances, it
carries all the shortcomings of AbundanceBin. MetaCluster 4.0
(Wang et al., 2012) has three phases: Phase 1 groups reads together
based on Observation (B); Phase 2 derives the q-mer distribution
of each group and Phase 3 merges the groups of reads based on
Observation (C) by the well-known K-means clustering approach.
MetaCluster 4.0 handles high-abundance species (with different
abundances) in Phase 1 by having similar numbers of groups for
each species (high-abundance species will have more reads in their
groups). MetaCluster 4.0 works reasonably well for those species
whose abundance (sequencing depth) of at least 10×, even in a
sample with 100 species.

For easy discussion, we classify the abundances into three
categories: (i) high abundance: at least 10×; (ii) low abundance:
6× to 10×; and (iii) extremely low abundance: at most 5×. There
are at least two problems that MetaCluster 4.0 fails to address.
(i) Interference from extremely low-abundance species: MetaCluster
4.0 does not perform well even for high-abundance species when
there are many extremely low-abundance species in the sample.
Table 1 shows such a case for a sample of 100 species with
85 extremely low-abundance species. MetaCluster 4.0 can only
detect four high-abundance species. (ii) Difficulty in recovering
low-abundance species: MetaCluster 4.0 does not work well for
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Table 1. Performance on Dataset A with 100 species (15 high abundance and 85 extremely low abundance)

Species discovered Sensitivity Overall performance

≥10× <6× ≥10× <6× Precision Sensitivity Memory Time (min)

MetaCluster4.0 4 0 0.79 – 0.67 0.79 29G 70
MetaCluster5.0 14 0 0.90 – 0.92 0.90 20G 38

low-abundance species even without too much noise from extremely
low-abundance species. Table 3 shows an example of 20 species in a
sample with only five extremely low-abundance species, for which
MetaCluster 4.0 is not able to bin any of the low-abundance species.

In fact, none of the existing binning tools can handle these two
problems, which are common in real datasets. For example, in
samples from real applications, there are usually many reads (can be
>50% of the total reads) sampled from extremely low-abundance
genomes and there is usually a portion of low-abundance species that
may be significant to the biological system (e.g. Qin et al., 2010). An
ideal binning solution should be able to identify all species regardless
of their abundance. However, it is very difficult to bin extremely low-
abundance species and we leave it as an open problem to identify
all these extremely low-abundance species. In this article, we aim at
identifying low-abundance species, in addition to indentifying high-
abundance species when there is interference from the extremely
low-abundance species. We first discuss why the aforementioned
two problems are difficult to solve.

1.1 Difficulties of the problems
Recall that existing tools are all based on the aforementioned three
Observations. Note that Observation (C) relies very much on the
grouping of reads using Observations (A) and (B). However, a
direct application of Observations (A) and (B) cannot solve the
problems satisfactorily. Binning based on Observation (A) has
been known to fail if some species in the sample have similar
abundance, a feature often found for real datasets. Even worse, the
abundances of a large number of species in a real sample usually
form a continuous spectrum from extremely low-abundance (1×) to
moderately high-abundance (say 20×). This continuous spectrum
of abundances causes reads from different species to mix together
(we show an example of this mixing together in Section 3 using
AbundanceBin).

In applying Observation (B), there is the technical issue of
picking the value w. Intuitively, picking a larger w can decrease
the number of false positives (reads from different species mixing
together in a group), but also might make the groups too small for
the application of Observation (C) and thus can only favor high-
abundance species. Low-abundance species will likely be missed
due to not enough coverage to connect the reads with large w-mers.
Picking a smaller w can make the groups bigger and allow more
low-abundance species to be identified but will increase the number
of false positives, especially when there is noise from extremely
low-abundance species. Since there are high-abundance species,
reads from the low-abundance species will likely be merged into
the groups of high-abundance species or be mixed together with
some reads from extremely low-abundance species. Thus, how to
set this w is not trivial and a single w value may not be appropriate
for obtaining both high-abundance and low-abundance species.

On the other hand, while extremely low-abundance species may
not have enough reads for binning, low-abundance species seem
to have enough reads for binning if we can eliminate the noise
from extremely low-abundance species and separate them from
high-abundance species.

1.2 Our contributions
In this article, we introduce an unsupervised binning tool,
MetaCluster 5.0, which extends MetaCluster 4.0 (Wang et al., 2012)
with the addition of a few techniques to handle the abovementioned
problems. MetaCluster 5.0 works in a two-round manner. In the
first round, we group reads from high-abundance species, and in the
second round, we handle reads from low-abundance species.

• Filtering the extremely-low-abundance species. Since reads
from extremely-low-abundance species have adverse effects
on the binning results, MetaCluster 5.0 removes these reads at
the initial step based on Observation (A) so as to improve the
accuracy of the results and so as to reduce the size and thus the
complexity of the problem. In order not to mistakenly remove
reads (with some errors) from high-abundance species, we
apply the following observation to remove the reads. If a read
comes from an extremely low-abundance species, it is likely
that all its k-mers’ frequencies (if k is large enough) are low
and it should be removed, but note that the value of k is not
the same as that of w in w-mers. w-mers aim at uniqueness in
a genome while k-mers aim at handling sequencing errors. A
read will not be removed as long as one of its k-mers has high
frequency as some of its k-mer frequencies (which contain
errors) for high-abundance species can be very low. For details
on how to set k and the thresholds for filtering, please refer to
Section 2.

• Low-abundance species grouping. After filtering extremely
low-abundance species using k-mer frequencies and after
grouping reads from high-abundance species with longer w-
mers overlaps in the first round, we will have reads mostly
from low-abundance species remaining in our dataset for the
second round. However, a direct application of Observation
(B) using a smaller w may still fail since there is still a
chance that reads from different genomes are grouped, and
any grouping mistake may affect the quality of the group
significantly. So, we adopt a multiple w approach, we first
use a large w to group reads with high confidence, then use a
smaller w to increase the size of each group to facilitate q-mer
distribution estimation [Observation (C)].

By removing reads from low-abundance species and by
considering reads from different ranges of abundance ratio genomes
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Fig. 1. Workflow of MetaCluster 5.0

one after another, MetaCluster 5.0 also enjoys the advantage of using
less memory and running time.

We have compared MetaCluster 5.0 with existing binning method
MetaCluster 4.0. We used three simulated datasets (one with the
problem of many extremely low-abundance species and one with the
problem of low-abundance species without too many extremely low-
abundance species and one with both problems) and a real dataset
[from (Qin et al., 2010)] to evaluate the tools. MetaCluster 5.0
outperforms MetaCluster 4.0 substantially for all three simulated
datasets. MetaCluster 5.0 is able to identify almost all low-
abundance species in all cases with high sensitivity and precision,
while MetaCluster 4.0 can only identify very few and sometimes
none at all. In terms of high-abundance species, MetaCluster 5.0
also performs better than MetaCluster 4.0 especially in datasets
with many extremely low-abundance species (with 15 species in
total, MetaCluster 5.0 identifies 14 species while MetaCluster 4.0
can only identify 4) with even higher precision and sensitivity.
For the real dataset, MetaCluster 5.0 can also identify all five
known low-abundance species and six out of seven high-abundance
species, while MetaCluster 4.0 cannot identify any of the low-
abundance species and can only identify the three most abundant
species.

2 METHODS
MetaCluster 5.0 is a two-round binning method using Observations (A), (B)
and (C), developed based on MetaCluster 4.0 (Wang et al., 2012). In the first
round, it filters those reads sampled from both low-abundance and extremely
low-abundance genomes and bins the reads sampled from high-abundance
genomes (or species) only. In the second round, it filters those reads sampled
from extremely low-abundance genomes and bins the reads sampled from
low-abundance genomes. Since some reads are filtered in each round (up
to 50% of reads), MetaCluster 5.0 requires less memory and running time
(usually proportional to the square of the number of reads) than MetaCluster
4.0. A workflow of MetaCluster 5.0 is shown in Figure 1 and we will describe
MetaCluster 5.0 in detail in the following sections.

2.1 First round
2.1.1 Filtering reads MetaCluster 5.0 first filters reads from low-
abundance genomes as well as reads with many error bases. Based on
the observation that k-mer frequency from reads of a genome is usually
linearly proportional to that genome’s abundance [Observation (A)], reads
with all k-mers appearing rarely in the dataset are likely to be sampled from
low-abundance genomes. MetaCluster 5.0 filters those reads with all k-mers
appearing at most T times in the whole dataset (Step 1, filtering). We have
a strict filtering requirement that all k-mers instead of part of them to be
appearing at most T times because some reads sampled from high-abundance
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genomes may contain k-mers with low frequencies because of sequencing
bias or sequencing errors. We pick k =16 based on the research findings in
(Fofanov et al., 2004) and calculate the threshold T according to the target
genome’s abundance as follows.

Given a target abundance (sequencing depth) d , read length r, genome
length g, sequencing error rate e and reads randomly picked from the genome,
the expected number of sampled reads from this genome is

n= dg

r
.

For a particular k-mer, the probability of an arbitrary sampled read
contains this k-mer is

psample = r−k +1

g−r+1
(1−e)k .

Assume that the frequency of this k-mer in the dataset follows normal
distribution:

f ∼N (npsample,npsample(1−psample)).

It is easy to see that frequency f is not sensitive to genome length g as
g is much larger than read length r. Assume that we want to preserve those
reads sampled from genome with abundance at least d with probability at
least p in the first round. We can calculate the value of T such that:

∫ T

0
fdx≤1−p.

For example, when read length r =75, d =10, p=80%, k =16 and e=0.01,
g ∼ 3 million, we should pick T =4.

2.1.2 Grouping reads The reads are then grouped based on the common
w-mer appearing in the reads [Observation (B)]. Two groups of reads are
merged if and only if each group contains a read with common w-mers. In
the first round, since the target abundance is 10× or more, we let w=36 so as
to have two reads sampled in a nearby region of a genome merged together
in the same group with 99% accuracy according to the study by Wang et al.
(2012). Some reads sampled from low-abundance genomes may still not be
filtered in the first step. Since the probability of reads sampled in nearby
region of a low-abundance genome are merged into the same group is low,
the sizes of these groups will be small. As each group of reads represents a
virtual contig of a genome, those small groups of reads whose virtual contigs
are of length <1000 bp will be filtered (Step 2, filtering).

2.1.3 Binning virtual contigs The 5-mer distribution of each virtual
contig is estimated and the virtual contigs are grouped using K-means
clustering method based on the Spearman distance of the 5-mer distribution
[Observation (C)]. Although this step is similar to MetaCluster 4.0, the length
of virtual contigs produced by MetaCluster 5.0 is much longer than those
produced by MetaCluster 4.0. Thus, we can estimate the 5-mer distribution,
instead of 4-mer distribution used in MetaCluster 4.0, to get a better binning
result.

2.2 Second round
After the first round, reads sampled from high-abundance genomes have
been binned. In the second round, we target for binning reads sampled from
low-abundance genomes. For filtering reads sampled from extremely low-
abundance genomes (sequencing depth < 6×), we applied the Step 1 filtering
again, but with a lower threshold T , say T =2. In other words, a read will be
discarded in this step if and only if all its k-mers are unique. As such reads
will never be grouped in later phases, we filter them to save space and time.

2.2.1 Grouping reads with multiple w In order to guarantee that two reads
sampled in a nearby region of a low-abundance genome (with sequencing
depth 6× or more) can be merged in the same group with 99% probability,
we should use a smaller w (w=22 deduced from the study in (Wang et al.,

2012) for common w-mer grouping). However, reads sampled from different
genomes may be merged incorrectly as w is small (false positives). For
reducing the false-positive effect of small w, MetaCluster 5.0 groups the
reads sharing longer w-mer first because two reads sharing a longer common
substring have higher probability to be from the same species.

Since the abundance is low, some groups of reads may be small and may
represent short virtual contigs. Thus, the 4-mer distribution, instead of 5-mer
distribution used in the first round, is estimated based on each virtual contig
for binning.

2.3 Time and space complexity
Since the numbers of k-mers and w-mers are at most nr where n is the number
of input reads and r is the length of read. The space complexity is O(nr).

For the time complexity, O(nr) time is required for filtering reads,
O[

∑
I≤K(nrv2

i )] time is required for grouping reads with at most nr different
w-mers and the frequency of the i-th w-mer is vi . The virtual contigs for q-mer
distribution can be constructed in O(nr) times and the K-means clustering
takes O[gtc·lg(c)] time where g is the number of groups of reads, t is the
number of iterations and c is the initial number of centers used in the K-means
algorithm. The total time complexity is O[gtc·lg(c)+∑

i≤K (nrv2
i )].

3 RESULTS
We evaluate the performance of MetaCluster 5.0 on simulated
data and real data. MetaCluster 4.0, AbundanceBin and TOSS.
(The software tool of TOSS was obtained through a private
communication with the authors of the article.) are the latest
unsupervised binning tools for NGS reads. However, TOSS
and AbundanceBin are very slow. TOSS (based on output of
AbundanceBin) cannot finish any of the datasets in a week.
AbundanceBin can only finish the smallest dataset with 8.3 million
reads from 20 species, but the result is not satisfactory and all
the reads grouped together even though the species are of uneven
abundance. Since the performance of TOSS relies on AbundanceBin
results, it is likely that TOSS may not perform well for species with
similar abundance. As MetaCluster 4.0 outperforms AbundanceBin
and TOSS in many situations (Wang et al., 2012), we mainly
compare the performances of MetaCluster 5.0 and MetaCluster 4.0.

All experiments were performed on a UNIX machine with 4CPU
of Intel Xeon X5650@2.4GHz.

3.1 Experiments on simulated data
The simulated data are generated based on genomes in
National Center for Biotechnology Information (NCBI) database
(ftp.ncbi.nih.gov/genomes/) and the NCBI taxonomy is downloaded
from ftp://ftp.ncbi.nih.gov/pub/taxonomy/. Given a set of genomes
with the corresponding abundances, a set of length-75 paired-
end reads are randomly generated with 1% sequencing error and
250 ± 50 bp insert distance from the genomes. The performances of
the binning algorithms are evaluated on precision, sensitivity and the
number of discovered species. Assume there are N genomes in the
dataset and a binning algorithm outputs M clusters Ci(1≤ i≤M ).
Let Rij be the number of reads in Ci which are from genome j and Cj
represents genome j0 when Rij0 = maxj Rij . The overall precision
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and sensitivity is calculated as

precision=
∑M

i=1max
j

Rij

∑M
i=1

∑N
j=1Rij

sensitivity=
∑N

j=1max
i

Rij

∑M
i=1

∑N
j=1Rij +number of unclassified reads

.

If M >>N , the majority of reads in each cluster probably belongs
to a single genome and thus precision would be high. However,
sensitivity would be low as some genomes are represented by
multiple clusters. If M <<N , some clusters would contain reads
from multiple genomes and precision would be low. Thus, precision
increases while sensitivity decreases with the number of predicted
clusters.

Consider all the reads sampled from a particular species S, if there
is a cluster C such that >50% of the reads are sampled from S and
>50% reads sampled from S are in cluster C, we say species S is
discovered by cluster C. Note that each species can be discovered by
at most one cluster and each cluster can discover at most one species.

We simulated three datasets with different difficulties mentioned
in the introduction: (i) many reads from extremely-low-abundance
genomes, (ii) some reads from low-abundance genomes and (iii)
reads from low-abundance genomes as well as many reads from
extremely-low-abundance genomes.

3.1.1 Noise from extremely low-abundance species If there are
many reads sampled from extremely-low-abundance genome, reads
sampled from high-abundance genomes are difficult to be binned
well. Existing binning algorithms cannot perform well on such
datasets. To illustrate this, we construct a dataset (Dataset A) with
100 species randomly picked from 18 genera. Twenty of them are
of sequencing depth 1×; 20 of them are of sequencing depth 2×; 20
of them are of sequencing depth 3×; 20 of them are of sequencing
depth 4×; 5 of them are of sequencing depth 5×; the remaining 15
are of sequencing depth 11×, 12×, …, 25×. In total, there are 23.2
million reads. MetaCluster 4.0 and MetaCluster 5.0 were tested on
this dataset and the performance is shown in Table 1.

Among the 15 high-abundance species (≥10×), MetaCluster 5.0
discovers 14 and MetaCluster 4.0 discovers four species. The poor
performance of MetaCluster 4.0 is due to the noise introduced by the
large number of reads from extremely low-abundance species. On
the other hand, as MetaCluster 5.0 can successfully filter the reads
from extremely-low-abundance species (<6×) as shown in Table 2,
most of the high-abundance species can be discovered. The only
species not discovered by MetaCluster 5.0 appears in three clusters
and all these three clusters have high precision (>90% reads in these
clusters are from the missing species).

Obviously, MetaCluster 5.0 can produce results with higher
sensitivity and precision. Besides, as some of the reads can be filtered
in each round, MetaCluser5.0 requires less space and time.

3.1.2 Low-abundance species MetaCluter 5.0 optimizes the two
binning rounds to discover more species, while existing binning
algorithms can only discover high-abundance species. To illustrate
this, we constructed a dataset (Dataset B) with 20 species randomly
picked from four genera, with sequencing depths are 1×, 2×,
3×, …, 20× and 8.3 million reads in total.

Table 2. Percentage of filtered reads by MetaCluster 5.0 (Dataset A)

First round Second round

≥10× (%) <6× (%) ≥6× (%) <6× (%)

Filter step 1 3.6 90.4 12 9
Filter step 2 6.2 95.4 –

The binning performance of MetaCluster 4.0 and MetaCluster 5.0
is shown in Table 3. While MetaCluster 5.0 can successfully discover
all 11 high-abundance species, MetaCluster 4.0 can discover nine
of them. Moreover, MetaCluster 5.0 can discover three out of four
low-abundance species and MetaCluster 4.0 can discover none of
them. Besides, the precision and sensitivities of MetaCluster 5.0 are
higher than those of MetaCluster 4.0 in all categories. It is because
MetaCluster 5.0 can filter the reads from low-abundance species in
the first round (Table 4) and bin them successfully in the second
round. However, the sensitivity of low-abundance species is a bit
low because of their short virtual contigs due to the low coverage.
Thus, the binning performance in second round is not as good as the
first round.

3.1.3 Dataset with both difficulties The above two datasets
demonstrate that MetaCluster 5.0 can solve the two difficulties
mentioned in Section 1 independently. Here, we construct a dataset
(dataset C) which has both difficulties. One-hundred species are
randomly picked from 18 genera; 20 of them are of sequencing
depth 1×; 20 of them are of sequencing depth 2×; 20 of them are
of sequencing depth 3×; 20 of them are of sequencing depth 4×;
20 of them are of sequencing depth 6×, 7×,…, 25×, respectively.
In total, there are 24.3 million reads.

The performance is shown in Tables 5 and 6. Among all the 16
high-abundance species (≥10×), MetaCluster 5.0 discovers all of
them while MetaCluster 4.0 only discovers nine of them. For the
four low-abundance species (≥6× and <10×), MetaCluster 5.0
discovers three of them while MetaCluster 4.0 only discovers one
of them. MetaCluster 5.0 has much higher precision (0.87 versus
0.62); better sensitivity (0.88 versus 0.80) and runs faster than
MetaCluster 4.0.

3.2 Experiments on real data
To evaluate the performance of MetaCluster 5.0 on real dataset, the
dataset provided by the study of Qin et al. in (Qin et al., 2010),
which collected samples from the feces of 124 European adults, is
studied. Since the dataset contain different samples with read length
varies from 44 to 75 bp, we selected one sample from 57 Denmark
adults with 75-bp pair-end reads with matches with the common
experimental setting.

Since there are many reads sampled from genomes with unknown
reference, it is difficult evaluate the performance of a binning
algorithm. In order to calculate the precision and sensitivity of the
binning algorithms, all reads are not sampled from the most abundant
15 species with known reference genomes are filtered. Software
BLAT (Kent, 2002) to map reads to the 15 reference genomes with
5% mismatch allowed. After filtering, there are 8 million reads in
the dataset. The results obtained by MetaCluster 5.0 are shown in
Table 7.
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Table 3. Performance on Dataset B with 20 species (11 high abundance, four low abundance and five extremely low abundance)

Species discovered Sensitivity Overall performance

≥10× (6×, 10×) <6× ≥10× (6×, 10×) Precision Sensitivity Memory Time (min)

MetaCluster4.0 9 0 0 0.79 – 0.82 0.82 12.5G 16
MetaCluster5.0 11 3 0 0.87 0.80 0.92 0.87 7.7G 14

Table 4. Percentage of filtered reads by MetaCluster 5.0 (Dataset B)

First round Second round

≥10× (%) [6×, 10×] (%) <6× (%) ≥6× (%) <6× (%)

Filter step 1 3.4 37.1 86.2 20 22
Filter step 2 6.2 61.4 97.5 –

Table 5. Performance on Dataset C with 100 species (16 high abundance, four low abundance and 80 extremely low abundance)

Species discovered Sensitivity Overall performance

≥10× [6×, 10×) <6× ≥10× [6×, 10×] Precision Sensitivity Memory Time (min)

MetaCluster4.0 9 1 1 0.81 0.60 0.62 0.80 31G 87
MetaCluster5.0 16 3 3 0.91 0.72 0.87 0.88 21G 45

Table 6. Percentage of filtered reads by MetaCluster 5.0 (Dataset C)

First round Second round

≥10× (%) [6×, 10×] (%) <6× (%) ≥6× (%) <6× (%)

Filter step 1 3.5 39.9 93 13 11
Filter step 2 4.6 60.1 97 –

Table 7. Performance of MetaCluster 5.0 on the real dataset

Groups Major species Precision Sensitivity

Group 1 Bacteroides uniformis 0.82 0.84
Group 2 Alistipes putredinis 0.79 0.54
Group 3 Parabacteroides merdae 0.65 0.65
Group 4 Eubacterium hallii DSM 3355 0.98 0.70
Group 5 Ruminococcus torques L2 14 0.59 0.55
Group 6 Faecalibacterium 0.76 0.69
Group 7 Dorea formicigenerans ATCC 27755 0.59 0.78
Group 8 Roseburia intestinalis M501 0.71 0.62

In this dataset, there are three low-abundance species (between
6× and 10×), and MetaCluster 5.0 can discover all of them. For the
six high-abundance species (≥10×), MetaCluster 5.0 finds five of
them. The only missing one is of sequencing depth 11× and mixed
with other species from the same genus. As highly related genomes

Table 8. Performance of MetaCluster 4.0 on the real dataset

Groups Major species Precision Sensitivity

Group 1 Bacteroides uniformis 0.79 0.53
Group 2 Alistipes putredinis 0.77 0.56
Group 3 Roseburia intestinalis M501 0.51 0.89

share too many common regions, their reads can be easily mixed
together. MetaCluster 5.0 has an overall precision and sensitivity of
>70%.

MetaCluster 4.0 cannot discover any of the low-abundance
species and it can only discover the most abundant three species
in the dataset. As MetaCluster 4.0 outputs too many clusters, we list
the discovered species in Table 8. Its overall precision and sensitivity
are both lower than those of MetaCluster 5.0.

4 CONCLUSION
Metagenomics binning remains a crucial step in metagenomics
analysis. Existing unsupervised binning algorithms fail to bin
reads from low-abundance species or cannot bin reads from high-
abundance species when there are many reads from extremely
low-abundance species. In this article, we introduce MetaCluster
5.0 that overcomes these two problems by binning the reads in two
rounds with a filtering step to remove noise from extremely low-
abundance species. MetaCluster 5.0 outperforms existing binning
algorithms for both simulated and real biological datasets.
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A trivial extension of MetaCluster 5.0 is to bin reads with different
abundances using multiple (more than two) rounds. However, the
filtering error may accumulate in each round and fewer reads can
be preserved in each subsequent round. One possible direction is to
reuse some of the reads used in the previous rounds. How to make
the multiple-round approach more effective requires more in-depth
investigation. Another important direction for future work is to bin
reads from extremely low-abundance species, which is basically a
well-known open problem in this area.
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